JPS61253403A - Inside diameter gauge - Google Patents

Inside diameter gauge

Info

Publication number
JPS61253403A
JPS61253403A JP9555485A JP9555485A JPS61253403A JP S61253403 A JPS61253403 A JP S61253403A JP 9555485 A JP9555485 A JP 9555485A JP 9555485 A JP9555485 A JP 9555485A JP S61253403 A JPS61253403 A JP S61253403A
Authority
JP
Japan
Prior art keywords
measuring
spindle
hole
inner diameter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9555485A
Other languages
Japanese (ja)
Inventor
Shigeo Sasaki
佐々木 茂夫
Masakazu Hayashi
正和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9555485A priority Critical patent/JPS61253403A/en
Publication of JPS61253403A publication Critical patent/JPS61253403A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • G01B5/12Measuring arrangements characterised by the use of mechanical techniques for measuring diameters internal diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure automatically and accurately bore diameter, etc., by installing a self-aligning mechanism and introducing a measuring mechanism into a specimen hole with a receding feeler. CONSTITUTION:A spindle 7 is installed free to move forward and backward inside a cylindrical body 5, and measuring mechanism set to forward and backward motions of a stylus 10 in the direction perpendicular direction to the axis of the spindle 7, following the movement of this spindle 7, displacing mechanism allowing the stylus 10 to forward and backward in the direction perpendicular to said axis, advancing and retarding mechanism allowing the measuring mechanism to advance and recede to and from an inside diameter measuring position of the specimen hole and self- aligning mechanism are installed. When the measuring mechanism is advanced and receded by the advancing and receding mechanism, the measuring mechanism is supported in alignment with the axis line peculiar to this apparatus. Further, when the inside diameter of the specimen hole is measured, the supporting effect of the measuring mechanism is released and the measuring mechanism is aligned with the axis line of the specimen hole, following contact of the stylus 10 with the inside surface of the specimen hole. Thus, the bore diameter can be measured automatically and accurately.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、被測定物の孔径などを測定する内径測定装
置に係り、特に自動調心機構を取り付けた内径測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an inner diameter measuring device for measuring the hole diameter of a workpiece, and more particularly to an inner diameter measuring device equipped with a self-aligning mechanism.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、被測定物の孔径などを測定する内径測定装置
として、筒状の本体の一端にダイヤルゲージを取り付け
るとともに1本体内にこのダイヤルゲージの測定軸を押
動するスピンドルを摺動自在に内装し、−古本体の他端
に、スピンドルの動きに追従してこのスピンドルの軸と
直交する方向に進退する測定子を設けたものがある。
Conventionally, as an internal diameter measuring device for measuring the hole diameter of a workpiece, a dial gauge is attached to one end of a cylindrical body, and a spindle that pushes the measuring shaft of the dial gauge is slidably built into the body. However, there is one in which a measuring element is provided at the other end of the old main body to follow the movement of the spindle and move back and forth in a direction perpendicular to the axis of the spindle.

通常この内径測定装置は、測定子を常時その突出力向に
付勢するように、本体とスピンドルとの間にスプリング
が介装されているが、このスプリングの付勢力は、外部
からは調整不可能なものが多い。たとえば被測定物の材
質の関係がら測定圧を変更したい場合には、スプリング
を取換えるほかはない。そのため、このスプリングの付
勢を変更する一手段として、特開昭57−179702
号公報には、調整機構によりスプリングの設定長を任意
に変えられるように構成したものが示されているが、測
定子がこのスプリングの付勢により常時突出しているた
め、測定子を被測定物の孔に挿入する際、手動機構によ
りこれを後退するように操作しなければならなかった。
Normally, this inner diameter measuring device has a spring interposed between the main body and the spindle so as to always bias the probe in the direction of its protrusion, but the biasing force of this spring cannot be adjusted from the outside. There are many possibilities. For example, if you want to change the measurement pressure due to the material of the object to be measured, you have no choice but to replace the spring. Therefore, as a means of changing the bias of this spring, Japanese Patent Laid-Open No. 57-179702
The publication discloses a configuration in which the set length of the spring can be changed arbitrarily using an adjustment mechanism, but since the probe is always protruding due to the bias of this spring, the probe cannot be moved from the object to be measured. When inserting it into the hole, it had to be retracted using a manual mechanism.

