JPS61149836A - Pressure measuring instrument - Google Patents

Pressure measuring instrument

Info

Publication number
JPS61149836A
JPS61149836A JP27196984A JP27196984A JPS61149836A JP S61149836 A JPS61149836 A JP S61149836A JP 27196984 A JP27196984 A JP 27196984A JP 27196984 A JP27196984 A JP 27196984A JP S61149836 A JPS61149836 A JP S61149836A
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
light
pressure
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27196984A
Other languages
Japanese (ja)
Inventor
Tsutomu Yasuda
力 安田
Kenji Kobayashi
健二 小林
Hiroshi Matsumoto
博志 松本
Fumiki Sone
曽根 文樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27196984A priority Critical patent/JPS61149836A/en
Publication of JPS61149836A publication Critical patent/JPS61149836A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce the size and cost of a pressure measuring instrument which uses a polarization plane maintaining optical fiber and to improve its precision by connecting the optical fiber to an photoelastic element through a 1/8-wavelength phase device so that its optical axis is slanted by a specific angle. CONSTITUTION:A light source 1, photodetectors 2a and 2b, and the polarization plane maintaining optical fiber 8 are coupled mutually by a directional coupler 17 and a probe part 12 which receives pressure P to be measured is connected to the tip part of the polarization plane maintaining optical fiber 8 to constitute a pressure measuring instrument. The photoelastic element 21 of the probe part 12 is formed as a single-mode transmission line and a reflector 16 is fitted to its tip. Further, the tip surface of the polarization plane maintaining optical fiber 8 is joined with the base end of the photoelastic element 21 through the 1/8-wavelength phase device 15. In this case, the inherent axis of polarization of the tip surface of the optical fiber 8 is set at 45 deg. to the pressure application direction of the photoelastic element 21 and the inherent optical axis of the 1/8-wavelength phase device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は偏波面保存光ファイバ°を用いた圧力測定装置
に係り、特に個々の光学部品を一体化し装置の小型化・
高精度化・低価格化を図った圧力測定装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a pressure measuring device using a polarization-maintaining optical fiber, and in particular, it is possible to reduce the size and size of the device by integrating individual optical components.
This article relates to a pressure measuring device that achieves high accuracy and low cost.

[従来の技術] 第6図に示Jような偏波面保存光ファイバ8と光弾性素
子10を用いた圧力センサが既に提案されている(特願
昭58−28710号)。
[Prior Art] A pressure sensor using a polarization maintaining optical fiber 8 and a photoelastic element 10 as shown in FIG. 6 has already been proposed (Japanese Patent Application No. 58-28710).

同図に示す如く、光源1からの光はアイソレータ3を経
てビームスプリッタ4で2方向に分離される。その一方
は参照光として受光器2bに入射し、他方は圧力検出用
として1/2波長板6を通りマイクロレンズ7aを経て
偏波面保存光ファイバ8に入射する。1/2波長板6は
その光学軸の向きを変えることにより直線偏光の偏波面
を任意の角度0転できるので、1/2波長板6を調整し
て偏波面保存光ファイバ8に入射される直線偏光の偏波
面を偏波面保存光ファイバ8の互いに直交する2つの固
有偏光軸(第7図のU、V軸)の1つに合せる。偏波面
保存光ファイバ8を+2方向へと伝播しその先端から出
射された出射光は、マイクロレンズ7b、1/8波長板
9を経て光弾性素子10に入射し、反射板11で反射さ
れる。反射板11で反射された反射光は上述した経路を
逆行しビームスプリッタ4まで戻り、その一部はビーム
スプリッタ4にて反射され検光子5を経て受光器2aに
入射する。
As shown in the figure, light from a light source 1 passes through an isolator 3 and is split into two directions by a beam splitter 4. One of them enters the light receiver 2b as a reference light, and the other passes through a half-wave plate 6, a microlens 7a, and enters a polarization-maintaining optical fiber 8 for pressure detection. The half-wave plate 6 can rotate the polarization plane of linearly polarized light to any angle of 0 by changing the direction of its optical axis, so the half-wave plate 6 can be adjusted to input the polarization-maintaining optical fiber 8. The plane of polarization of the linearly polarized light is aligned with one of two mutually orthogonal characteristic polarization axes (U and V axes in FIG. 7) of the polarization-maintaining optical fiber 8. The emitted light propagates in the +2 direction through the polarization-maintaining optical fiber 8 and is emitted from the tip thereof, passes through the microlens 7b and the 1/8 wavelength plate 9, enters the photoelastic element 10, and is reflected by the reflection plate 11. . The light reflected by the reflection plate 11 travels backward along the above-mentioned path and returns to the beam splitter 4, and a part of it is reflected by the beam splitter 4, passes through the analyzer 5, and enters the light receiver 2a.

