JPS6125453B2 - - Google Patents

Info

Publication number
JPS6125453B2
JPS6125453B2 JP409283A JP409283A JPS6125453B2 JP S6125453 B2 JPS6125453 B2 JP S6125453B2 JP 409283 A JP409283 A JP 409283A JP 409283 A JP409283 A JP 409283A JP S6125453 B2 JPS6125453 B2 JP S6125453B2
Authority
JP
Japan
Prior art keywords
coating material
mold
slag
sulfurization
carburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP409283A
Other languages
Japanese (ja)
Other versions
JPS59130644A (en
Inventor
Takeo Matsuda
Kazuyuki Kurisu
Masahiro Tada
Ikuo Kuroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP409283A priority Critical patent/JPS59130644A/en
Publication of JPS59130644A publication Critical patent/JPS59130644A/en
Publication of JPS6125453B2 publication Critical patent/JPS6125453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合金鋳造品製造の際に用いられるフ
ラン樹脂鋳型用ジルコン系塗型材に関するもので
あり、特に本発明は、製造される合金鋳造品の浸
炭、浸硫を有効に防止することのできる製鋼工程
の還元期以降に生成するスラグを配合してなるフ
ラン樹脂鋳型用ジルコン系塗型材に関するもので
ある。 フラン樹脂とスルホン酸系硬化剤がボンドとし
て一般に用いられているフラン樹脂鋳型は高い生
産性と古砂の回収、再生が容易であることなどの
優れた特徴を有するため近年多く使用されてい
る。 しかし、フラン樹脂鋳型は注湯することにより
樹脂、硬化剤が熱分解し、CO、CO2、CH4ある
いはSO2、H2S等のC系、S系のガスが発生する
ため鋳造品の表面には、浸炭、浸硫による異常層
が生成するという問題があつた。 合金鋳造品において、この異常層の存在は、そ
の用途の上から有害であることはもちろんであ
り、また鋳造品の製造時においても割れ等の欠陥
の発生原因となるため有害である。 この異常層の発生、すなわち浸炭、浸流の防止
対策として、以下のような公知の方法がある。 (1) 鋳物砂として、クロマイト砂を用いる方法。 (2) 鋳物砂中へFe2O3を添加する方法。 (3) 塗型材中へFe2O3あるいはNi、Mn等の各種
酸化物を添加する方法。 (4) 塗型材として2CaO・SiO2とCaCO3の混合物
を用いる方法、あるいは塗型中にCaCO3を添
加する方法。 (5) 操作の管理(S/M比、L.O.I、樹脂、硬化
剤添加量の制限など)による方法(綜合鋳物セ
ンター;有機自硬性鋳型における鋳造欠陥とそ
の対策事例 昭和57年3月 P.19)。 しかしながら、これらの方法は以下の点で問題
があり、必ずしも一般的ではなく、効果も不充分
である。 すなわち、(1)の方法によれば、クロマイト砂が
高価であること、クロマイト砂の比重が大きいこ
と、クロマイト砂にけい砂が混入すると焼着発生
の原因となること(例えば、鈴木ら;鋳物vol.44
(1972)No.6P.18、P.19)などから、一般的な鋳
物砂であるけい砂の場合に比べ、鋳物砂費用が増
大するばかりでなく処理能力の大きな設備が必要
とななるので設備費が大きくなり、その結果製造
コストが増大する。また肌砂のみにクロマイト砂
を使用する場合には、砂再生のためクロマイト砂
と他の砂とを分離する設備が必要となる。 (2)の方法によれば、Fe2O3の添加により鋳型強
度が劣化するため必ずしも実用的とはいえない
(綜合鋳物センター:有機自硬性鋳型における鋳
造欠陥とその対策事例(その2)昭和57年3月
P.8〜9)。 (3)の方法によれば、後述するように添加量が少
ないと浸炭・浸硫の防止効果がなく、また添加量
が多いと鋳肌外観が不良となる。 (4)の方法によれば、浸炭・浸硫の防止効果が必
ずしも充分とはいえない。(津田ら;鋳物51
(1979)9、519および津田ら;鋳物53(1981)、
5、227)。 本発明は、上記のような従来方法における問題
点を生じることなしに、フラン樹脂鋳型を使用し
たときの合金鋳造品への浸炭・浸硫を効果的に防
止することができる塗型材を提供することを目的
とするものである。 すなわち本発明は、合金鋳造品製造の際に用い
らるフラン樹脂鋳型用ジルコン系塗型材におい
て、塗型材中の骨材の構成成分は製鋼工程の還元
期以降に生成するスラグ5〜40%と残部実質的に
ジルコンフラワーであることを特徴とするフラン
樹脂鋳型用ジルコン系塗型材に関するものであ
る。 なお、骨材構成成分をスラグと残部実質的にジ
ルコンフラワーと規定した理由は、本発明塗型材
に前記(3)及び(4)の方法において公知の前記添加剤
を後述する程度の量、即ち第2表に示すように鋳
肌外観が劣化しない程度の量を加えた場合、やは
り後述する程度の効果、即ち第2表に示すような
効果が当然予想されるためである。 以上から明らかなように、本発明の基本的な要
件は、骨材、粘結材及び溶剤から成り立つている
ところの塗型のうち、骨材構成成分を前記スラグ
とジルコンフラワーの混合物としたことにある。 本発明塗型材は、フラン樹脂鋳型を使用して合
金鋳造品を製造するにあたり、従来方法のように
鋳物砂の変更、造型方法の変更等、既存の操業方
法を変更する必要なしに、前述のように単にジル
コンフラワーのみを骨材とするジルコン系塗型材
中にスラグを加えるだけで容易に実施できるもの
であり、これによりフラン樹脂鋳型使用に起因す
る浸炭・浸硫を従来になく効果的に防止すること
ができる。 なお塗型の主な機能は正常な鋳肌外観を得るこ
とにあるが、本発明の塗型材を使用しても上記機
能は完全に達成され、この点においても従来の塗
型材ならびに従来の方法と異なつている。 以下、本発明について詳細に説明する。 合金鋳造品の鋳込温度は1580〜1600℃と比較的
高温であり、溶湯の砂粒間への浸透や、鋳肌への
砂粒の焼着が発生しやすい。そのため鋳肌外観、
鋳造品品質等の点から塗型が必要となる。したが
つて浸炭・浸硫を塗型のみにより防止することが
できれば、既存の鋳物製造方法を変更することな
しに正常な鋳物の製造が可能である。 そこで、まず浸炭・浸硫の防止効果が知られて
いる公知の添加剤を市販のジルコン系塗型材に添
加して、これらの添加剤の性能を実際に評価する
ため鋳造実験を行つた。この試験は第1表に示す
鋳造条件により行つたもので、第2表にその結果
を示す。 第 1 表 鋳 型;フラン自硬性鋳型 鋳型砂;再生砂(ジルコン砂とけい砂の混合砂) 鋳型形状;JIS G 5121 A号 試験片 塗型材;市販のジルコン系塗型材に各種添加剤を
加え、I.P.Aで約60Be´に調整 塗型塗布;ハケ塗り、バーナ乾燥 鋳込鋼種;SCS 13(溶湯成分C:0.06%、S:
0.004%) 鋳込温度;1580−1600℃
The present invention relates to a zircon-based coating material for furan resin molds used in the production of alloy castings. In particular, the present invention is capable of effectively preventing carburization and sulfurization of the alloy castings produced. This invention relates to a zircon-based coating material for furan resin molds, which is blended with slag produced after the reduction stage of the steelmaking process. Furan resin molds, in which furan resin and a sulfonic acid curing agent are generally used as a bond, have been widely used in recent years because they have excellent features such as high productivity and easy recovery and recycling of old sand. However, when furan resin molds are poured, the resin and curing agent are thermally decomposed and C-based and S-based gases such as CO, CO 2 , CH 4 or SO 2 and H 2 S are generated. There was a problem that an abnormal layer was formed on the surface due to carburization and sulfurization. In alloy casting products, the presence of this abnormal layer is not only harmful in terms of its use, but also in the production of castings because it causes defects such as cracks. As a measure to prevent the occurrence of this abnormal layer, that is, carburization and seepage, there are the following known methods. (1) A method using chromite sand as foundry sand. (2) A method of adding Fe 2 O 3 to foundry sand. (3) A method of adding Fe 2 O 3 or various oxides such as Ni and Mn to the coating material. (4) A method of using a mixture of 2CaO/SiO 2 and CaCO 3 as a mold coating material, or a method of adding CaCO 3 to the coating mold. (5) Methods by controlling operations (S/M ratio, LOI, restrictions on resin, hardening agent addition, etc.) (General Foundry Center; Examples of casting defects in organic self-hardening molds and their countermeasures March 1980 P.19 ). However, these methods have the following problems, are not necessarily common, and are not sufficiently effective. That is, according to method (1), chromite sand is expensive, the specific gravity of chromite sand is high, and mixing of silica sand with chromite sand causes seizure (for example, Suzuki et al. vol.44
