JPS61256230A - Light accumulating pressure sensor - Google Patents

Light accumulating pressure sensor

Info

Publication number
JPS61256230A
JPS61256230A JP9666785A JP9666785A JPS61256230A JP S61256230 A JPS61256230 A JP S61256230A JP 9666785 A JP9666785 A JP 9666785A JP 9666785 A JP9666785 A JP 9666785A JP S61256230 A JPS61256230 A JP S61256230A
Authority
JP
Japan
Prior art keywords
optical
pressure
pressure sensor
coupler
optical waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9666785A
Other languages
Japanese (ja)
Inventor
Fumiki Sone
曽根 文樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9666785A priority Critical patent/JPS61256230A/en
Publication of JPS61256230A publication Critical patent/JPS61256230A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make it possible not only to perform the multi-point measurement of pressure through the connection by a two-core optical fiber but also to make an optical measuring system compact, by constituting both respective terminals of two optical waveguides as input/output ports performing the transmission and reception of light with the outside. CONSTITUTION:Two optical waveguides 10, 11 are formed on a substrate 9 and the ports A, B, C, D of both respective terminals of the optical waveguides 10, 11 are constituted as input/output ports performing the transmission and reception of light with the outside. The optical waveguides 10, 11 approach to each other over a predetermined length at the respective intermediate parts thereof to form a waveguide type directional coupler 12 and a pressure receiving part 13 is formed on the coupler 12. When pressure P is applied to the pressure receiving part 13, the refractive index (n) or optical phase constant of the coupling part of the optical waveguides of the coupler 12 changes correponding to the pressure P and, as a result, the coupling coefficient K of the coupler 12 changes. A sensor 8 is a two-terminal pair circuit having the pressure receiving part 13 provided to the coupler 12 and the coupling parameter thereof is changed by the pressure of the pressure receiving part 13 to enable succeeding connection.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は光集積化圧力センサに係り、特に光ファイバ
を用いた圧力の多点計測に適した光集積化圧力センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optically integrated pressure sensor, and more particularly to an optically integrated pressure sensor suitable for multi-point measurement of pressure using optical fibers.

[従来の技術] 各種の光素子を一体化する光集積化の技術は、光通信や
光情報処理などにおいて活発な研究開発が行なわれてお
り、小形、高性能、低価格の光集積回路の実現が期待さ
れている。第5図に示す従来の薄1!Is波路形の光集
積化圧力センサ1も、光集積回路を光計測に利用しよう
とする研究の中から出てきたものである。
[Conventional technology] Optical integration technology, which integrates various optical elements, is being actively researched and developed in fields such as optical communication and optical information processing, and is currently being used to develop compact, high-performance, and low-cost optical integrated circuits. It is hoped that this will come true. The conventional thin 1 shown in Figure 5! The Is waveform type optical integrated pressure sensor 1 also emerged from research into the use of optical integrated circuits for optical measurement.

光集積化圧力センサ1は、基板2上に形成された2本の
光導波路3,4と、光導波路3,4を結合する結合器5
と、光導波路3上に設けられそれに加えられる圧力に応
じて光導波路3を伝播する光の移相量が変化する受圧部
6と、光導波路3゜4の受圧部6側のポートF、Hに設
けられた反射鏡7とからなり、これらによりマイケルソ
ン干渉計が構成される。
The optical integrated pressure sensor 1 includes two optical waveguides 3 and 4 formed on a substrate 2 and a coupler 5 that couples the optical waveguides 3 and 4.
, a pressure receiving section 6 which is provided on the optical waveguide 3 and changes the amount of phase shift of light propagating through the optical waveguide 3 according to the pressure applied thereto, and ports F and H on the pressure receiving section 6 side of the optical waveguide 3°4. A Michelson interferometer is constituted by these mirrors and a reflecting mirror 7 provided at the center.