光弾性素子10に圧力Pが加わる方向yは、第7図に示
すように、偏波面保存光ファイバ8の固有偏光軸U、V
と45°の角度をなす。また、1/8波長板9の光学軸
はX軸またはV軸に一致し、Ll、V軸と45゛の角度
をなす。
As shown in FIG.
and make an angle of 45°. Further, the optical axis of the ⅛ wavelength plate 9 coincides with the X axis or the V axis, and forms an angle of 45° with the Ll and V axes.

光rA1から偏波面保存光ファイバ8に入射し+7方向
に進む光がU成分(U方向の偏波成分)のみであるとす
ると、反射面11で反射され−Z方向に戻り 1/8波
長板9を通過した直後においては、U軸と、x、V軸と
が45°をなすので反射光はそのX成分とy成分の振幅
が等しく、且つ178波長板9を2回通過するのでX成
分とV成分との間に90”の位相差が生じる。従って、
光弾性素子10に圧力Pが加わらないときには、178
波長板9を通過した時点において、反射光は円偏光とな
る。一方、光弾性素子10に圧力Pが加わりているとき
には、光弾性素子10内を伝播する光のx、y成分には
位相差αが生じるので、178波長板9を光が一2方向
に通過した直後において、x、y成分ex%Yは、 と表わされる。ここにaは直線偏波光のときの振幅、ω
は光の角周波数、ψは位相を表わし、いずれも定数であ
る。
Assuming that the light that enters the polarization-preserving optical fiber 8 from the light rA1 and travels in the +7 direction is only the U component (polarized wave component in the U direction), it is reflected by the reflective surface 11 and returns to the -Z direction. Immediately after passing through the 178 wavelength plate 9, the U axis and the x and V axes make an angle of 45 degrees, so the X component and the y component of the reflected light are equal in amplitude, and the X component passes through the 178 wavelength plate 9 twice. A phase difference of 90" occurs between the V component and the V component. Therefore,
When no pressure P is applied to the photoelastic element 10, 178
At the time the reflected light passes through the wave plate 9, it becomes circularly polarized light. On the other hand, when pressure P is applied to the photoelastic element 10, a phase difference α occurs between the x and y components of the light propagating within the photoelastic element 10, so that the light passes through the 178 wavelength plate 9 in 12 directions. Immediately after, the x and y components ex%Y are expressed as follows. Here, a is the amplitude for linearly polarized light, ω
is the angular frequency of light, and ψ is the phase, both of which are constants.

圧力Pは位相差αの関数であり、変数αがわかると圧力
Pが求まることになる。上&!(11式のX。
The pressure P is a function of the phase difference α, and if the variable α is known, the pressure P can be found. Up&! (X of type 11.

y成分を、偏波面保存光ファイバ8内のU、V成分e 
u 、  e vに変換すると、となるので、受光器2
aでV成分のみを受光すれば、受光器2aの出力Vsは
、 となる。このysを受光器2bからの出力VR(CK−
)とともに信号処理することにより、安定した位相差α
の検出ができる。この圧力センサは1木の光ファイバぐ
圧力検出ができ、圧力センサの細径化ができる。
The y component is converted into the U and V components e in the polarization maintaining optical fiber 8.
When converted to u, e v, it becomes, so the receiver 2
If only the V component is received at point a, the output Vs of the light receiver 2a will be as follows. The output VR (CK-
), a stable phase difference α can be achieved by processing the signal with
can be detected. This pressure sensor can detect pressure using a single optical fiber, making it possible to reduce the diameter of the pressure sensor.

[発明が解決しようとする問題点] ところが、上記の圧力センサは、個別の光学素子(レン
ズ、波長板、光弾性素子など)を組合せて構成されてい
るため、次のような問題がある。
[Problems to be Solved by the Invention] However, since the pressure sensor described above is configured by combining individual optical elements (lenses, wave plates, photoelastic elements, etc.), it has the following problems.

■ 個々の光学素子の大きさ以下には小型化できない。■ Cannot be miniaturized below the size of individual optical elements.

