JPS6125458B2 - - Google Patents

Info

Publication number
JPS6125458B2
JPS6125458B2 JP5578679A JP5578679A JPS6125458B2 JP S6125458 B2 JPS6125458 B2 JP S6125458B2 JP 5578679 A JP5578679 A JP 5578679A JP 5578679 A JP5578679 A JP 5578679A JP S6125458 B2 JPS6125458 B2 JP S6125458B2
Authority
JP
Japan
Prior art keywords
slab
mold
casting
temperature
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5578679A
Other languages
Japanese (ja)
Other versions
JPS55147465A (en
Inventor
Minoru Horiguchi
Hideyo Kodama
Eisuke Niiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5578679A priority Critical patent/JPS55147465A/en
Publication of JPS55147465A publication Critical patent/JPS55147465A/en
Publication of JPS6125458B2 publication Critical patent/JPS6125458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は回転輪式連続鋳造機に係り、アルミ合
金、特にAl−Mg合金の連続鋳造を可能にし、か
つ鋳塊品質の優れた合金を得るため回転輪式連続
鋳造機に関する。
Detailed Description of the Invention The present invention relates to a rotary wheel type continuous casting machine, which enables continuous casting of aluminum alloys, particularly Al-Mg alloys, and provides a rotary wheel type continuous casting machine for obtaining alloys with excellent ingot quality. Regarding machines.

従来、アルミニウム合金の連続鋳造法として、
一般にD.C.(ダイレクト・チル)鋳造法と気体
加圧ホツト・トツプ法が知られている。第1図の
左半分にD.C.鋳造法による鋳造機を、右半分に
ホツト・トツプ法による鋳造機をそれぞれ示した
が、竪型の水冷銅鋳型1に注入された溶湯2は、
水冷胴鋳型内で一次冷却され凝固殻を形成した
後、鋳型下部からの冷却水3により二次冷却さ
れ、凝固終了した鋳塊4は下方に引抜かれ、所定
の長さに達すると鋳造が終了する。これらの方法
は、1チヤージ、1操業の半連続鋳造法であり、
1操業毎に鋳型下方にダミーバー5をセツトする
必要があり、非能率的である。また、これらの方
法では鋳型が固定されているため、鋳片を鋳型か
ら引抜く際に鋳型と鋳片間に摺動抵抗があるこ
と、および冷却速度を大きくして引抜速度を大き
くしようとすると鋳造割れが発生するため、引抜
速度を大きくすることができない等の欠点があ
る。
Conventionally, as a continuous casting method for aluminum alloy,
Generally, DC (direct chill) casting method and gas pressurized hot top method are known. The left half of Figure 1 shows a casting machine using the DC casting method, and the right half shows a casting machine using the hot-top method.The molten metal 2 poured into the vertical water-cooled copper mold 1 is
After being primarily cooled in a water-cooled body mold to form a solidified shell, it is secondarily cooled by cooling water 3 from the bottom of the mold, and the solidified ingot 4 is pulled out downward, and when it reaches a predetermined length, casting ends. do. These methods are semi-continuous casting methods with one charge and one operation,
It is necessary to set the dummy bar 5 below the mold for each operation, which is inefficient. In addition, since the mold is fixed in these methods, there is sliding resistance between the mold and the slab when the slab is pulled out of the mold, and if you try to increase the cooling rate to increase the pulling speed. There are drawbacks such as the inability to increase the drawing speed due to the occurrence of casting cracks.

このため、本発明者らは、鋼の連続鋳造に用い
られている回転輪式連続鋳造機をアルミ合金の鋳
造に適用することは検討した。
For this reason, the present inventors have considered applying a rotary wheel type continuous casting machine used for continuous casting of steel to casting of aluminum alloy.