光導波路3のポートEから単一モードのコヒーレンスな
光を入射すると、その入射光は結合器5で分岐され光導
波路3,4のポートF、l−1側へとそれぞれ圧検出光
、基準光として送られ、ポートF、Hにて反射鏡7によ
り反射され、結合器5で結合されて両光の干渉光が光導
波路4のポートGから出射される。受圧部6に加えられ
ている圧力の強さに応じて基準光に対する圧検出光の位
相が変化するので、ポートGから出射される干渉光の強
度から受圧部6の圧力が求まることになる。
When single-mode coherent light is input from port E of the optical waveguide 3, the incident light is split by the coupler 5 and sent to ports F and l-1 of the optical waveguides 3 and 4 as pressure detection light and reference light, respectively. It is reflected by the reflecting mirror 7 at ports F and H, and is combined by the coupler 5, and the interference light of both lights is emitted from the port G of the optical waveguide 4. Since the phase of the pressure detection light relative to the reference light changes depending on the intensity of the pressure applied to the pressure receiving part 6, the pressure in the pressure receiving part 6 can be determined from the intensity of the interference light emitted from the port G.

[発明が解決しようとする問題点] 光集積化圧力センサにおいては、バルク光学素子を用い
た干渉計(マツハ・ツエンダ−干渉計。
[Problems to be Solved by the Invention] In optical integrated pressure sensors, an interferometer (Matsuha-Zehnder interferometer) using a bulk optical element is used.

マイケルソン干渉計など)に比べて、光路長さが安定で
ドリフトが極めて小さいという特長があり、−力先ファ
イバを用いた計測は耐電磁誘導性・絶縁性・耐環境性な
どの特長を有する。
Michelson interferometer, etc.), the optical path length is stable and the drift is extremely small. -Measurement using a fiber end has features such as resistance to electromagnetic induction, insulation, and environmental resistance. .

そこで、長さ方向の分布、例えば電カケープルや地下埋
設管の長さ方向応力分布などの多点計測を、光集積化圧
力センサ1と光ファイバとを組み合わせて行なうことが
考えられる。ところが、光集積化圧力センサ1と光ファ
イバとを組み合わせた多点計測システムでは、計測点の
2倍の本数の光ファイバが必要となり、システムのコン
パクト化・簡素化が図れない。
Therefore, it is conceivable to perform multi-point measurement of the longitudinal distribution, for example, the longitudinal stress distribution of electric cables and underground pipes, using a combination of the optical integrated pressure sensor 1 and an optical fiber. However, in a multi-point measurement system that combines the optical integrated pressure sensor 1 and optical fibers, twice as many optical fibers as the number of measurement points are required, making it impossible to make the system compact and simple.

[発明の目的] この発明は、圧力の多点計測を2心光フアイバ等による
接続にて行なうことができ、光計測システムのコンパク
ト化・簡素化を推進することができる光集積化圧力セン
サを提供することを目的とする。
[Purpose of the Invention] The present invention provides an optical integrated pressure sensor that can perform multi-point pressure measurement by connecting using a two-core optical fiber, etc., and can promote compactness and simplification of an optical measurement system. The purpose is to provide.

[発明の概要] 上記の目的を達成するために、この発明は、基板上に形
成された2本の光導波路と、これら光導波路が所定の長
さ互いに接近して形成される方向性結合器と、方向性結
合器上に形成されそれに加えられる応力により方向性結
合器の結合係数が変化を受ける受圧部とを備え、上記2
本の光導波路のそれぞれの両端が外部との光の授受を行
なう入出力ポートとして構成されている。
[Summary of the Invention] In order to achieve the above object, the present invention provides a directional coupler in which two optical waveguides are formed on a substrate, and these optical waveguides are formed close to each other for a predetermined length. and a pressure receiving part formed on the directional coupler and in which the coupling coefficient of the directional coupler changes due to stress applied thereto,
Both ends of each optical waveguide are configured as input/output ports for exchanging light with the outside.

この発明の光集積化圧力センサは、方向性結合器を用い
た2端子対回路であり、光ファイバ等により縦続接続が
できるようになっている。
The optical integrated pressure sensor of the present invention is a two-terminal pair circuit using a directional coupler, and can be connected in cascade using an optical fiber or the like.

[実施例] 以下に、この発明の実施例を添付図面に従って詳述する
[Examples] Examples of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は光集積化圧力センサ8を示すもので、その基板
9上には2本の光導波路10.11が形成されている。
FIG. 1 shows an optical integrated pressure sensor 8, on whose substrate 9 two optical waveguides 10, 11 are formed.