また特開昭59−85901号公報には、スプリングの
付勢を逆向きにして、常時測定子が後退位置にあるよう
に構成したものが示されているが、この測定装置では、
孔に挿入したのち、手動機構により測定子を突出させな
ければならないので、安定した測定圧を維持しがたい。
Furthermore, Japanese Patent Application Laid-Open No. 59-85901 discloses a device in which the spring is biased in the opposite direction so that the probe is always in the retracted position.
After inserting the probe into the hole, the probe must be pushed out using a manual mechanism, making it difficult to maintain stable measurement pressure.

また特公昭58−32641号公報の開示技術では、ば
ねによって常時可動フィラーを突出するように付勢して
いるため、一連の熟練した手動操作が必要であって、自
動化することが困難である。
Further, in the technique disclosed in Japanese Patent Publication No. 58-32641, since the movable filler is constantly urged to protrude by a spring, a series of skilled manual operations are required, and automation is difficult.

またダイヤルゲージにかわって電気的出力が得られる変
位計を組み込んで、誤読、誤記録などに対する信頼性の
向上をはかったものもあるが、やはり手動で操作するも
のであるため、孔への自動挿入することができず、また
測定時、自動調心させることができないため、自動測定
が不可能であった・ 一方空気マイクロや電気マイクロを用いて、単一の孔径
を自動測定する量産向けの内径測定装置もあるが、その
測定範囲は、高精度測定になるはど狭くなり、また専用
化して高価になる番ヨ力1.孔に対する空気マイクロや
電気マイクロの心合せがむつかしく、汎用性が期待でき
ない。
There are also displacement meters that provide electrical output in place of dial gauges to improve reliability against misreadings and recordings, but they are still manually operated and cannot be operated automatically. Automatic measurement was impossible because it could not be inserted into the hole and it could not be self-aligned during measurement. There are internal diameter measuring devices, but their measuring range becomes narrower as they become more precise, and they also require more specialized power and are more expensive.1. It is difficult to align the air micros and electric micros with the holes, so versatility cannot be expected.

要するに従来の内径測定装置は、外部動力により測定子
の突出および後退を自動制御することができず、また測
定圧の変更も外部から調整することが困難であるなど、
自動測定装置として使用できなかった。一方、空気マイ
クロや電気マイクロを用いて直接高精度に自動測定する
ものは、測定範囲が狭く、特定の内径寸法専用として用
いることはできても、測定範囲を広く選ぶことのできる
汎用性の高い自動測定機能がないため、高価な専用機に
たよらざるをえなかった。
In short, conventional inner diameter measuring devices cannot automatically control the protrusion and retraction of the probe using external power, and it is difficult to change the measurement pressure from the outside.
It could not be used as an automatic measuring device. On the other hand, methods that directly and automatically measure using air microscopy or electric microscopy have a narrow measurement range, and although they can be used exclusively for specific inner diameter dimensions, they are highly versatile and can be used over a wide range of measurement ranges. Since there is no automatic measurement function, they had no choice but to rely on expensive specialized equipment.

〔発明の目的〕[Purpose of the invention]

この発明は、被測定物の孔径などを自動的にかつ高精度
に測定しうるように内径測定装置を構成することにある
SUMMARY OF THE INVENTION The present invention is directed to configuring an inner diameter measuring device so as to be able to automatically and highly accurately measure the pore diameter of an object to be measured.

〔発明の概要〕[Summary of the invention]