回転輪式連続鋳造機は、例えば第2図に示すよ
うに、水冷胴回転輪7の外周にほぼ角形等の鋳込
溝8を設けて鋳塊断面上の三面を囲む鋳型を形成
し、残る一面に無限軌道形の鋼帯9を当てること
により全鋳型断面を形成し、これを回転させつつ
上方より容湯10を注入して鋳片11を連続的に
形成するものである。水冷胴転輪7は、第3図に
示すように鋳込溝8を囲むように複数の冷却溝1
6を有している。また、鋼帯9は、冷却パットか
ら供給される冷却水17により、外側を冷却され
る。鋳片11は、回転輪7の円周に沿つて円孤状
に凝固するが、回転輪下部において直線形状に曲
げ戻し矯正された後、ピンチローラ12等により
引出される。この間の鋳片は鋳型内で冷却された
後、さらに鋳型取出口からスプレー13により冷
却される。なお、符号14は未凝固部、符号15
は凝固殻である。
For example, as shown in FIG. 2, a rotary wheel type continuous casting machine has a substantially rectangular casting groove 8 on the outer periphery of a water-cooled drum rotary ring 7 to form a mold that surrounds three sides of the ingot cross section. The entire mold cross section is formed by applying a track-shaped steel strip 9 to one side, and while the mold is rotated, molten metal 10 is injected from above to continuously form slabs 11. The water-cooled barrel roller 7 has a plurality of cooling grooves 1 surrounding the casting groove 8 as shown in FIG.
6. Further, the outside of the steel strip 9 is cooled by cooling water 17 supplied from a cooling pad. The slab 11 solidifies into an arc shape along the circumference of the rotating ring 7, but after being bent back into a straight shape at the lower part of the rotating ring and straightened, it is pulled out by a pinch roller 12 or the like. During this time, the slab is cooled in the mold, and then further cooled by spray 13 from the mold outlet. In addition, code 14 is an unsolidified part, code 15
is a solidified shell.

この方法は、鋳型が回転し、鋳片も鋳型と同期
して回転するため、鋳型と鋳片との間に摺動抵抗
がなく、従つて鋳塊品質、特に表面品質が良好で
あり、また鋳型の長さを長くして冷却速度を大き
くできるため、鋳造速度を大幅に向上することが
できる。
In this method, the mold rotates and the slab rotates in synchronization with the mold, so there is no sliding resistance between the mold and the slab, so the quality of the slab, especially the surface quality, is good. Since the length of the mold can be increased to increase the cooling rate, the casting speed can be significantly increased.

しかし、従来の鋼用の回転輪式連続鋳造機をア
ルミニウム合金の鋳造に適用した場合には、鋳片
が回転輪下部で曲げ戻されるときに鋳片の表面お
よび内部に割れを伴なうことが多く、後続の圧延
加工に支障をきたし、極端な場合には鋳塊破断を
招き、充分な生産性の向上を図ることができな
い。すなわち、回転輪7の溝底面を接する鋳片面
は円孤状鋳片11の内延側となるが、これが直線
状に曲げ戻されるときは内径側が引張りを受け、
鋼帯9に接した外径側は圧縮を受ける。この結
果、鋳片の内径側に表面割れおよび内部割れが発
生し、鋳片品質を損なうのみならず、極端な場合
には鋳片が破断して連続鋳造不能となる。
However, when a conventional rotating wheel type continuous casting machine for steel is applied to aluminum alloy casting, cracks occur on the surface and inside of the slab when it is bent back at the bottom of the rotating wheel. This often interferes with the subsequent rolling process, and in extreme cases may lead to ingot breakage, making it impossible to improve productivity sufficiently. That is, the surface of the slab that contacts the bottom surface of the groove of the rotating ring 7 becomes the inner extension side of the arc-shaped slab 11, but when this is bent back into a straight line, the inner diameter side receives tension,
The outer diameter side in contact with the steel strip 9 is compressed. As a result, surface cracks and internal cracks occur on the inner diameter side of the slab, which not only impairs the quality of the slab, but in extreme cases, the slab breaks, making continuous casting impossible.

本発明の目的は、上記欠点を解消し、曲げ戻し
時に割れの発生しない健全なアルミニウム合金鋳
塊を安定して連続的に製造することができる回転
輪式連続鋳造機を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotary wheel type continuous casting machine that eliminates the above-mentioned drawbacks and can stably and continuously produce a sound aluminum alloy ingot without cracking during unbending.