■ 光学素子と光学素子との間で光が外部空間に出るた
め、光学素子間のわずかな寸法・位置の狂いによって大
きな測定誤差が生じ易い。
■ Since light exits into the external space between the optical elements, a slight deviation in size or position between the optical elements can easily cause large measurement errors.

■ 個々の光学素子の価格とこれらの組立価格とが全体
価格となるが、使用する光学素子が多く、また組立も難
かしくIi[の低価格化に限界がある。
(2) The price of each individual optical element and the price of assembling these elements constitute the overall price, but there are limits to how low the price of Ii[ can be reduced because many optical elements are used and assembly is difficult.

[発明の目的] 本発明は以上の従来技術の問題点を解消すべく創案され
たものであり、本発明の目的は、小型化・高精度化・低
価格化を推進し得る圧力測定装置を提供することにある
[Object of the Invention] The present invention was devised to solve the problems of the prior art described above, and an object of the present invention is to provide a pressure measuring device that can promote downsizing, high precision, and low cost. It is about providing.

[発明の概要] 上記の目的を達成するために、本発明は、単一モードの
偏波面保存光ファイバの先端側に設けられ加圧により加
圧方向とこれに直交する方向とで偏波成分の位相速度が
異なる光弾性素子を有するプローブ部と、上記偏波面保
存光ファイバの基端側に設けられた光源及び光源からの
参照光と上記プローブ部からの位相変調された変調光と
を受光する受光部とを備えた圧力測定装置において、上
記光弾性素子が単一モード伝送路をなしその先端面に反
射体が接合され且つ基端面に単一モードの1/8波長位
相器を介して上記偏波面保存光ファイバの先端面が接合
されると共に、偏波面保存光ファイバの先端面の固有偏
光軸が光弾性素子の加圧方向および上記1/8波艮位相
器の固有光学軸と45°の角瓜をなすもので、各光学素
子を接合して一体化された単一モード導波路形にしたも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention is provided at the tip side of a single-mode polarization-maintaining optical fiber, and by applying pressure, polarization components are a probe section having a photoelastic element having different phase velocities, a light source provided on the proximal end side of the polarization-maintaining optical fiber, and receiving reference light from the light source and phase-modulated modulated light from the probe section; In the pressure measuring device, the photoelastic element forms a single mode transmission path, and a reflector is bonded to the distal end surface of the photoelastic element, and a single mode 1/8 wavelength phase shifter is connected to the proximal end surface of the photoelastic element. The tip surfaces of the polarization-maintaining optical fibers are joined, and the characteristic polarization axis of the tip surface of the polarization-maintaining optical fibers is aligned with the pressing direction of the photoelastic element and the characteristic optical axis of the 1/8 wave phaser at 45 degrees. It is shaped like a square melon, and each optical element is joined to form an integrated single-mode waveguide.

[実施例] 以下に本発明の実施例を添付図面に従って詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に示す如く、圧力測定装置は、圧力測定部に設け
られるプロー1部12と、単一モードの偏波面保存光フ
ァイバ8と、光源1と、光源1からの参照光とプローブ
部12からの位相変調された変調光とを受光する受光部
13とから主に構成されている。
As shown in FIG. 1, the pressure measuring device includes a probe 1 section 12 provided in a pressure measuring section, a single mode polarization maintaining optical fiber 8, a light source 1, a reference light from the light source 1, and a probe section 12. It is mainly composed of a light receiving section 13 that receives phase-modulated light from the light receiving section 13.

プローブ部12は、圧力Pを受ける受圧部14゜単一モ
ードの1/8波長位相器15および反射体16とからな
り、また受光部13は、受光器2a。
The probe section 12 includes a pressure receiving section 14 that receives pressure P, a single mode 1/8 wavelength phase shifter 15, and a reflector 16, and the light receiving section 13 includes a light receiving section 2a.

2b、単一モードの方向性結合器17.単一モードの光
アイソレータ18及び単一モードの検光子19とからな
る。
2b, single mode directional coupler 17. It consists of a single mode optical isolator 18 and a single mode analyzer 19.