(1972) No. 6 P. 18, P. 19), compared to the case of silica sand, which is a common foundry sand, not only does the cost of foundry sand increase, but also equipment with larger processing capacity is required. Equipment costs increase, resulting in increased manufacturing costs. Furthermore, when chromite sand is used only as surface sand, equipment for separating chromite sand from other sands is required for sand regeneration. According to method (2), the mold strength deteriorates due to the addition of Fe 2 O 3 , so it is not necessarily practical. March 57
P.8-9). According to method (3), as will be described later, if the amount added is small, there is no effect of preventing carburization and sulfurization, and if the amount added is too large, the cast surface appearance will be poor. According to method (4), the effect of preventing carburization and sulfurization is not necessarily sufficient. (Tsuda et al.; Castings 51
(1979) 9, 519 and Tsuda et al.; Castings 53 (1981),
5, 227). The present invention provides a coating material that can effectively prevent carburization and sulfurization of alloy castings when using furan resin molds without causing the problems of conventional methods as described above. The purpose is to In other words, the present invention provides a zircon-based coating material for furan resin molds used in the production of alloy casting products, in which the constituent components of aggregate in the coating material are 5 to 40% slag produced after the reduction stage of the steelmaking process. The present invention relates to a zircon-based coating material for furan resin molds, characterized in that the remaining portion is substantially zircon flour. The reason why the aggregate constituent components are defined as slag and the remainder as zircon flour is that the additives known in the methods (3) and (4) of the present invention are added to the coating material of the present invention in the amounts described below, i.e. This is because, as shown in Table 2, when an amount is added that does not deteriorate the appearance of the casting surface, it is naturally expected that the effects described below, ie, the effects shown in Table 2, will occur. As is clear from the above, the basic requirement of the present invention is that the aggregate component of the coating mold, which is composed of aggregate, caking agent, and solvent, is a mixture of the slag and zircon flour. It is in. The mold coating material of the present invention can be used to produce alloy castings using furan resin molds without the need to change existing operating methods such as changing the molding sand or changing the molding method as in conventional methods. This can be easily done by simply adding slag to a zircon-based coating material that uses only zircon flour as an aggregate, and this makes carburizing and sulfurizing, which are caused by the use of furan resin molds, more effective than ever before. It can be prevented. The main function of a coating mold is to obtain a normal casting surface appearance, and the above function can be completely achieved even when using the coating material of the present invention, and in this respect, conventional coating materials and conventional methods can also be achieved. It's different. The present invention will be explained in detail below. The casting temperature of alloy castings is relatively high at 1,580 to 1,600°C, which tends to cause the molten metal to penetrate between the sand grains and cause the sand grains to seize on the casting surface. Therefore, the cast surface appearance,
Coating molds are required from the standpoint of casting quality. Therefore, if carburization and sulfurization can be prevented using only the coating mold, normal castings can be manufactured without changing the existing casting manufacturing method. Therefore, we first added known additives that are known to be effective in preventing carburization and sulfurization to a commercially available zircon-based coating material, and conducted casting experiments to actually evaluate the performance of these additives. This test was conducted under the casting conditions shown in Table 1, and the results are shown in Table 2. Table 1 Mold: Furan self-hardening mold molding sand: Recycled sand (mixed sand of zircon sand and silica sand) Mold shape: JIS G 5121 No. A Test piece coating material: Various additives were added to commercially available zircon-based coating material. Adjust coating to approximately 60Be´ with IPA; apply with brush, burner dry Cast steel type: SCS 13 (molten metal composition C: 0.06%, S:
0.004%) Casting temperature: 1580-1600℃