上記目的を達成するため、本発明は、外周に鋳
込溝を備えた鋳込用回転輪と該回転輪の鋳込溝の
一部を被覆する金属ベルトとから構成される移動
鋳型空間にアルミニウム合金の溶湯を注入し、少
なくとも外面が凝固した鋳塊を回転輪出口から曲
げ戻した後、鋳込引出しピンチローラにより連続
的に引出す連続鋳造機において、鋳型と曲げ戻し
区間の間に鋳塊の保温帯を設けることを特徴とす
るものである。
In order to achieve the above object, the present invention provides a movable mold space consisting of a casting rotating wheel having a casting groove on the outer periphery and a metal belt covering a part of the casting groove of the rotating wheel. In a continuous casting machine, in which molten alloy is injected and the ingot solidified at least on the outer surface is bent back from the rotating wheel outlet, the ingot is continuously pulled out by a pouring pull-out pinch roller. It is characterized by the provision of a heat-retaining zone.

本発明者らは、曲げ戻しによる鋳塊の割れの発
生について種々の実験を行なつた結果、次のよう
なことが分つた。例えばAl−Mg合金の鋳造冷却
過程中の高温引張試験時における伸び、絞りを測
定した結果、凝固直後の伸び、絞りはほとんどな
く、この温度範囲では凝固脆性を示し、次に温度
低下と共に伸び、絞りが向上するが、最大値でも
伸びが20〜40%程度と小さく、高温脆性を示すこ
とが分つた。この状態で曲げ戻しを行なうと当然
割れが発生する。高温脆性を示す鋳造組織はα相
(Al)の結晶粒界に非平衡第2相であるβ相
(Al3Mg2あるいはAl8Mg5)が網状に晶出してお
り、Mg量の増加と共にβ相が多くなり引張強さ
が向上するが、伸び、絞りが低下する。内部割れ
はこのβ相に沿つて発生している。従つて、割れ
発生の原因はβ相の存在によるものであることが
明らかになつた。β相は通常のD.C.鋳造法など
の冷却過程において、ミクロ偏析し易く、その大
部分は共晶温度で晶析するが、その状態で曲げ戻
しなどの熱間加工を行なうと割れが発生する。
The present inventors have conducted various experiments regarding the occurrence of cracks in ingots due to unbending, and have found the following. For example, as a result of measuring the elongation and reduction of area during a high-temperature tensile test during the casting cooling process of an Al-Mg alloy, there was almost no elongation or reduction of area immediately after solidification, indicating solidification brittleness in this temperature range, and then elongation as the temperature decreased. It was found that although the reduction of area was improved, the elongation was small at about 20 to 40% even at the maximum value, and it showed high temperature brittleness. If it is bent back in this state, cracks will naturally occur. The cast structure exhibiting high-temperature brittleness has a net-like crystallization of β phase (Al 3 Mg 2 or Al 8 Mg 5 ), which is a non-equilibrium second phase, at the grain boundaries of α phase (Al), and as the amount of Mg increases, As the β phase increases, tensile strength improves, but elongation and reduction of area decrease. Internal cracks occur along this β phase. Therefore, it became clear that the cause of cracking was the presence of the β phase. The β phase is prone to micro-segregation during the cooling process of normal DC casting, and most of it crystallizes at the eutectic temperature, but if hot working such as bending back is performed in this state, cracks will occur.

従つて、内部割れを防止するためには曲げ戻し
前にβ相を晶出させないか、または晶出したβ相
をα相中へ拡散させておくことが必要である。
Therefore, in order to prevent internal cracks, it is necessary to prevent the β phase from crystallizing before bending back, or to diffuse the crystallized β phase into the α phase.

鋳片組織にβ相を拡散させる一方法として、ア
ルミニウム合金の鋳片を固相線温度以下、200℃
以上の温度に加熱保持して拡散処理実験を行なつ
た結果、β相がα相中に拡散して伸び、絞りが
100%近くまで向上し、高温脆性が解消されるこ
とが分つた。このときの拡散速度は上記温度範囲
において加熱温度が高い程、および保持時間が長
い程大きいが、数分間でも効果があつた。なお、
温度が200℃より以下ではβ相の拡散が充分では
なくなる。
As a method of diffusing the β phase into the slab structure, aluminum alloy slabs are heated at 200°C below the solidus temperature.
As a result of conducting a diffusion treatment experiment by heating and holding at the above temperature, the β phase diffused into the α phase and expanded, and the aperture was reduced.
It was found that the improvement was nearly 100%, and high-temperature brittleness was eliminated. The diffusion rate at this time was greater as the heating temperature was higher and the holding time was longer in the above temperature range, but even several minutes was effective. In addition,
If the temperature is below 200°C, the diffusion of the β phase will not be sufficient.