プローブ部12の受圧部14は、第1図ないし第2図に
示すように、受圧ブロック20とこれに埋め込また光弾
性素子21とからなり、受圧ブロック20に圧力Pが加
わると光弾性素子21内に内部応力が発生し複屈折とな
る。圧力Pはy軸方向に加えられるので、X軸方向、y
軸方向の偏波成分の位相速度が異なってくる。光弾性素
子21には、無圧時において複屈折性のない単一モード
光ファイバが用いられる。この単一モード光ファイバと
してはエポキシ樹脂、GaAS、InP等の光弾性効果
の大きい材料により単一モード伝送路を形成すればよく
、光弾性効果が大きいので伝送路が短くても高感度のセ
ンサが得られる。また単一モード光ファイバとしては通
信用の石英ファイバでもよい。しかし、石英は光弾性効
果が小さいので、伝送路長を長くして感度を高めること
が必要である。
As shown in FIGS. 1 and 2, the pressure receiving section 14 of the probe section 12 consists of a pressure receiving block 20 and a photoelastic element 21 embedded therein. When pressure P is applied to the pressure receiving block 20, the photoelastic element 21 Internal stress occurs within the material, resulting in birefringence. Since the pressure P is applied in the y-axis direction,
The phase velocity of the polarized wave component in the axial direction becomes different. For the photoelastic element 21, a single mode optical fiber having no birefringence in the absence of pressure is used. For this single mode optical fiber, it is sufficient to form a single mode transmission path using a material with a large photoelastic effect such as epoxy resin, GaAS, or InP.Since the photoelastic effect is large, a highly sensitive sensor can be used even if the transmission path is short. is obtained. Furthermore, the single mode optical fiber may be a quartz fiber for communications. However, since quartz has a small photoelastic effect, it is necessary to increase the transmission path length to increase sensitivity.

1/8波長位相器15には複屈折性の偏波面保存光ファ
イバを用いる。178波長位相器15としての偏波面保
存光ファイバの固有偏光軸はX。
A birefringent polarization-maintaining optical fiber is used for the 1/8 wavelength phase shifter 15. The characteristic polarization axis of the polarization-maintaining optical fiber serving as the 178-wavelength phase shifter 15 is X.

V軸と一致し、また偏波面保存光ファイバ8の固有偏光
軸U、Vと45°の角度をなしている。偏波面保存光フ
ァイバ8のU、V偏波光の波長をそれλ     λ ぞれ U、  Vとすると、1/8波長位相器15とし
ての偏波面保存光ファイバを長さρだけ伝播して生ずる
位相差△Φは、 である。従って、1/8波長位相器15としての偏波面
保存光ファイバの長さρは、ΔΦが(1/4 +n )
πとなる長さ、即ち、反射体16としては、光弾性素子
21の先端面に反射板を接合するか、反射膜を形成する
かする。
It coincides with the V axis and forms an angle of 45° with the unique polarization axes U and V of the polarization maintaining optical fiber 8. If the wavelengths of the U and V polarized lights of the polarization-maintaining optical fiber 8 are λ and V, respectively, then the wavelength generated by propagating through the polarization-maintaining optical fiber serving as the 1/8 wavelength phase shifter 15 by a length ρ is The phase difference △Φ is as follows. Therefore, the length ρ of the polarization-maintaining optical fiber as the 1/8 wavelength phase shifter 15 is such that ΔΦ is (1/4 + n )
For the length of π, that is, for the reflector 16, a reflecting plate is bonded to the distal end surface of the photoelastic element 21, or a reflecting film is formed.

光弾性素子21の基端面には、1/8波長位相器15を
介して偏波面保存光ファイバ8の先端面が接続されるが
、これら光学素子8.15.21はいずれも単一モード
導波路であり、それらのコア径やコアとクラッドの屈折
率などの導波路特性を決定するパラメータをほぼ同一に
設定し、融着等の方法で相互間を接合する。
The distal end surface of the polarization maintaining optical fiber 8 is connected to the proximal end surface of the photoelastic element 21 via the 1/8 wavelength phase shifter 15, but these optical elements 8, 15, and 21 are all single mode guiding. The parameters that determine the waveguide characteristics, such as the core diameter and the refractive index of the core and cladding, are set to be almost the same, and they are joined together by a method such as fusion.

一方、受光部13の方向性結合器17は、2つの伝送路
を結合部17eで結合したもので、光源側のポート17
a、17b及びプローブ部側のポート17c、17dの
4つのポートを有している。
On the other hand, the directional coupler 17 of the light receiving section 13 is one in which two transmission lines are coupled by a coupling section 17e, and the port 17 on the light source side
It has four ports: a, 17b, and probe section side ports 17c, 17d.