【表】【table】

【表】 市販のジルコン系塗型材は、ジルコンフラワー
を骨材として、有機粘結剤、I.P.A(イソプロピ
ルアルコール)からなるもので、塗型材への各種
添加剤の添加量は、塗型骨材中の含有量が第2表
の値(%)となるように添加した。いずれの添加
剤を単独又は複合で添加した場合も浸炭あるいは
浸硫が認められ、また鋳肌外観が損なわれてお
り、浸炭・浸硫防止効果が不充分であつたり、塗
型材本来の機能を失なつていることは明らかであ
る。 すなわち、フラン樹脂鋳型は注湯により樹脂硬
化剤が熱分解するため鋳型内は還元性雰囲気とな
る。したがつて酸素供給源であるFe2O3の添加
は、雰囲気を酸化性にすることについては有効で
あり、実際この試験においても市販のジルコン系
塗型材(添加剤なし)を塗布した場合に比べ酸化
スケールの発生量に増加が認められた。しかし、
第2表に示したように添加量が少ない場合には、
鋳物表面スケール内部までOのポテンシヤンを高
くすることができず、もともとC、Sのポテンシ
ヤンが高い鋳型内雰囲気のため、浸炭・浸硫の防
止効果が充分認められない。他方、Fe2O3の添加
量を多くした場合は、同表に示すとおり鋳肌面の
外観が不良となり、この面から、実際の生産に適
用することができない。 また他の添加剤すなわちCaO、CaCO3あるい
はそれらとFe2O3と複合して添加した場合につい
ても浸炭・浸硫防止効果が不充分、あるいは鋳肌
外観や品質が不充分で同様に実際の生産に適用で
きない。そこで、ステンレス鋼鋳鋼品に対する浸
炭・浸硫を充分防止することができる塗型材を開
発することを目的として、新たに有効な塗型添加
剤について種々検討したところ、製鋼工程におけ
る還元期以降に生成するスラグが、浸炭・浸硫の
充分な防止に有効であることを知見した。またこ
のスラグを添加した塗型材の性能を、他の鋳造品
すなわち耐熱鋼、耐食耐熱合金等について調査し
たところ、ステンレス鋼と同様、浸炭・浸硫を有
効に防止し、良好な鋳肌外観が得られることが確
認された。 本発明塗型材の内容をさらに明確にするため、
次に行つた試験結果の一部を用いて以下に説明す
る。 第3表は鋳造条件、第4表は試験に用いたスラ
グの成分分析値を示す。 第 3 表 鋳 型;フラン自硬性鋳型 鋳型砂;再生砂、ジルコン砂、けい砂、クロマイ
ト砂 鋳型形状;JIS G 5121 A号 試験片 塗型材;市販のジルコン系塗型材にスラグを添加
しI.P.Aにて約60Be´に調整 塗型塗布;ハケ塗り 鋳込鋼種(成分、鋳込温度);SCS 5(0.05%
C、0.006%S、1580−1600℃) SCS 13(0.06%C、0.004%S、1580−1600
℃) SCH 13(0.30%C、0.008%S、1510−1540
℃) ハステロイC(0.07%C、0.007%S、1450
℃)
[Table] Commercially available zircon-based mold coating materials are made of zircon flour as an aggregate, an organic binder, and IPA (isopropyl alcohol), and the amount of various additives added to the mold coating material is was added so that the content was as shown in Table 2 (%). When any of the additives is added alone or in combination, carburization or sulfurization is observed, the appearance of the cast surface is impaired, the carburization/sulfurization prevention effect is insufficient, and the original function of the coating material is impaired. It is clear that it has been lost. That is, in the furan resin mold, the resin curing agent is thermally decomposed by pouring, so the inside of the mold becomes a reducing atmosphere. Therefore, the addition of Fe 2 O 3 , which is an oxygen source, is effective in making the atmosphere oxidizing, and in fact, in this test, when a commercially available zircon-based coating material (without additives) was applied, An increase in the amount of oxide scale generated was observed. but,
As shown in Table 2, when the amount added is small,
It is not possible to increase the O potential to the inside of the casting surface scale, and the atmosphere inside the mold has originally high C and S potentials, so the effect of preventing carburization and sulfurization is not sufficiently recognized. On the other hand, when the amount of Fe 2 O 3 added is increased, the appearance of the cast surface becomes poor as shown in the same table, and from this point of view, it cannot be applied to actual production. Furthermore, when other additives, such as CaO, CaCO 3 , or a combination of these and Fe 2 O 3 are added, the carburization/sulfurization prevention effect is insufficient, or the cast surface appearance and quality are insufficient, resulting in similar problems. Not applicable to production. Therefore, with the aim of developing a coating material that can sufficiently prevent carburization and sulfurization of stainless steel castings, we investigated various new effective coating additives. It was discovered that the slag used in this process is effective in sufficiently preventing carburization and sulfurization. In addition, we investigated the performance of mold coating materials to which this slag was added on other casting products, such as heat-resistant steel, corrosion-resistant heat-resistant alloys, etc., and found that, like stainless steel, it effectively prevents carburization and sulfurization, and provides a good cast surface appearance. It has been confirmed that it can be obtained. In order to further clarify the content of the coating material of the present invention,
Next, explanation will be given below using some of the test results conducted. Table 3 shows the casting conditions, and Table 4 shows the component analysis values of the slag used in the test. Table 3 Mold: Furan self-hardening mold molding sand: Recycled sand, zircon sand, silica sand, chromite sand Mold shape: JIS G 5121 No. A Test piece coating material: Slag was added to a commercially available zircon-based coating material and made into IPA. Adjust the coating to approximately 60Be´; Brush paint Casting steel type (components, casting temperature); SCS 5 (0.05%
C, 0.006% S, 1580-1600℃) SCS 13 (0.06% C, 0.004% S, 1580-1600
℃) SCH 13 (0.30%C, 0.008%S, 1510−1540
℃) Hastelloy C (0.07%C, 0.007%S, 1450
℃)