以上の実験事実から、鋳造冷却過程中にβ相の
拡散を行なわせるためには、鋳型による一次冷却
で少なくとも外面を凝固させた後、保温帯を設け
て保温し、鋳片内にβ相を充分に拡散させること
が重要である。その後、回転輪出口から曲げ戻し
矯正を行なうことにより鋳片の割れを防止するこ
とができる。
From the above experimental facts, in order to cause the β-phase to diffuse during the casting cooling process, it is necessary to solidify at least the outer surface through the primary cooling of the mold, and then install a heat-retaining zone to keep the β-phase inside the slab. It is important to ensure adequate diffusion. Thereafter, cracking of the slab can be prevented by performing bending and straightening from the rotating wheel outlet.

本発明において、鋳型と曲げ戻し区間の間に設
ける保温帯は、例えば耐火物等の断熱材を充填し
たケースを回転輪の外側に沿つて配列したものが
好適である。上記保温帯としては、回転輪の外側
に沿つて空冷帯を設けてもよく、この場合には鋳
片表面と空冷帯との熱伝達係数は1/4程度とな
り、保温効果は小さくなるが、β相の少ない合金
の場合には充分有効である。保温帯は移動式でも
固定式でもよく、また曲げ戻し時の鋳片温度は鋳
片の高温靭性の回復する500℃以下が特に好適で
ある。
In the present invention, the heat insulating zone provided between the mold and the unbending section is preferably one in which cases filled with a heat insulating material such as a refractory are arranged along the outside of the rotating ring. As the heat insulation zone, an air cooling zone may be provided along the outside of the rotating ring. In this case, the heat transfer coefficient between the slab surface and the air cooling zone will be about 1/4, and the heat insulation effect will be small. It is sufficiently effective in the case of alloys with a small amount of β phase. The heat-insulating zone may be of a movable type or a fixed type, and the temperature of the slab during unbending is particularly preferably 500° C. or lower, at which point the high-temperature toughness of the slab is restored.

上記保温によつて、鋳塊の曲げ戻し時の割れが
防止される他、鋳塊内のミクロ偏析およびミクロ
ポロシテイが減少される。
The above-mentioned heat retention not only prevents cracking during bending back of the ingot, but also reduces microsegregation and microporosity within the ingot.

以下、本発明を図面によりさら詳細に説明す
る。第4図は、本発明の連続鋳造機の実施例を示
す説明図、第5図は、保温帯の構成の一例を示す
断面図である。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIG. 4 is an explanatory view showing an embodiment of the continuous casting machine of the present invention, and FIG. 5 is a sectional view showing an example of the structure of a heat-retaining zone.

外周に鋳込溝を備えた水冷の鋳込用回転輪7
と、該回転輪の鋳込溝8の一部を被覆する金属ベ
ルト9で構成される移動鋳型空間に、上方から溶
湯10が注入され、少なくとも外面が凝固した鋳
片11は鋳型区間21を出て保温帯16に入り、
拡散処理された後、鋳造輪出口から区間22で曲
げ戻し矯正され、スプレ13で冷却された後、ピ
ンチローラ12で引抜かれて連続鋳造される。な
お、23はガイドローラである。
Water-cooled casting rotary wheel 7 with casting grooves on the outer periphery
Then, molten metal 10 is poured from above into a moving mold space constituted by a metal belt 9 covering a part of the casting groove 8 of the rotary wheel, and the slab 11, which has solidified at least on its outer surface, exits the mold section 21. and enters the thermal zone 16,
After being subjected to the diffusion treatment, it is bent back and straightened in a section 22 from the casting wheel outlet, cooled by a spray 13, and then pulled out by a pinch roller 12 to be continuously cast. Note that 23 is a guide roller.