このうち、光源側のポート17aには光アイソレータ1
8を介して光源1が接続され、更にポート17bには検
光子19を介して受光器2aが接続されている。また、
プローブ部側のポート17cには受光器2bが接続され
、ポート17dには偏波面保存光ファイバ8の基端面が
接続される。これらの光学素子もプローブ部12と同様
に融着等の方法によって一体的に接合される。ポート1
7dと偏波面保存光ファイバ8とはそれらの固有偏光軸
が一致するように調整して接合する。
Of these, the optical isolator 1 is connected to the port 17a on the light source side.
A light source 1 is connected to the port 17b via an analyzer 19, and a light receiver 2a is connected to the port 17b via an analyzer 19. Also,
The light receiver 2b is connected to the port 17c on the probe section side, and the proximal end surface of the polarization-maintaining optical fiber 8 is connected to the port 17d. Similar to the probe section 12, these optical elements are also integrally joined by a method such as fusion bonding. port 1
7d and the polarization-maintaining optical fiber 8 are adjusted and spliced so that their characteristic polarization axes coincide.

上g[J構成の圧力測定装置の動作および圧力測定原理
は上述の第6図の圧力センサと同一である。
The operation and pressure measurement principle of the pressure measuring device having the above g[J configuration are the same as the pressure sensor shown in FIG. 6 described above.

即ち、光源1からの光は方向性結合器17で2方向に分
離され、その一方は参照光としてポート17Cから受光
器2bに入射される。他方は圧力検出用としてポート1
7dから偏波面保存光ファイバ8に入射し、+Z方向へ
と伝播しその先端面より 1/8波長位相器15を経て
光弾性素子21に入射し、反射体16で反射される。更
に、反射光は上記と逆の経路を方向性結合器17までた
どり、方向性結合器17でポート17a、17bへと二
分される。ポート17bから出射された光は検光子19
を経て受光器2aに入射し、一方、ポート17aからの
出射光は光アイソレータ18により遮断され光源1には
戻されない。受光器2aの出力と受光器2bの出力を信
号処理することにより光弾性素子21にて変調された位
相差が知れ、この位相差から圧力Pが求まることになる
That is, the light from the light source 1 is separated into two directions by the directional coupler 17, and one of them is inputted into the light receiver 2b from the port 17C as a reference light. The other is port 1 for pressure detection.
7d, enters the polarization maintaining optical fiber 8, propagates in the +Z direction, passes through the 1/8 wavelength phase shifter 15 from its tip, enters the photoelastic element 21, and is reflected by the reflector 16. Further, the reflected light follows a path opposite to the above to the directional coupler 17, where it is split into two ports 17a and 17b. The light emitted from port 17b is detected by analyzer 19.
On the other hand, the light emitted from the port 17a is blocked by the optical isolator 18 and is not returned to the light source 1. By signal processing the output of the light receiver 2a and the output of the light receiver 2b, the phase difference modulated by the photoelastic element 21 can be determined, and the pressure P can be determined from this phase difference.

本発明では光弾性素子21.1/8波長位相器15、偏
波面保存光ファイバ8.方向性結合器17、光アイソレ
ータ18.検光子19が一体的に融着等により接合され
、単一モード導波路として形成されている。従ってこれ
ら各光学素子の接続面間の不整合による光の反射、ある
いは各光学素子間から外部への光の漏出などの不安定要
素を取り除くことができる。このため、安定した測定が
でき、高精度の圧力計測が可能となる。また、従来方式
では、これら光学素子の相互間を一定の位置関係に保持
する機構が必要であり、その保持機構に用いられるハウ
ジングは複雑かつ高価なものとなり、小型化も困難であ
った。ところが、本発明方式では、各光学素子が融着等
により接合され一体化されているため、複雑で高価なハ
ウジングが不要となり、小型化も図れる。また、同径の
伝送路同志の接続となっているので、結合器としてのマ
イクロレンス7a、7bが不要となる。更に、方向性結
合器17と偏波面保存光ファイバ8の固有偏光軸を一致
させて結合しているので1/2波長板も省略できる。
In the present invention, a photoelastic element 21, a 1/8 wavelength phase shifter 15, a polarization maintaining optical fiber 8. Directional coupler 17, optical isolator 18. The analyzer 19 is integrally joined by fusion bonding or the like to form a single mode waveguide. Therefore, unstable factors such as reflection of light due to misalignment between the connecting surfaces of these optical elements or leakage of light to the outside from between the optical elements can be eliminated. Therefore, stable measurement and highly accurate pressure measurement are possible. Further, in the conventional method, a mechanism is required to hold these optical elements in a fixed positional relationship with each other, and the housing used for the holding mechanism is complicated and expensive, and it is difficult to miniaturize the housing. However, in the method of the present invention, each optical element is joined and integrated by fusion or the like, so a complicated and expensive housing is not necessary, and the size can be reduced. Further, since the transmission lines having the same diameter are connected, the microlenses 7a and 7b as couplers are not required. Furthermore, since the directional coupler 17 and the polarization-maintaining optical fiber 8 are coupled with their intrinsic polarization axes aligned, a 1/2 wavelength plate can also be omitted.

