JPS61253709A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS61253709A
JPS61253709A JP60093425A JP9342585A JPS61253709A JP S61253709 A JPS61253709 A JP S61253709A JP 60093425 A JP60093425 A JP 60093425A JP 9342585 A JP9342585 A JP 9342585A JP S61253709 A JPS61253709 A JP S61253709A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
dielectric
ceramic composition
sample
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60093425A
Other languages
Japanese (ja)
Other versions
JPH0610930B2 (en
Inventor
笹沢 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP60093425A priority Critical patent/JPH0610930B2/en
Publication of JPS61253709A publication Critical patent/JPS61253709A/en
Publication of JPH0610930B2 publication Critical patent/JPH0610930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、共振周波数が10数GH2の誘電体共振器
用の誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dielectric ceramic composition for a dielectric resonator having a resonance frequency of 10-odd GH2.

〔従来の技術〕[Conventional technology]

共振周波数が10数GHzの誘電体共振器の無負荷のQ
の優れたものは、約10000である。この従来の誘電
体共振器の誘電体には、Ba・ 〔ZnhTah) 2
/3・ (ZnzNbH)t、−3・03の組成式で表
される誘電体磁器組成物が使用されていた。
No-load Q of a dielectric resonator with a resonant frequency of 10-odd GHz
An excellent one is about 10,000. The dielectric of this conventional dielectric resonator contains Ba.[ZnhTah)2
A dielectric ceramic composition represented by the composition formula: /3.(ZnzNbH)t, -3.03 was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の誘電体磁器組成物は、高価であった。こ
の理由は製造過程における焼成温度が約1600℃と高
いため、焼成炉の設備コストやその補修コスト及び熱エ
ネルギーのコスト等がかさみ、これらによって製造原価
が高(なるからである。従って、より低い温度で焼成す
ることができる誘電体磁器組成物が要望されている。
The conventional dielectric ceramic compositions described above were expensive. The reason for this is that the firing temperature in the manufacturing process is as high as approximately 1,600°C, which increases the equipment cost of the firing furnace, its repair cost, and the cost of thermal energy, which increases manufacturing costs. There is a need for dielectric ceramic compositions that can be fired at high temperatures.

この発明は、上記要望に基づいて創案されたもので、従
来のものに比べて安価な誘電体磁器組成物を提供するも
のである。
This invention was devised based on the above-mentioned demand, and provides a dielectric ceramic composition that is cheaper than conventional compositions.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的を達成するこの発明の誘電体磁器組成物は、B
a ・ (Mg (X)Co (1−X))s・Nb2
/−1−03で表される組成式のXが0.25〜0.9
5の範囲である複合ペロプスカイトからなるものである
The dielectric ceramic composition of the present invention that achieves the above object is B
a ・(Mg (X)Co (1-X))s・Nb2
X in the composition formula represented by /-1-03 is 0.25 to 0.9
It consists of a composite peropskite in the range of 5.

〔実施例〕〔Example〕

次ぎに9組成式のXが0.6であるBa・ (Mgo、
s Co6,4 )hNb:h・03なる磁器組成物の
製造方法を説明する。
Next, Ba・(Mgo,
A method for producing a ceramic composition called sCo6,4)hNb:h.03 will be described.

まず、BaCo3の粉末98.67g、MgOの粉末4
.03g、Cooの粉末5.00g、Nb2O3の粉末
44.26gをそれぞれ秤量した。この秤量粉末を純水
と共にボールミルに入れ、24時間湿式混合した。
First, 98.67g of BaCo3 powder, 4g of MgO powder
.. 03g of Nb2O3 powder, 5.00g of Coo powder, and 44.26g of Nb2O3 powder were weighed. This weighed powder was placed in a ball mill with pure water and wet mixed for 24 hours.