【表】 第4表中No.1〜7のスラグは、ステンレス
鋼、耐熱鋼および炭素鋼の製鋼工程における還元
期以降の工程で生成したものである。No.2、3
はステンレス鋼のクロム還元期、No.1、4〜6
はステンレス鋼および耐熱鋼の仕上期、No.7は
炭素鋼の還元期のスラグである。No.1〜7のス
ラグ分析値はSiO215〜40%、CaO40〜60%、
MgO10%以下、Cr2O39%以下、Al2O36%以下、
FeO3%以下、MnO3%以下の範囲、塩基度は1.2
〜3.8の範囲である。なお、以上の値は通例のス
ラグ分析値表示に従つて示したものである。すな
わちNo.1〜7のスラグは、SiO2、CaO、MgO等
を単に混合したものではなく、また単なる
2CaO・SiO2でもなく、多数の酸化物を含む複雑
なけい酸塩とその崩壊生成物からなつている。
No.8のスラグはNi精錬時に生成したもので、比
較のため用いたものである。 これらのスラグを市販のジルコン系塗型材(ジ
ルコンフラワーが骨材で、有機粘結剤を含むI.P.
Aを溶剤としたもの)に添加してI.P.Aを加え約
60Be´に調整後、フラン自硬性鋳型に塗布しバー
ナー乾操後各種合金を鋳込んだ。第5表はその結
果であり、第4表のNo.1〜8のスラグを塗型材
骨材中に種々の含有量となるように加えた場合の
各種合金鋳造品鋳肌面の分析結果と外観評価結果
を示す。
[Table] The slags No. 1 to 7 in Table 4 were generated in the steps after the reduction period in the steel manufacturing process of stainless steel, heat-resistant steel, and carbon steel. No.2, 3
is the chromium reduction period of stainless steel, No. 1, 4 to 6
No. 7 is the slag from the finishing stage of stainless steel and heat-resistant steel, and No. 7 is the slag from the reducing stage of carbon steel. The slag analysis values of No. 1 to 7 are SiO 2 15 to 40%, CaO 40 to 60%,
MgO 10% or less, Cr 2 O 3 9% or less, Al 2 O 3 6% or less,
Range of FeO3% or less, MnO3% or less, basicity 1.2
~3.8 range. Note that the above values are shown in accordance with the usual slag analysis value display. In other words, the slags No. 1 to 7 are not simply a mixture of SiO 2 , CaO, MgO, etc.
It is not 2CaO/SiO 2 , but is composed of complex silicates containing many oxides and their decay products.
Slag No. 8 was generated during Ni refining and was used for comparison. These slags are mixed with a commercially available zircon-based coating material (IP containing zircon flour as aggregate and an organic binder).
Add A to the solvent) and add IPA to approx.
After adjusting to 60Be', it was applied to a furan self-hardening mold and after drying with a burner, various alloys were cast. Table 5 shows the results, and shows the results of analysis of the surface of various alloy castings when slag Nos. 1 to 8 in Table 4 are added to the coating material aggregate in various amounts. The appearance evaluation results are shown.