尚、上記実施例においては、受圧部14の光弾性素子2
1は受圧ブロック20に埋め込まれていたが、第3図に
示す如く、受圧ブロック20a。
In the above embodiment, the photoelastic element 2 of the pressure receiving part 14
1 was embedded in the pressure receiving block 20, but as shown in FIG. 3, the pressure receiving block 20a.

2Ob間に光弾性素子21を挾む方式のものでもよい。It may also be of a type in which the photoelastic element 21 is sandwiched between two Obs.

史に埋め込み式の受1土部14の受圧ブロック20の断
面を、矩形ではなく第4図に示すように両側にくぼみを
設けた鼓型としてもよい。こうすると、光弾性素子21
に外力が集中して加わるようになり、感麿が向上する。
The cross section of the pressure receiving block 20 of the embedded type receiving part 14 may not be rectangular but may be shaped like a drum with depressions on both sides as shown in FIG. In this way, the photoelastic element 21
External forces will be concentrated and applied to the area, improving Kanmaro.

また、第5図に示すように、光弾性材料の受圧ブロック
20を形成し、この中に高屈折率伝送路の光弾性素子2
1を設けるようにしてもよい。この場合の製造方法とし
ては樹脂成型法・イオン打込み法・蒸着法・拡散法など
の種々の方法が可能である。受圧ブロック20の断面形
状は矩形あるいは鼓形等の変形形状など用途に応じて選
択する。
Further, as shown in FIG. 5, a pressure receiving block 20 made of a photoelastic material is formed, and a photoelastic element 2 of a high refractive index transmission path is placed inside the pressure receiving block 20.
1 may be provided. In this case, various methods such as a resin molding method, an ion implantation method, a vapor deposition method, and a diffusion method can be used as a manufacturing method. The cross-sectional shape of the pressure receiving block 20 is selected depending on the application, such as a rectangular shape or a deformed shape such as an hourglass shape.

なおまた、プローブ部側は計測器本体から着脱可能な構
造であることが望ましいので、偏波面保存光ファイバ8
と方向性結合器17との間、あるいは偏波面保存光ファ
イバ8の途中において、光コネクタを用いて着脱できる
ようにしてもよい。
Furthermore, since it is desirable that the probe section side has a structure that can be detached from the measuring instrument body, the polarization maintaining optical fiber 8
An optical connector may be used between the directional coupler 17 and the directional coupler 17 or in the middle of the polarization maintaining optical fiber 8 so that it can be attached and detached.

この場合、光コネクタは接続部の偏波面と光軸とを同時
に合せることができる高精度のものを用いる。
In this case, a highly accurate optical connector is used that can simultaneously align the polarization plane of the connection part and the optical axis.

[発明の効果] 以上の説明により明らかなように本発明によれば次のよ
うな優れた効果を発揮する。
[Effects of the Invention] As is clear from the above description, the present invention exhibits the following excellent effects.

■ 従来、個別の光学素子を組み立てて構成していたも
のを、各光学素子を接合して一体化し、光学系を閉じた
単一モード伝送路となしたので、接続部での反射や外部
との不安定な光結合が除かれるため、安定性が高く^精
度の圧力測定が可能となる。特に厳しい環境条件に置か
れるプ[]−ブ部においてイj効である。
■ Conventionally, the configuration was made by assembling individual optical elements, but each optical element is joined and integrated to create a closed single-mode transmission path, which reduces reflections at connections and external interference. Since unstable optical coupling is removed, highly stable and accurate pressure measurement is possible. This is especially effective in the pub section, which is exposed to severe environmental conditions.