保温帯の構造は、例えば第5図に示すように鋼
板18で囲まれたほぼ箱形のケースの中に耐火物
19など、耐火性および断熱性を有するものを充
填し、これをユニツトとしてキヤタピラ式に連結
させた移動式のものであり、鋳片と接しない反対
側は冷却水20により冷却される。この保温帯
は、鋳型出口から鋳片と接触して鋳片と共に進行
するが、曲げ戻し直前で鋳片から離れるようにな
つている。鋳片と接する鉄板は薄いため、鋳片と
接すると瞬間的に加熱され、一定温度に保持され
る。
The structure of the heat insulation zone is, for example, as shown in Fig. 5, a nearly box-shaped case surrounded by steel plates 18 is filled with a material having fire resistance and heat insulation properties, such as a refractory material 19, and this is used as a unit for the caterpillar. It is a movable type that is connected in a fixed manner, and the opposite side not in contact with the slab is cooled by cooling water 20. This heat-insulating zone comes into contact with the slab from the mold outlet and moves along with the slab, but is separated from the slab just before being bent back. The iron plate in contact with the slab is thin, so when it comes into contact with the slab, it is instantaneously heated and maintained at a constant temperature.

以下、本発明の具体的実施例を述べる。 Hereinafter, specific examples of the present invention will be described.

実施例 1 第4図に示した装置を用い、アルミニウム合金
のうち比較的凝固区間の狭い合金5052を原料とし
て下記の条件で連続鋳造を行なつた。鋳造断面25
cm2、鋳型の長さ0.5m、移動式保温帯の鋳片と接
するユニツト面の幅60mm、長さ100mm、保温帯の
長さ2.0m、鋳込温度670℃、引抜速度1m/min
である。
Example 1 Using the apparatus shown in FIG. 4, continuous casting was carried out under the following conditions using alloy 5052, which has a relatively narrow solidification zone among aluminum alloys, as a raw material. Casting cross section 25
cm 2 , mold length 0.5 m, width of unit surface in contact with slab of mobile heat insulating zone 60 mm, length 100 mm, length of heat insulating band 2.0 m, pouring temperature 670℃, drawing speed 1 m/min
It is.

鋳型内において、回転輪側およびベルト面側の
鋳片表面は同じ冷却過程をたどつて冷却凝固する
が、鋳型を出ると円弧状鋳片の外径側であるベル
ト面側が充分に保温され、一方、円弧状鋳片の内
径側である回転輪側は凝固収縮によるエア・ギヤ
ツプの生成と自重により回転輪から離れるため、
空冷される。しかし、Al−Mg合金は熱伝導率が
大きいため、鋳片内外の温度差が小さく、保温す
ることによつて自己熱で復熱し、その後均一に保
持される。保温帯内の鋳片温度は400℃の均一温
度であり、通過時間は2分程度であつたが、非平
衡第2相のβ相の拡散が進み、鋳片の靭性が増
し、保温帯出口で伸び、絞りが120〜140%となつ
た状態で曲げ戻し矯正された。その結果、曲げ割
れの発生がなく、ミクロポロシテイも少なく、良
質な鋳片を得ることができた。また鋳片の鋳肌も
非常に平滑であつた。
In the mold, the surfaces of the slab on the rotating wheel side and the belt side follow the same cooling process and are cooled and solidified, but when it leaves the mold, the belt side, which is the outer diameter side of the arc-shaped slab, is sufficiently kept warm. On the other hand, the rotating ring side, which is the inner diameter side of the arc-shaped slab, separates from the rotating ring due to the formation of an air gap due to solidification contraction and its own weight.
Air cooled. However, since the Al-Mg alloy has a high thermal conductivity, the temperature difference between the inside and outside of the slab is small, and by keeping it warm, it regenerates heat by self-heating and is then maintained uniformly. The temperature of the slab inside the insulation zone was a uniform temperature of 400℃, and the passage time was about 2 minutes, but the diffusion of the β phase of the non-equilibrium second phase progressed, the toughness of the slab increased, and the temperature at the exit of the insulation zone increased. It was stretched and straightened by unbending when the aperture was 120-140%. As a result, it was possible to obtain a high-quality slab with no bending cracks and little microporosity. The surface of the slab was also very smooth.