【表】 第5表よりスラグ含有量が3%の場合鋳肌面の
成分はCは0.10%以上、Sは0.020%超えと浸
炭・浸硫により増加していることがわかる。この
試料の鋳肌断面の顕微鏡写真を第1図に示す。 SCS 13の規格によればSは0.040%以下である
が、浸硫によつて本試料のようにS量が増加した
場合には、鋳肌面の一部に硫化物が集中して認め
られる。このような鋳肌面にTIG溶接を行うと、
HAZ割れあるいはビードタテ割れが発生する場
合があつた。そこで、分析値的には浸硫が認めら
れるが、顕微鏡的に集中した硫化物が実際上認め
られないSが0.020%以下の範囲を浸硫が防止さ
れた鋳肌と判定した。他の合金鋳造品についても
同様の方法により判定した。 浸炭については、SCS 13の場合正常な顕微鏡
組織(オーステナイトとδフエライトの2相組
織)が鋳肌面で消失してオーステナイト単相とな
り、その層の厚さが0.2mm程度以上存在し、部分
的に点状の炭化物が認められたものが本試験にお
いてはCは0.10%以上であつたため、鋳肌面分析
値はCが0.10%未満の範囲を浸炭が防止された鋳
肌と判定した。スラグ含有量3%の場合は、浸炭
並びに浸硫により鋳肌面の品質が劣化し、一方ス
ラグ含有量が5%の場合は浸炭、浸硫ともに上記
の分析値より低く、かつ鋳肌面外観も良好であつ
た。そこで本発明におけるスラグ含有量は下限を
5%とする。 次にスラグ含有量が65%の場合は第5表に示す
SCS 13の場合のように鋳肌外観が劣化すること
が判り、一方スラグ含有量が40%の場合は浸炭、
浸硫ともに上記の分析値よりも低く、かつ鋳肌外
観も良好なのでスラグ含有量の上限を40%とす
る。 以上により本発明塗型材は、塗型材骨材含有量
として全骨材中に5〜40%含有させると浸炭、浸
硫を有効に防止し良好な鋳肌外観が得られる。 またスラグの種類についてみると、第5表に示
すとおりNo.1〜7のスラグではいずれも鋳肌面
の分析値並びに鋳肌外観評価の結果は良好であ
り、本発明の塗型材の機能を充分満たすものであ
る。なお、No.8のNi精錬のスラグは、浸炭、浸
硫防止効果が認められない。 次に、スラグの粒度について試験を行い検討し
た結果を第6表に示す。鋳込条件は第3表と同一
である(たゞし溶湯成分だけ異なる)。
[Table] From Table 5, it can be seen that when the slag content is 3%, the components on the cast surface increase due to carburization and sulfurization, with C being over 0.10% and S over 0.020%. A microscopic photograph of the cross section of the casting surface of this sample is shown in FIG. According to the SCS 13 standard, the S content is 0.040% or less, but when the S content increases as in this sample due to sulfurization, sulfides are concentrated on a part of the casting surface. . When TIG welding is performed on such a cast surface,
There were cases where HAZ cracking or vertical bead cracking occurred. Therefore, the range where S is 0.020% or less, in which sulfurization is observed in terms of analytical values, but microscopically concentrated sulfides are not actually observed, was determined to be a cast surface in which sulfurization is prevented. Other alloy castings were also evaluated using the same method. Regarding carburization, in the case of SCS 13, the normal microscopic structure (two-phase structure of austenite and δ-ferrite) disappears on the cast surface to become a single phase of austenite, and the thickness of this layer is about 0.2 mm or more, and it is partially In this test, the C content was 0.10% or more in the specimens in which dotted carbides were observed, so the cast surface analysis value was determined to be the range in which C was less than 0.10% as the cast surface in which carburization was prevented. When the slag content is 3%, the quality of the cast surface deteriorates due to carburization and sulfurization, while when the slag content is 5%, both carburization and sulfurization are lower than the above analytical values, and the appearance of the cast surface It was also good. Therefore, the lower limit of the slag content in the present invention is set to 5%. Next, if the slag content is 65%, it is shown in Table 5.
It was found that the appearance of the casting surface deteriorated as in the case of SCS 13, while when the slag content was 40%, carburization,
Both sulfurization values are lower than the above analysis values, and the cast surface appearance is good, so the upper limit of the slag content is set at 40%. As described above, in the mold coating material of the present invention, when the mold coating material aggregate content is 5 to 40% in the total aggregate, carburization and sulfurization can be effectively prevented and a good casting surface appearance can be obtained. Regarding the types of slag, as shown in Table 5, all of the slags No. 1 to 7 had good casting surface analysis values and casting surface appearance evaluation results, and the performance of the mold coating material of the present invention was confirmed. This is sufficient. It should be noted that the slag from Ni refining No. 8 has no carburizing and sulfurizing prevention effect. Next, the particle size of the slag was tested and the results are shown in Table 6. The casting conditions are the same as in Table 3 (only the molten metal composition is different).