光導波路丁0.11のそれぞれの両端のポートA、B、
C,Dは外部との光の授受を行なう入出力ポートとなっ
ている。光導波路10.11はそれら中間部において所
定の長さ互いに接近し導波路形の方向性結合器12が形
成されており、方向性結合器12上には受圧部13が形
成されている。受圧部13に圧力Pが加わると、方向性
結合器12の光導波路の結合部分の屈折率nあるいは光
の位相定数が圧力Pに応じて変化し、その結果、方向性
結合器12の結合係数Kが変化するようになっている。
Ports A, B at each end of the optical waveguide 0.11,
C and D serve as input/output ports for exchanging light with the outside. The optical waveguides 10 and 11 are brought close to each other by a predetermined length in their intermediate portions to form a waveguide-shaped directional coupler 12, and a pressure receiving portion 13 is formed on the directional coupler 12. When pressure P is applied to the pressure receiving part 13, the refractive index n or the optical phase constant of the coupling portion of the optical waveguide of the directional coupler 12 changes according to the pressure P, and as a result, the coupling coefficient of the directional coupler 12 changes. K is set to change.

第2図は方向性結合器12の結合係数にの圧力特性を示
すものであり、ポートAからポートB、Cへの結合係数
KAB 。
FIG. 2 shows the pressure characteristics with respect to the coupling coefficient of the directional coupler 12, and the coupling coefficient KAB from port A to ports B and C.

KACは圧力Pにより互いに逆の関係で壜減する。KAC decreases with pressure P in an inverse relationship to each other.

なお、圧力Pがゼロの点におけるKAB 、 KACの
値は、方向性結合器12の結合部分の長さ2や圧力がゼ
ロのときの屈折率noを適当に選ぶことにより、任意に
設定できる。この光集積化圧力センサ8は、方向性結合
器12に受圧部13を有する2端子対回路であり、受圧
部13の圧力によって結合パラメータが変化し継続接続
ができる点に特長がある。
Note that the values of KAB and KAC at the point where the pressure P is zero can be arbitrarily set by appropriately selecting the length 2 of the coupling portion of the directional coupler 12 and the refractive index no when the pressure is zero. This optical integrated pressure sensor 8 is a two-terminal pair circuit having a pressure receiving section 13 in a directional coupler 12, and is characterized in that the coupling parameter changes depending on the pressure of the pressure receiving section 13, allowing continuous connection.

第3図には光集積化圧力センサ8を偏波面保存ファイバ
14により縦続接続したものを用いた圧力の多点計測シ
ステムを示す。同図に示す如く、隣接する光集積化圧力
センサF3a 、 8b 、・・・。
FIG. 3 shows a multi-point pressure measurement system using optical integrated pressure sensors 8 connected in cascade through polarization preserving fibers 14. As shown in the figure, adjacent optical integrated pressure sensors F3a, 8b, .

8ZのポートD、B問およびボー)−C,A間は偏波面
保存ファイバ14により接続されて光集積化圧力センサ
8a 、 8b 、・・・、8Zは縦続接続されている
。端末の光II化圧カセンサ8aのポートA、Bには偏
波面保存ファイバ14を介して光送信機15.光受信機
16がそれぞれ接続されている。光送信n15.光受信
機16には、パルス発生器17からパルス信号が入力さ
れるようになっている。また、もう一方の端末の光集積
化圧力センサ8zのポートC,Dには不要な光の入射や
反射を防止するために、無反射吸収膜18が設けられて
いる。
The optical integrated pressure sensors 8a, 8b, . . . , 8Z are connected in cascade between ports D and B of 8Z and ports C and A of the pressure sensor 8Z are connected by a polarization maintaining fiber 14. An optical transmitter 15. Optical receivers 16 are connected to each. Optical transmission n15. A pulse signal is input to the optical receiver 16 from a pulse generator 17 . In addition, a non-reflection absorbing film 18 is provided at ports C and D of the optical integrated pressure sensor 8z of the other terminal in order to prevent unnecessary light from entering or reflecting.