■ 各光学素子の単一モードファイバ化が図れ、光学系
の小形化が容易であり、超小型のプロー1部を実現でき
、従来不可能であった狭空間の測定が可能となる。
(1) Each optical element can be made into a single mode fiber, the optical system can be easily miniaturized, an ultra-small probe 1 section can be realized, and measurements in narrow spaces, which were previously impossible, become possible.

■ 一体化された光学系となっているため、プローブ部
等のハウジングを簡易な構造にでき、組立が容易になる
と共に安価に製造できる。
- Since it is an integrated optical system, the housing of the probe part etc. can be made into a simple structure, making it easy to assemble and manufacturing at low cost.

更に波長板等の高価な光学部品を用いないで済むことか
らも、装置の低価格化が図れる。
Furthermore, since there is no need to use expensive optical components such as a wave plate, the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る圧力測定装置の一実施例を示す概
略構成図、第2図は同プローブ部における光学素子間の
位置関係を表す図、第3図′。 第4図、第5図は本発明の受圧部の他の実施例を示す横
断面図、第6図は従来の圧力測定装置を示す概略構成図
、第7図は同プローブ部における光学素子間の位置関係
を表す図である。 図中、1は光源、2a、2bは受光器、8は偏波面保存
光ファイバ、12はプローブ部、13は受光部、14は
受圧部、15は1/8波長位相器、16は反射体、17
は方向性結合器、17a 、  17b 、 17c 
、  17dはポート、18は光アイソレータ、19は
検光子、20は受圧ブロック、21は光弾性素子、Pは
圧力、(1゜■は偏波面保存光ファイバの固有偏光軸で
ある。
FIG. 1 is a schematic configuration diagram showing an embodiment of the pressure measuring device according to the present invention, FIG. 2 is a diagram showing the positional relationship between optical elements in the probe section, and FIG. 3'. 4 and 5 are cross-sectional views showing other embodiments of the pressure receiving section of the present invention, FIG. 6 is a schematic configuration diagram showing a conventional pressure measuring device, and FIG. 7 is a cross-sectional view showing the relationship between optical elements in the probe section. FIG. In the figure, 1 is a light source, 2a and 2b are light receivers, 8 is a polarization maintaining optical fiber, 12 is a probe section, 13 is a light receiving section, 14 is a pressure receiving section, 15 is a 1/8 wavelength phase shifter, and 16 is a reflector. , 17
are directional couplers, 17a, 17b, 17c
, 17d is a port, 18 is an optical isolator, 19 is an analyzer, 20 is a pressure receiving block, 21 is a photoelastic element, P is pressure, (1°■ is the characteristic polarization axis of the polarization maintaining optical fiber.

Claims (2)

【特許請求の範囲】[Claims] (1)単一モードの偏波面保存光ファイバの先端側に設
けられ加圧により加圧方向とこれに直交する方向とで偏
波成分の位相速度が異なる光弾性素子を有するプローブ
部と、上記偏波面保存光ファイバの基端側に設けられた
光源および光源からの参照光と上記プローブ部からの位
相変調された変調光とを受光する受光部とを備えた圧力
測定装置において、上記光弾性素子が単一モード伝送路
をなしその先端面に反射体が接合され且つ基端面に単一
モードの1/8波長位相器を介して上記偏波面保存光フ
ァイバの先端面が接合されると共に、上記偏波面保存光
ファイバの先端面の固有偏光軸が上記光弾性素子の加圧
方向および上記1/8波長位相器の固有光学軸と45°
の角度をなすことを特徴とする圧力測定装置。
(1) A probe section having a photoelastic element which is provided on the tip side of a single mode polarization maintaining optical fiber and has a photoelastic element whose polarization component has a different phase speed in the direction of pressure and in the direction orthogonal to the direction of pressure when pressure is applied; A pressure measuring device comprising a light source provided on the proximal end side of a polarization-maintaining optical fiber and a light receiving section that receives reference light from the light source and phase-modulated modulated light from the probe section. The element forms a single-mode transmission path, and a reflector is bonded to its distal end surface, and the distal end surface of the polarization-maintaining optical fiber is bonded to its proximal end surface via a single-mode 1/8 wavelength phase shifter, The characteristic polarization axis of the tip surface of the polarization-maintaining optical fiber is 45° with respect to the pressing direction of the photoelastic element and the characteristic optical axis of the 1/8 wavelength phase shifter.
A pressure measuring device characterized by forming an angle of .
(2)上記受光部が4ポートの単一モードの方向性結合
器を有し、その光源側ポートの一方のポートに単一モー
ドの光アイソレータを介して上記光源が接合され、他方
のポートに単一モードの検光子を介して上記参照光用の
受光器が接合されると共に、方向性結合器のプローブ部
側ポートの一方のポートに上記偏波面保存光ファイバの
基端部が接合され、他方のポートに上記変調光用の受光
器が接合されていることを特徴とする特許請求の範囲第
1項記載の圧力測定装置。
(2) The light receiving section has a 4-port single mode directional coupler, the light source is connected to one of the light source side ports via a single mode optical isolator, and the other port is connected to the light source through a single mode optical isolator. The reference light receiver is connected via a single-mode analyzer, and the base end of the polarization-maintaining optical fiber is connected to one of the ports on the probe side of the directional coupler, 2. The pressure measuring device according to claim 1, wherein a light receiver for the modulated light is connected to the other port.
JP27196984A 1984-12-25 1984-12-25 Pressure measuring instrument Pending JPS61149836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27196984A JPS61149836A (en) 1984-12-25 1984-12-25 Pressure measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27196984A JPS61149836A (en) 1984-12-25 1984-12-25 Pressure measuring instrument