【表】 第6表の結果より、粒度が100メツシユ以上の
細かいスラグは、本発明塗型材骨材として充分有
効であることがわかる。 以上、本発明塗型材の検討結果について述べた
が、従来、塗型材の骨材としては、焼着の防止な
ど鋳肌外観不良を防止する観点から、充分な耐火
度が必要であると考えられていた。 これに反し、本発明ジルコン系塗型材は、耐火
度が比較的低い製鋼工程の還元期以降で生成する
スラグを塗型材の骨材構成成分としながら塗型材
本来の機能を損なわず、フラン樹脂鋳型による浸
炭・浸硫を従来になく防止できる。 次に本発明の塗型材を実施例について説明す
る。 実施例 1辺が100mmの立方体(押湯径100φmm、高さ
100mm)のフラン樹脂鋳型(再生砂)に、市販の
ジルコン塗型材と、本発明塗型材(第4表の
No.1のスラグとジルコンフラワーを1:9の割
合で混合し、有機粘結剤としてデキストリンを骨
材重量に対し5%加え、水で約70Be´に調整した
もの)とを別々に塗布し、SUS 329 J1相当のス
テンレス鋼溶湯を鋳込温度1600℃で鋳込んだ。得
られた鋳造品の鋳肌各部断面の顕微鏡組織(村上
氏試薬エツチング)を第2図イ,ロに示す。第2
図イは本発明塗型材を施した部分における鋳肌で
あり、これをみると、正常な本鋼種の製織を示し
ており、顕微鏡組織的に、浸炭・浸硫は全く認め
られない(なお一部の黒色部分はσ相である)。 これに対し、第2図ロは市販のジルコン系塗型
材を施した部分における鋳肌であり、フラン樹脂
鋳型からの浸炭のため、組織が変化し、地がオー
ステナイト(白色部)となり、フエライトとオー
ステナイトの比率が逆転している。減少したフエ
ライト中には浸炭による炭化物が認められ、写真
では淡黒色となつてみえる。 また濃黒色部では浸硫により生成した硫化物が
エツチングによつて腐食され溝状になつたもので
ある。 このように、市販のジルコン系塗型材を施した
鋳肌には異常層が深さ1.5mm程度まで認められ
た。 前記実施例で示した従来方法による塗型材との
比較から明らかなように、本発明の塗型材は従来
方法による塗型材よりも浸炭・浸硫の防止効果に
おいて優れていることがわかる。 本発明による効果を要約すると次のとおりであ
る。 (1) フラン樹脂鋳型用塗型材として本発明塗型材
を用いることにより従来方法による塗型材に比
べて浸炭・浸硫をより効果的に防止し、また良
好な鋳肌外観が得られる。 (2) フラン樹脂鋳型による浸炭・浸硫に起因する
鋳造欠陥の発生がなくなる。 (3) 鋳造品鋳肌に浸炭・浸硫層がなくなるため鋳
造品品質が向上する。 (4) 鋳造品鋳肌の浸炭・浸硫層の除去が不要とな
り、加工工数が減少し歩留が向上する。 (5) 本発明で使用するスラグは製鋼工程で発生す
る産業廃棄物であるためその有効利用が可能と
なる。 なお本発明塗型材は、合金鋳造品の浸炭・浸硫
の防止を目的としたものであるが、フラン樹脂鋳
型への鋳込温度が合金鋳造品に近い鋳鋼一般であ
るいは鋳鉄に対しても有効であるとはいうまでも
ない。
[Table] From the results in Table 6, it can be seen that fine slag with a particle size of 100 mesh or more is sufficiently effective as an aggregate for the mold coating material of the present invention. The above has described the results of the study on the mold coating material of the present invention. Conventionally, it has been thought that the aggregate for the mold coating material needs to have sufficient fire resistance from the viewpoint of preventing burning and other poor casting surface appearance. was. On the other hand, the zircon-based mold coating material of the present invention uses slag produced after the reduction stage of the steelmaking process, which has a relatively low fire resistance, as an aggregate component of the mold coating material, without impairing the original function of the coating material, and can be used to mold furan resin molds. It is possible to prevent carburization and sulfurization like never before. Next, examples of the mold coating material of the present invention will be described. Example: Cube with one side of 100mm (feeder diameter: 100φmm, height:
A commercially available zircon coating material and the coating material of the present invention (see Table 4) were placed in a furan resin mold (recycled sand) of 100 mm).
No. 1 slag and zircon flour were mixed at a ratio of 1:9, 5% dextrin was added to the aggregate weight as an organic binder, and the mixture was adjusted to approximately 70Be' with water. , molten stainless steel equivalent to SUS 329 J1 was cast at a casting temperature of 1600℃. The microscopic structure (etched with Murakami's reagent) of the cross-section of each part of the casting surface of the obtained cast product is shown in Figure 2 A and B. Second
Figure A shows the casting surface of the part coated with the coating material of the present invention, which shows normal weaving of this steel, and microscopically, no carburization or sulfurization is observed. The black part is the σ phase). On the other hand, Figure 2 (b) shows the casting surface of a part coated with a commercially available zircon-based coating material. Due to carburization from the furan resin mold, the structure changes and the base becomes austenite (white part), which changes to ferrite. The ratio of austenite is reversed. Carbide due to carburization is observed in the reduced ferrite, which