光送信器15はパルス発生器17からのパルス信号に従
ってコヒーレントな単一モード光パルスを発生し、この
光パルスは偏波面保存ファイバ14を経由して光集積化
圧力センサ8aのポートAに入射する。ポートAより入
射したパルス光は、光集積化圧力センサ8aの受圧部1
3に加えられている圧力に応じて、その大部分はポート
Cから出射し、残りの一部がポートBから出射する。ポ
ートCの出射光は偏波面保存ファイバ14を通って光集
積化圧力センサ8bのポートAに入射する。
The optical transmitter 15 generates a coherent single mode optical pulse according to the pulse signal from the pulse generator 17, and this optical pulse enters the port A of the optical integrated pressure sensor 8a via the polarization maintaining fiber 14. . The pulsed light incident from port A is transmitted to the pressure receiving part 1 of the optical integrated pressure sensor 8a.
Depending on the pressure being applied to 3, most of it will exit from port C and the remaining part will exit from port B. The light emitted from port C passes through polarization maintaining fiber 14 and enters port A of optical integrated pressure sensor 8b.

一方、ボー1−8の出射光は光集積化圧力センサ8aの
受圧部13の圧力情報として光受信機16に入射される
。光集積化圧力センサ8bのポートAから入射した光の
うち大部分はポートCから更に後続の光集積化圧力セン
サへと送られ、残りの一部は光集積化圧力センサ8bの
圧力情報を含む信号としてポートBから前段の光集積化
圧力センサ8aのポートDに戻されそのうちの大部分は
光集積化圧力センサ8aのポートBから光受信機16に
送られる。以下、端末の光集積化圧力センサ8zに至る
まで同様な信号の授受が繰り返される。なお、端末の光
集積化圧力センサ8zのポートCの出射光は無反射吸収
膜18により吸収される。
On the other hand, the emitted light from the baud 1-8 is input to the optical receiver 16 as pressure information from the pressure receiving section 13 of the optical integrated pressure sensor 8a. Most of the light incident from port A of optical integrated pressure sensor 8b is sent from port C to the subsequent optical integrated pressure sensor, and the remaining part contains pressure information of optical integrated pressure sensor 8b. The signal is returned from port B to port D of the optical integrated pressure sensor 8a in the previous stage, and most of the signal is sent to the optical receiver 16 from port B of the optical integrated pressure sensor 8a. Thereafter, similar signals are sent and received until reaching the optical integrated pressure sensor 8z of the terminal. Note that the light emitted from the port C of the optical integrated pressure sensor 8z of the terminal is absorbed by the non-reflection absorption film 18.

従って、第4図の(イ)で示すように、光送信機15か
ら一定の周期(tx−to)で強いパルス光を発生する
と、光受信機16には各光集積化圧力センサ8a 、 
8b 、・・・からのパルス光列が同図(ロ)の如く戻
ってくる。なお、第4図の(ハ)は共通の時間軸である
。光受信機16に戻される各パルス光の遅延時間ta−
t o 、 tb−t O、・・・から各パルス光が生
じた位置、即ちどの光集積化圧力センサ8のものからか
が求まり、また、各パルス光の強度から各光集積化圧力
センサ(3a 、 8b 。
Therefore, as shown in (a) of FIG. 4, when the optical transmitter 15 generates strong pulsed light at a constant period (tx-to), the optical receiver 16 receives each optical integrated pressure sensor 8a,
The pulse light train from 8b, . . . returns as shown in FIG. Note that (c) in FIG. 4 is a common time axis. The delay time ta- of each pulsed light returned to the optical receiver 16
From t o , tb-t O, ..., the position from which each pulsed light is generated, that is, which optical integrated pressure sensor 8 it comes from, can be determined, and from the intensity of each pulsed light, each optical integrated pressure sensor ( 3a, 8b.

・・・に加えられた圧力pa 、 pb 、・・・が求
まる。
The pressures pa, pb,... applied to... are determined.