こうして得られた混合物を親水して、150℃の温度で
5時間乾燥した後、 1100℃の温度にて2時間の仮
焼を行った。次ぎに仮焼物をボールミルで粉砕した。こ
の粉砕物にポリビニルアルコールを3’、Og加えて掴
潰器で混合し、60メツシユのふるいにかけて造粒した
。これらの造粒物のうち0.66 gを金型に入れ、 
 3ton /C!+1の圧力をかけた。この加圧成型
を繰り返すことによって、直径7.Onφ、厚さ3.5
鶴の円板を20(flit製作した。続いてこれらの円
板を1400℃の温度で4時間焼成し、直径約6 、 
Otm 、厚さ約3.1uの誘電体磁器円板を得た。
The mixture thus obtained was hydrophilized and dried at a temperature of 150°C for 5 hours, and then calcined at a temperature of 1100°C for 2 hours. Next, the calcined product was ground in a ball mill. 3'0g of polyvinyl alcohol was added to the pulverized product, mixed with a crusher, and granulated by passing through a 60-mesh sieve. Put 0.66 g of these granules into a mold,
3ton/C! +1 pressure was applied. By repeating this pressure molding, the diameter 7. Onφ, thickness 3.5
20 (flit) crane disks were produced.Subsequently, these disks were fired at a temperature of 1400℃ for 4 hours, and the diameter was about 6 mm.
A dielectric ceramic disc having a thickness of about 3.1 u was obtained.

これら誘電体磁器円板の両面をラップ研磨し。Lap and polish both sides of these dielectric porcelain discs.

厚さtを3.OOmにして試料3とした。The thickness t is 3. OOm and designated as sample 3.

次に、上記試料3を誘電体とした誘電体共振器の25℃
の温度における比誘電率εと無負荷のQを測定した試験
方法とその結果について説明する。
Next, we prepared a dielectric resonator using sample 3 as a dielectric at 25°C.
The test method and results for measuring the relative dielectric constant ε and Q without load at a temperature of are explained below.

まず、予め前述の試料3の直径りをマイクロメータで測
定した後、横河ヒューレットパッカード社製の8620
 Aスイープオシレータ、 8410Aネツトワークア
ナライザ、 8743Aテストユニツト及びコンピュー
タからなる測定システムを用い、比誘電率8と無負荷の
Qを測定した。
First, after measuring the diameter of the sample 3 mentioned above with a micrometer,
A measurement system consisting of an A sweep oscillator, an 8410A network analyzer, an 8743A test unit, and a computer was used to measure the relative dielectric constant of 8 and the no-load Q.

上記テストユニットには、誘電体共振器の電極用金属端
板(直径241m、厚さ31m)2枚が含まれており、
まずこれら金運端板で上記試料3が挟まれ、誘電体共振
器が構成される。次にこの共振器の共振周波数f、と共
振時の挿入損dBが測定される。そしてこの共振時の挿
入損dBの測定値と、予め実測された試料3の上記直径
り。
The above test unit includes two metal end plates (diameter 241 m, thickness 31 m) for electrodes of a dielectric resonator.
First, the sample 3 is sandwiched between these end plates to form a dielectric resonator. Next, the resonant frequency f of this resonator and the insertion loss dB during resonance are measured. Then, the measured value of the insertion loss dB at this resonance and the above-mentioned diameter of the sample 3 which was actually measured in advance.

厚さtがコンピュータに入力されることによって、供試
用誘電体共振器の比誘電率εと無負荷のQがそれぞれ演
算され、その結果が打ち出される。
By inputting the thickness t into the computer, the dielectric constant ε and the unloaded Q of the dielectric resonator under test are respectively calculated, and the results are printed out.

上記測定システムにおいて求められる比誘電率εは、コ
ンピュータのプログラムに従って。
The relative dielectric constant ε determined in the above measurement system is determined according to a computer program.

πD、共振波長λo ” C/ f o *伝搬波長λ
g=2t、第2種ベッセル関数v2−(πD/λ0)〔
(2072g)2−1]、第1種ベッセル関数u2が測
定または計算され、これらの値からε=(λo/πD)
2 (u2+v2)+1なる演算式で求められる。また
、無負荷のQは、やはりコンピュータプログラムに従い
、負荷QL’=fO/f2  ft’ (電力半値幅)
、aH=10−τl・・/20が求められ、これらの値
からQ=QL/1  atなる演算式で求められる。
πD, resonant wavelength λo ”C/f o *propagation wavelength λ
g=2t, Bessel function of the second kind v2-(πD/λ0) [
(2072g)2-1], the Bessel function of the first kind u2 is measured or calculated, and from these values ε=(λo/πD)
2 (u2+v2)+1. Also, the no-load Q is calculated as follows from the computer program: load QL'=fO/f2 ft' (power half width)
, aH=10-τl.../20 are obtained, and from these values, it is obtained using the arithmetic expression Q=QL/1 at.