appears pale black in the photo. In addition, in the dark black part, sulfide produced by sulfurization is corroded by etching and becomes groove-like. As described above, an abnormal layer was observed up to a depth of about 1.5 mm on the casting surface coated with a commercially available zircon-based coating material. As is clear from the comparison with the coating material made by the conventional method shown in the above examples, the coating material of the present invention is superior to the coating material made by the conventional method in preventing carburization and sulfurization. The effects of the present invention are summarized as follows. (1) By using the coating material of the present invention as a coating material for furan resin molds, carburization and sulfurization can be more effectively prevented compared to coating materials made by conventional methods, and a good casting surface appearance can be obtained. (2) Casting defects caused by carburizing and sulfurizing with furan resin molds are eliminated. (3) There is no carburized or sulfurized layer on the surface of the cast product, which improves the quality of the cast product. (4) It is no longer necessary to remove the carburized and sulfurized layers on the surface of the cast product, reducing machining man-hours and improving yield. (5) Since the slag used in the present invention is industrial waste generated in the steel manufacturing process, it can be used effectively. The mold coating material of the present invention is intended to prevent carburization and sulfurization of alloy castings, but it is also effective for cast steel in general or cast iron, where the casting temperature in furan resin molds is close to that of alloy castings. Needless to say, it is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フラン樹脂鋳型に、本発明塗型材の
スラグ含有量として不充分な量(3%)のスラグ
No.1を添加した塗型材を施しSCS 13を鋳造した
ときの鋳肌断面の顕微鏡写真(エツチングせず)
であり、第2図イ,ロは、SUS 329 J1相当のス
テンレス鋼鋳造品をフラン樹脂鋳型により製造し
たときの鋳肌各部断面の顕微鏡組織を示す写真で
あり、イは本発明塗型材を施した部分における鋳
肌断面の組織であり、ロは従来方法における塗型
材を施した部分における鋳肌断面の組織を示す写
真である。
Figure 1 shows that an insufficient amount (3%) of slag was added to the furan resin mold as the slag content of the mold coating material of the present invention.
Microscopic photograph of the cross section of the casting surface when SCS 13 was cast using a coating material containing No. 1 (without etching)
Figures 2A and 2B are photographs showing the microscopic structure of the cross-section of each part of the casting surface when a stainless steel casting equivalent to SUS 329 J1 was manufactured using a furan resin mold. B is a photograph showing the structure of a cross section of the casting surface in a portion where a mold coating material was applied in the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 合金鋳造品製造の際に用いられるフラン樹脂
鋳型用ジルコン系塗型材において、塗型材中の骨
材の構成成分は製鋼工程の還元期以降に生成する
スラグ5〜40%と残部実質的にジルコンフラワー
であることを特徴とするフラン樹脂鋳型用ジルコ
ン系塗型材。
1. In the zircon-based coating material for furan resin molds used in the production of alloy castings, the constituent components of the aggregate in the coating material are 5 to 40% slag produced after the reduction stage of the steelmaking process, and the remainder essentially zircon. A zircon-based coating material for furan resin molds that is characterized by its flower appearance.
JP409283A 1983-01-17 1983-01-17 Mold coating material for furan resin casting mold Granted JPS59130644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP409283A JPS59130644A (en) 1983-01-17 1983-01-17 Mold coating material for furan resin casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP409283A JPS59130644A (en) 1983-01-17 1983-01-17 Mold coating material for furan resin casting mold