なお、戻りパルス光は一般に微弱であり、また光送信機
15から遠方の光集積化圧力センサ8から戻る光はど途
中の減衰で弱くなるが、光受信機16の内部において各
パルス光信号を蓄積し時間積分して信号のSN比を高め
ると共に、パルス光列間で適切な位置補正を行なうこと
により計測精度を高めることができる。また、上記実施
例において、光集積化圧力センサ8相互間などの接続に
偏波面保存ファイバ14を用いたが、これは光集積化圧
力センサ8が単一モード・単一偏波の入射光に対しての
み正しく動作し、一般の申−モード光ファイバでは消光
比が悪く不要な偏波光を発生してしまうからである。ま
た、上記実施例では光集積化圧力センサ8により多点圧
力計測を行なったが、各種の物理量を力に変換して受圧
部13に加えてやるようにすれば、第2図の特性曲線に
従った出力が1りられるので、光集積化圧力センサ8を
振動・音響・傾斜等の測定や監視にも適用することがで
きる。
Note that the returned pulsed light is generally weak, and the light returned from the optical integrated pressure sensor 8 that is far from the optical transmitter 15 becomes weak due to attenuation along the way. The measurement accuracy can be improved by accumulating and time-integrating the signal to increase the signal-to-noise ratio, and by performing appropriate positional correction between the pulse light trains. In addition, in the above embodiment, the polarization maintaining fiber 14 was used to connect the optical integrated pressure sensors 8 to each other. This is because ordinary polar mode optical fibers have a poor extinction ratio and generate unnecessary polarized light. Further, in the above embodiment, multi-point pressure measurement was performed using the optical integrated pressure sensor 8, but if various physical quantities are converted into force and applied to the pressure receiving part 13, the characteristic curve shown in FIG. Since only one output is required, the optical integrated pressure sensor 8 can also be applied to measurement and monitoring of vibrations, sounds, inclinations, etc.

[発明の効果] 以上型するに、この発明によれば次のような優れた効果
を発揮する。
[Effects of the Invention] In summary, the present invention provides the following excellent effects.

(1)  圧力(あるいは圧力に変換し得る振動・音響
・傾斜等)の多点計測や監視を、2心偏波面保存ファイ
バケーブル等を用いて縦続接続することにより行なうこ
とができ、計測点の2倍の数のファイバを必要とするマ
イケルソン干渉式の従来の光集積化圧力センサに比べ、
大幅なファイバ心数の低減がぐきる。このため、多点光
計測システムの省スペース化、簡素化が図れる。
(1) Multi-point measurement and monitoring of pressure (or vibration, sound, inclination, etc. that can be converted into pressure) can be performed by cascading connections using two-core polarization-maintaining fiber cables, etc. Compared to traditional optically integrated pressure sensors of the Michelson interferometric type, which require twice the number of fibers,
The number of fibers can be significantly reduced. Therefore, the space of the multi-point optical measurement system can be saved and simplified.

(2)  一枚の基板上に集積化されており、従来のバ
ルク光学素子を用いた光学式センサに比し、部品点数を
大幅に低減でき、安定性・信頼性を向上できると共に、
小型・省スペース・コスト低減が図れる。
(2) It is integrated on a single substrate, and compared to optical sensors using conventional bulk optical elements, the number of parts can be significantly reduced, and stability and reliability can be improved.
Small size, space saving, and cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る光集積化圧力センサの一実施例
を示す正面図、第2図は同圧力センサの結合係数の圧力
特性を示すグラフ、第3図は第1図の光集積化圧力セン
サを用いて構成した多点圧力計測システムの一例を示す
構成図、第4図は同システムにおけるパルス送受信波形
の一例を示す波形図、第5図は従来の光集積化圧力セン
サを示す正面図である。 図中、1は光集積化圧力センサ、2は基板、3.4は光
導波路、5は結合器、6は受圧部、7は反射鏡、8は光
集積化圧力センサ、9は基板、10.11は光導波路、
12は方向性結合器、13は受圧部、14は偏波面保存
ファイバ、15は光送信機、16は光受信機、17はパ
ルス発生器、18は無反射吸収膜である。 特許出願人   日立電線株式会社 代理人弁理士  絹  谷  信  雄第1図 8− クン表J置イヒ&7叱ヒシフ         
13−一斐11部9−J!’=iL         
   AJ3二D−j、・−ト10、I+−−え導液路 12−・−左旬狂園も呑 第2図 −>p
FIG. 1 is a front view showing an embodiment of the optically integrated pressure sensor according to the present invention, FIG. 2 is a graph showing the pressure characteristics of the coupling coefficient of the same pressure sensor, and FIG. 3 is the optically integrated pressure sensor of FIG. A configuration diagram showing an example of a multi-point pressure measurement system configured using pressure sensors. Fig. 4 is a waveform diagram showing an example of pulse transmission and reception waveforms in the system. Fig. 5 is a front view showing a conventional optical integrated pressure sensor. It is a diagram. In the figure, 1 is an optical integrated pressure sensor, 2 is a substrate, 3.4 is an optical waveguide, 5 is a coupler, 6 is a pressure receiving part, 7 is a reflector, 8 is an optical integrated pressure sensor, 9 is a substrate, 10 .11 is an optical waveguide,
12 is a directional coupler, 13 is a pressure receiving section, 14 is a polarization maintaining fiber, 15 is an optical transmitter, 16 is an optical receiver, 17 is a pulse generator, and 18 is a non-reflection absorbing film. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 8-Kun Omote J Okiihi & 7 Shokishifu
13-Ichihi 11 part 9-J! '=iL
AJ32D-j, ・-to 10, I+--E liquid conduction path 12-・-Saushunkyoen also drink Fig. 2->p