Publications (1)

Publication Number Publication Date
JPS61149836A true JPS61149836A (en) 1986-07-08

Family

ID=17507329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27196984A Pending JPS61149836A (en) 1984-12-25 1984-12-25 Pressure measuring instrument

Country Status (1)

Country Link
JP (1) JPS61149836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394752A (en) * 1993-03-16 1995-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for determing shear direction using liquid crystal coatings
JP2010520464A (en) * 2007-02-28 2010-06-10 トータル ワイヤ コーポレーション Ultrasonic pressure sensor and method for operating the ultrasonic pressure sensor
JP2021032648A (en) * 2019-08-22 2021-03-01 古河電気工業株式会社 External force detector and optical fiber sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113007A (en) * 1979-02-23 1980-09-01 Nec Corp Coupling structure of optical fiber
JPS59154333A (en) * 1983-02-23 1984-09-03 Hitachi Cable Ltd Optical fiber type pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113007A (en) * 1979-02-23 1980-09-01 Nec Corp Coupling structure of optical fiber
JPS59154333A (en) * 1983-02-23 1984-09-03 Hitachi Cable Ltd Optical fiber type pressure sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394752A (en) * 1993-03-16 1995-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for determing shear direction using liquid crystal coatings
JP2010520464A (en) * 2007-02-28 2010-06-10 トータル ワイヤ コーポレーション Ultrasonic pressure sensor and method for operating the ultrasonic pressure sensor
JP2021032648A (en) * 2019-08-22 2021-03-01 古河電気工業株式会社 External force detector and optical fiber sensor

Similar Documents

Publication Publication Date Title
US7746476B2 (en) Fiber optic gyroscope
US20200080845A1 (en) Non-interferometric optical gyroscope based on polarization sensing
US5692082A (en) Laser diode module and depolarizer
CN111089578B (en) Interference type optical fiber gyroscope
JPH03196002A (en) Integrated optical chip
EP0321252B1 (en) Optical fiber sensor
CN101923102B (en) Fiber accelerometer based on Mach-Zehnder interferometer
CN106932860B (en) 2 x 2 polarization-maintaining optical fiber beam splitting polarizer
US4461574A (en) Environmentally independent fiber optic rotation sensor
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
US5239362A (en) Fiber-optic rotation sensor
EP0078931A1 (en) Angular rate sensor
US7147388B2 (en) Method for fabrication of an all fiber polarization retardation device
JPS61149836A (en) Pressure measuring instrument
CN208984906U (en) A kind of integrated free space optical circulator
JP2001033492A (en) Optical application measuring apparatus
JPH0464030B2 (en)
JPS63216006A (en) Optical sensor
RU197260U1 (en) Fiber optic polarized diversity optical signal receiving device
WO2020259239A1 (en) Miniaturized three-port optical circulator with standard optical interface
JPH10221014A (en) Optical wave guide path displacement sensor
JPH0136885B2 (en)
JPS5935102A (en) Polarization plane retaining-optical fiber type sensor
JPH10232109A (en) Optical displacement sensor
JPH02136806A (en) Optical directional coupler and rotating angular velocity sensor using such coupler