前述のようにして求められた20個の試料の比誘電率ε
の平均値は32.7.最大値は33.(L最小値は32
.3であった。また、試料20個の無負荷のQの平均値
は11()00.最大値は12500.最小値は108
00であった。これら平均値を、上記組成式のXの値、
焼成温度FTと共に下表の試料番号3の欄に示した。
The relative permittivity ε of the 20 samples determined as described above
The average value is 32.7. The maximum value is 33. (L minimum value is 32
.. It was 3. Moreover, the average value of Q of 20 samples without load is 11()00. The maximum value is 12500. The minimum value is 108
It was 00. These average values are calculated as the value of X in the above composition formula,
It is shown in the sample number 3 column of the table below along with the firing temperature FT.

さらに、Ba ・ (Mg(x)Co (1−X))め
・NbH・03で表わされる組成式のXの値が0.25
 (試料1) 、 0.40 (試料2) 、 0.8
0 (試料4) 、 0.95 (試料5)の誘電体磁
器組成物についても、それぞれの組成に応じて焼成温度
FT(1370〜1450℃)が多少異なった他は、前
述した試料3と同様の方法で供試用誘電体共振器を作り
、上記と同様の方法でこれら共振器の各特性を求めた。
Furthermore, the value of X in the composition formula represented by Ba.
(Sample 1), 0.40 (Sample 2), 0.8
The dielectric ceramic compositions of 0 (sample 4) and 0.95 (sample 5) were the same as sample 3 described above, except that the firing temperature FT (1370 to 1450 °C) was slightly different depending on the respective composition. Test dielectric resonators were made using the method described above, and the characteristics of these resonators were determined using the same methods as above.

それぞれの特性の平均値及び上記焼成温度FTを下表の
該光器に示した。
The average value of each characteristic and the above firing temperature FT are shown in the table below.

上記の結果から明らかなように、Ba・ 〔Mg(×)
CO(1−×)〕L/′1′Nb2/+103で表わさ
れる組成式において、Xが0.25〜0.95の範囲に
ある誘電体磁器組成物は、焼成温度FTが1370〜1
450℃であった。さらに、これらの誘電体磁器組成物
を使用した誘電体共振器の比誘電率εは、31.8〜3
4.1であり、無負荷のQは。
As is clear from the above results, Ba・[Mg(×)
In the composition formula represented by CO(1-x)]L/'1'Nb2/+103, a dielectric ceramic composition in which X is in the range of 0.25 to 0.95 has a firing temperature FT of 1370 to 1
The temperature was 450°C. Furthermore, the dielectric constant ε of a dielectric resonator using these dielectric ceramic compositions is 31.8 to 3.
4.1, and the no-load Q is.

10300〜11500であった。It was 10,300 to 11,500.

なお、前掲の測定システムで、上記誘電体共振器の一2
5〜100℃の温度範囲における共振周波数の温度係数
を求めたところ、すべての試料がO±6ppm/’Cの
範囲にあった。
In addition, in the measurement system mentioned above, one of the dielectric resonators 2
When the temperature coefficient of the resonant frequency in the temperature range of 5 to 100°C was determined, all samples were found to be in the range of O±6 ppm/'C.

上記の組成式においてXが0625未満の誘電体磁器組
成物は、誘電体共振器における無負荷のQが10000
未満となり、この発明の前提を満足し得ないため、この
発明の範囲外とした。また。
A dielectric ceramic composition in which X is less than 0625 in the above composition formula has an unloaded Q of 10000 in a dielectric resonator.
Since this result does not satisfy the premise of this invention, it is excluded from the scope of this invention. Also.