実施例 2 次に比較的凝固区間の広いアルミニウム合金
5056を下記条件で連続鋳造した。条件は、鋳造断
面25cm2、鋳型長さ0.6m、鋳片と接触する鉄板面
(幅60mm、長さ20mm)と耐火物質(幅60mm、長さ
100mm)とが交互に組合わさつた保温帯の長さ4
m、鋳込温度655℃、引抜速度1m/minである。
Example 2 Next, an aluminum alloy with a relatively wide solidification zone
5056 was continuously cast under the following conditions. The conditions were: casting cross section 25cm 2 , mold length 0.6m, iron plate surface in contact with the slab (width 60mm, length 20mm), and refractory material (width 60mm, length
100mm) and the length of the heat-insulating zone alternately combined 4
m, the casting temperature was 655°C, and the drawing speed was 1 m/min.

この合金成分の場合、Mg量が多いので非平衡
第2相の量も多くなり、このため5052の場合より
保温帯の長さを長くし、鋳片温度を高くして拡散
効果を高めた。この結果、保温帯内の鋳片温度は
450℃付近に約4分間保持されたため、保温帯出
口の鋳片の伸び、絞りが80〜100%となつた状態
で曲げ戻し矯正された。その結果、鋳片の曲げ割
れの発生がなく、ミクロ偏析およびミクロポロシ
テイの少ない良質の鋳片が得られた。
In the case of this alloy component, since the amount of Mg is large, the amount of non-equilibrium second phase is also large, so the length of the insulation zone was made longer than in the case of 5052, and the slab temperature was raised to enhance the diffusion effect. As a result, the slab temperature in the heat insulation zone is
Since the temperature was maintained at around 450°C for about 4 minutes, the elongation and reduction of the slab at the outlet of the heat insulation zone were 80 to 100%, and the slab was bent back and straightened. As a result, a high-quality slab with less micro-segregation and microporosity was obtained, with no bending cracks occurring in the slab.

さらに非平衡第2相の多くなる合金の場合には
保温帯を長くし、保温帯内に加熱装置を設けた構
造にするとよいことが確認された。なお、鋳型内
の冷却速度はベルト区間を調節し、拡散効果は空
冷帯および保温帯の長さ、および鋳片保持温度を
調節することにより容易に変えることができる。
Furthermore, in the case of an alloy with a large number of non-equilibrium second phases, it has been confirmed that it is advantageous to lengthen the heat insulating zone and provide a structure in which a heating device is provided within the heat insulating zone. Note that the cooling rate within the mold can be easily changed by adjusting the belt section, and the diffusion effect can be easily changed by adjusting the lengths of the air cooling zone and heat insulation zone, and the slab holding temperature.

以上詳述したように、本発明によれば、回転輪
式連続鋳造法において高速で、しかも曲げ戻し矯
正時に曲げ割れの発生しない健全なアルミニウム
合金鋳片を得ることができる。
As described in detail above, according to the present invention, it is possible to obtain a sound aluminum alloy slab at high speed using a rotary wheel continuous casting method, and which does not suffer from bending cracks during unbending and straightening.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のアルミニウム合金用半連続鋳
造機の断面図、第2図は、従来の鋼用の回転輪式
連続鋳造機の断面図、第3図は、第2図の−
線に沿つた鋳型の断面図、第4図は、本発明にお
ける回転輪式連続鋳造機の断面図、第5図は、本
発明における保温帯の断面図である。 7……水冷胴回転輪、8……鋳込溝、10……
溶湯、11……鋳片、12……ピンチローラ、1
3……スプレー、21……鋳型区間、22……曲
げ戻し矯正区間、23……ガイドローラ。
Fig. 1 is a sectional view of a conventional semi-continuous casting machine for aluminum alloys, Fig. 2 is a sectional view of a conventional rotary wheel type continuous casting machine for steel, and Fig. 3 is a sectional view of the conventional semi-continuous casting machine for aluminum alloys.
FIG. 4 is a cross-sectional view of the mold along a line, FIG. 4 is a cross-sectional view of the rotary wheel continuous casting machine of the present invention, and FIG. 5 is a cross-sectional view of the heat-insulating zone of the present invention. 7...Water-cooled barrel rotating ring, 8...Casting groove, 10...
Molten metal, 11... Slab, 12... Pinch roller, 1
3...Spray, 21...Mold section, 22...Bending straightening section, 23...Guide roller.