Publications (2)

Publication Number Publication Date
JPS59130644A JPS59130644A (en) 1984-07-27
JPS6125453B2 true JPS6125453B2 (en) 1986-06-16

Family

ID=11575149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP409283A Granted JPS59130644A (en) 1983-01-17 1983-01-17 Mold coating material for furan resin casting mold

Country Status (1)

Country Link
JP (1) JPS59130644A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056288B (en) * 2013-01-25 2014-12-03 马鞍山市华达冶金机械有限公司 Lost foam casting paint for chromium-containing cast iron and preparation method thereof
CN103331410B (en) * 2013-01-29 2015-08-19 南京市溧水中山铸造有限公司 A kind of coating of higher suspension low concentration and painting method thereof and application

Also Published As

Publication number Publication date
JPS59130644A (en) 1984-07-27

Similar Documents

Publication Publication Date Title
CN107745092B (en) A kind of production method of 2507 stainless steel pump casting
CN113145807B (en) Rare earth bearing steel ingot for shield machine and production method thereof
US6972302B2 (en) Casting sand cores and expansion control methods therefor
CN111185574B (en) Lost foam casting process of nodular iron casting
JP2011230176A (en) Molding sand, molding sand composition, and casting mold obtained by using the same
JPS6125453B2 (en)
US20090114365A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JPS5844945A (en) Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold
US8011419B2 (en) Material used to combat thermal expansion related defects in the metal casting process
US4430441A (en) Cold setting sand for foundry moulds and cores
US20180056373A1 (en) Anti-Veining Additive for Silica Sand Mold
CN113526965B (en) Stopper rod for high-oxygen steel continuous casting
RU2539894C2 (en) Method of mould making by investment patterns (versions)
US1871315A (en) Casting readily oxidizable metals
Naro Formation and control of lustrous carbon surface defects in iron and steel castings
JPS60238058A (en) Casting method and mold coating material used therein
JPS611466A (en) Casting method
JPS59113954A (en) Mold coating material for preventing sulfurization for casting mold using organic binder
JPS60106694A (en) Production of welding rod for cast iron
JPS5994550A (en) Method for preventing deterioration in graphite texture in surface layer of casting of spherioidal graphite cast iron
CN116586555A (en) Application of environment-friendly clay green sand additive in cast iron
SU1364386A1 (en) Sprinkling material
JP3740006B2 (en) Method for producing cast steel product with excellent resistance to tortoise shell cracking and cast steel product
JPS608988B2 (en) Immersion nozzle composition for casting
JP2745581B2 (en) Method of forming self-hardening mold