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成された2本の光導波路と、これら光導波路
が所定の長さ互いに接近して形成される方向性結合器と
、方向性結合器上に形成されそれに加えられる応力によ
り方向性結合器の結合係数が変化を受ける受圧部とを備
え、上記2本の光導波路のそれぞれの両端が外部との光
授受を行なう入出力ポートとして構成されていることを
特徴とする光集積化圧力センサ。
Directional coupling is achieved by two optical waveguides formed on a substrate, a directional coupler in which these optical waveguides are formed close to each other for a predetermined length, and a stress formed on the directional coupler and applied to it. an optical integrated pressure sensor, comprising a pressure receiving part whose coupling coefficient changes, and wherein both ends of each of the two optical waveguides are configured as input/output ports for transmitting and receiving light with the outside. .
JP9666785A 1985-05-09 1985-05-09 Light accumulating pressure sensor Pending JPS61256230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9666785A JPS61256230A (en) 1985-05-09 1985-05-09 Light accumulating pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9666785A JPS61256230A (en) 1985-05-09 1985-05-09 Light accumulating pressure sensor

Publications (1)

Publication Number Publication Date
JPS61256230A true JPS61256230A (en) 1986-11-13

Family

ID=14171160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9666785A Pending JPS61256230A (en) 1985-05-09 1985-05-09 Light accumulating pressure sensor

Country Status (1)

Country Link
JP (1) JPS61256230A (en)

Similar Documents

Publication Publication Date Title
US4767210A (en) Optical fibre interferometer
JPH0781888B2 (en) A device that remotely senses the effects of the surrounding environment on a pair of sensors
US5946429A (en) Time-division multiplexing of polarization-insensitive fiber optic michelson interferometric sensor
GB2135475A (en) Optical de-polarizer
US5071214A (en) Interferometric fibre optic network
US5062153A (en) Reading device of polarimetric and interferometric sensors
CN114322976B (en) Optical fiber gyroscope and relative intensity noise optical suppression method thereof
JPS6235222A (en) Photoelastic type measurement transducer
US5054922A (en) Differential polarimetric fiber optic sensor
US5787053A (en) Continuous fiber pulse reflecting means
US5381257A (en) Simultaneous data communication and fiber perturbation detection system
CN101226281B (en) Compact optical delay devices
JPS61256230A (en) Light accumulating pressure sensor
US5455671A (en) Optical circuit for a measuring system for measuring the reflection sensitivity of an optical transmission system
CN111141317A (en) Parallel Michelson integrated interferometer based on three-core optical fiber
JP2001033492A (en) Optical application measuring apparatus
GB2136956A (en) Optical Fibre Interferometers
JP2582116B2 (en) Hikaribaiyairo
JPS63107323A (en) Optical transmission system
JP2514491B2 (en) Fiber optic gyro
JP2552603B2 (en) Fiber optic gyro
KR20000049227A (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
EP0491834A1 (en) Quantom non-demolition optical tapping
JPS61149836A (en) Pressure measuring instrument
JPS6310403B2 (en)