Claims (1)

【特許請求の範囲】[Claims] 1 外周に鋳込溝を備えた鋳込用回転輪と該回転
輪の鋳込溝の一部を被覆する金属ベルトとから構
成される移動鋳型空間にアルミニウム合金の溶湯
を注入し、少なくとも外面が凝固した鋳塊を回転
輪出口から曲げ戻した後、鋳塊引出しピンチロー
ラにより連続的に引出す連続鋳造機において、鋳
型と曲げ戻し区間の間に鋳塊の保温帯を設けるこ
とを特徴とする回転輪式連続鋳造機。
1. Molten aluminum alloy is injected into a moving mold space consisting of a rotating casting wheel with a casting groove on the outer periphery and a metal belt covering a part of the casting groove of the rotating wheel, and at least the outer surface is A continuous casting machine in which a solidified ingot is bent back from a rotating wheel outlet and then continuously pulled out by an ingot pull-out pinch roller, characterized in that a heat-retaining zone for the ingot is provided between the mold and the unbending section. Ring type continuous casting machine.
JP5578679A 1979-05-09 1979-05-09 Rotary ring type continuous casting machine Granted JPS55147465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5578679A JPS55147465A (en) 1979-05-09 1979-05-09 Rotary ring type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578679A JPS55147465A (en) 1979-05-09 1979-05-09 Rotary ring type continuous casting machine

Publications (2)

Publication Number Publication Date
JPS55147465A JPS55147465A (en) 1980-11-17
JPS6125458B2 true JPS6125458B2 (en) 1986-06-16

Family

ID=13008579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578679A Granted JPS55147465A (en) 1979-05-09 1979-05-09 Rotary ring type continuous casting machine

Country Status (1)

Country Link
JP (1) JPS55147465A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260651A (en) * 1987-04-16 1988-10-27 Nippon Light Metal Co Ltd Production of zn-al alloy cast rod
JP2006224187A (en) * 2005-01-24 2006-08-31 Showa Denko Kk Continuously cast material and its production method

Also Published As

Publication number Publication date
JPS55147465A (en) 1980-11-17

Similar Documents

Publication Publication Date Title
US3333624A (en) Casting wheel cooling method
US4054173A (en) Apparatus for producing completely recrystallized metal sheet
US4151896A (en) Method of producing machine wire by continuous casting and rolling
RU2138345C1 (en) Method of operation of continuous casting plant and plant for continuous casting
US3971123A (en) Process of solidifying molten metal
JP3281660B2 (en) Method of manufacturing long rolled material from molten steel by continuous casting
JPH07113142B2 (en) Manufacturing method of phosphor bronze sheet
JPS6125458B2 (en)
RU1839682C (en) Method of manufacture of metal band
JPS5825849A (en) Improved continuously cast steel rod and production thereof
CA1069669A (en) Method and apparatus for producing completely recrystallized metal sheet
JPH11170014A (en) Horizontal continuous casting machine
JPH0313935B2 (en)
JP3146904B2 (en) Vertical continuous casting method for large section slabs
KR840001298B1 (en) Continuous cast steel production process
JP2003340553A (en) Continuous casting method for magnesium alloy sheet
SE7706949L (en) PROCEDURE FOR MANUFACTURE OF COPPER BAR
JPH07115131B2 (en) Twin roll casting machine
JPH04284947A (en) Continuous casting method
JPS6145958Y2 (en)
JPS61199554A (en) Method and device for continuous casting
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
JPH0494844A (en) Twin drum type continuous casting apparatus
JPS61229445A (en) Method and apparatus for continuous casting
RU98104755A (en) METHOD FOR PRODUCING HOT-ELECTRICAL ANISOTROPIC STEEL