Xが0.95を越える誘電体磁器組成物では、焼成温度
FTが1450℃を越え、従来の誘電体磁器組成物に対
比し得る原価低減の効果が得られないため、この発明の
範囲外とした。
A dielectric ceramic composition in which did.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明の誘電体磁器組成物は、従
来のものとはソ′同等の特性が得られた上で、製造過程
の焼成温度FTを1370〜1450℃と低くすること
ができるため、焼成炉等の設備面や、焼成のための熱エ
ネルギ等の点から、従来の誘電体磁器組成物に比較して
安価な誘電体磁器組成物が得られる。具体的には、焼結
のため1600℃以上の焼成温度FTを必要とする従来
の誘電体磁器組成物に比べて、約10%の原価低減が見
込まれる。
As explained above, the dielectric ceramic composition of the present invention can obtain properties equivalent to those of conventional compositions and can lower the firing temperature FT during the manufacturing process to 1370 to 1450°C. A dielectric ceramic composition that is cheaper than conventional dielectric ceramic compositions can be obtained in terms of equipment such as a firing furnace and thermal energy for firing. Specifically, a cost reduction of about 10% is expected compared to conventional dielectric ceramic compositions that require a firing temperature FT of 1600° C. or higher for sintering.

Claims (1)

【特許請求の範囲】  Ba・〔Mg_(_x_)Co_(_1_−_x_)
〕_1_/_3・Nb_2_/_3・O_3で表わされ
る組成式のxが0.25から0.95までの範囲である
誘電体磁器組成物。
[Claims] Ba・[Mg_(_x_)Co_(_1_-_x_)
] A dielectric ceramic composition in which x in the composition formula represented by_1_/_3・Nb_2_/_3・O_3 is in the range of 0.25 to 0.95.
JP60093425A 1985-04-30 1985-04-30 Dielectric porcelain composition Expired - Lifetime JPH0610930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093425A JPH0610930B2 (en) 1985-04-30 1985-04-30 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093425A JPH0610930B2 (en) 1985-04-30 1985-04-30 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS61253709A true JPS61253709A (en) 1986-11-11
JPH0610930B2 JPH0610930B2 (en) 1994-02-09

Family

ID=14081945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093425A Expired - Lifetime JPH0610930B2 (en) 1985-04-30 1985-04-30 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0610930B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948482A (en) * 1982-09-13 1984-03-19 Mitsubishi Chem Ind Ltd Naphthyridine compound
JPS59228308A (en) * 1983-06-10 1984-12-21 富士電気化学株式会社 Microwave dielectric porcelain composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948482A (en) * 1982-09-13 1984-03-19 Mitsubishi Chem Ind Ltd Naphthyridine compound
JPS59228308A (en) * 1983-06-10 1984-12-21 富士電気化学株式会社 Microwave dielectric porcelain composition

Also Published As

Publication number Publication date
JPH0610930B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPS6376206A (en) Alumina ceramic composition
JPS61253709A (en) Dielectric ceramic composition
US5256639A (en) Dielectric ceramic composition
JPS61253710A (en) Dielectric ceramic composition
JPS61224211A (en) Dielectric ceramic composition
EP0625491B1 (en) Dielectric ceramic composition for use in high frequency
US4717694A (en) Dielectric ceramic composition for high frequencies
JPS6048471B2 (en) Zirconia sintered body
US3457174A (en) Ferromagnetic materials and processes for their manufacture
JPS61158612A (en) Dielectric ceramic composition
JPS6056306A (en) Dielectric porcelain composition
JPS61191556A (en) Method of burning dielectric ceramic composition for high frequency wave
JP2977707B2 (en) High frequency dielectric ceramic composition
JPS62252007A (en) Microwave dielectric porcelain compound
JPH0415963B2 (en)
JPH0369560A (en) Microwave dielectric ceramics
JPH05325638A (en) High-frequency dielectric porcelain
JPH0260631B2 (en)
JP3242242B2 (en) Microwave dielectric porcelain composition
JPH01128309A (en) Dielectric ceramic composite
JPS6178007A (en) Dielectric ceramic composition for high frequency
JPS58217465A (en) High frequency dielectric ceramic composition
JP3322739B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH0524904A (en) Dielectric porcelain composition for high frequency
Ichinose et al. Microwave dielectric materials in the system (Sr1− xCax){Li14Nb34) 1− yTiy} O3

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term