筒状体内にスピンドルがその軸方向に進退自在に内装さ
れ、このスピンドルの動きに追従して測定子が上記スピ
ンドルの軸に対して直交する方向に進退するようにされ
た測定機構と、上記スピンドルを動かして上記測定子を
このスピンドルの軸と直交する方向に進退させる移動機
構と、上記測定機構を測定孔の内径測定位置に向って進
退させる進退機構とを有する内径測定装置に自動調心機
構を設けて、測定機構を上記進退機構により進退させる
とき、この測定機構を装置固有の軸線上に調心して支持
し、測定孔の内径を測定するとき、上記測定機構の支持
を解除して、測定子の測定孔内面への接触にともなって
この測定機構を測定孔の軸線上に調心させるようにする
ことにより、孔径を自動的にかつ高精度に測定できるよ
うにした。
A measuring mechanism in which a spindle is housed in a cylindrical body so that it can move forward and backward in the axial direction thereof, and a measuring element follows the movement of the spindle and moves forward and backward in a direction perpendicular to the axis of the spindle, and the spindle. A self-aligning mechanism is provided in the inner diameter measuring device, which has a moving mechanism that moves the measuring head in a direction perpendicular to the axis of the spindle, and a moving mechanism that moves the measuring mechanism back and forth toward the inner diameter measuring position of the measuring hole. When the measuring mechanism is moved forward and backward by the advance/retreat mechanism, the measuring mechanism is aligned and supported on the axis specific to the device, and when the inner diameter of the measuring hole is measured, the support of the measuring mechanism is released and the measurement is performed. By aligning this measuring mechanism on the axis of the measuring hole as the child contacts the inner surface of the measuring hole, the hole diameter can be measured automatically and with high precision.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明を実施例に基づいて説明
する。
Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

第1図および第2図にこの発明の一実施例である内径測
定装置を正面図および側面図で示し、第3図ないし第8
図にその要部を示す、この内径測定装置は、測定機構と
、この測定機構を構成するスピンドルや測定子などを動
かす移動機構と、測定機構全体を動かす進退機構と、自
動調心機構と、上記移動機構および進退機構の動作を制
御する制御部とから構成されている。
FIGS. 1 and 2 show a front and side view of an inner diameter measuring device which is an embodiment of the present invention, and FIGS.
This inner diameter measuring device, the main parts of which are shown in the figure, consists of a measuring mechanism, a moving mechanism that moves the spindle, probe, etc. that make up this measuring mechanism, an advancing/retracting mechanism that moves the entire measuring mechanism, and a self-aligning mechanism. It is comprised of a control section that controls the operations of the moving mechanism and the advancing/retracting mechanism.

以下これら各構成について述べる。Each of these configurations will be described below.

A、測定機構:□ 測定機構は、第1筒体ωと、この第1筒体■の一端に脱
着自在かつ同軸に螺合する第2筒体■と、第1筒体■の
他端にスペーサ■を挟んで同軸に螺合する第3筒体に)
とからなる筒状体■を有し、この筒状体■内に装着され
た一対の軸受(6a)、 (6b)により、スピンドル
■が筒状体■と同軸かつその軸方向に進退自在に支持さ
れている。このスピンドル■に隣接して第3筒体に)内
には、磁気スケールからなる測長ユニット■がブツシュ
■を介して装着され、その先端の測定子(10)がスピ
ンドル■の一端に当接するようになっている。なおこの
測長ユニット■からは、第3図に示すように、図示しな
い表示装置に接続するケーブル(11)が第3筒体に)
を貫通して導出され、表示装置においてその出力が表示
または記録されるようになっている。
A. Measuring mechanism: □ The measuring mechanism consists of a first cylindrical body ω, a second cylindrical body ■ which is removably and coaxially screwed into one end of the first cylindrical body ■, and a second cylindrical body ■ which is screwed coaxially with the first cylindrical body ω, and the other end of the first cylindrical body ■. (to the third cylinder that is coaxially screwed together with a spacer ■ in between)
A pair of bearings (6a) and (6b) installed in the cylindrical body ■ allow the spindle ■ to move coaxially with the cylindrical body ■ and move back and forth in its axial direction. Supported. Adjacent to this spindle (in the third cylinder), a length measuring unit (2) consisting of a magnetic scale is installed via a bushing (2), and its tip (10) comes into contact with one end of the spindle (2). It looks like this. From this length measuring unit ■, as shown in Figure 3, a cable (11) connecting to a display device (not shown) is connected to the third cylinder).
The output is displayed or recorded on a display device.

また上記第2筒体■内には、上記スピンドル■の他端面
と小径のボール(12)を介して点接触する作動体(1
3)が摺動自在に挿入されている。この作動体(13)
は、上記スピンドル■から離れた端面側にテーパ面(1
4)が形成されている。また、この第2筒体■の先端部
外側には、第4図に示すように。
Also, inside the second cylinder (2), an actuating body (1) is in point contact with the other end surface of the spindle (1) via a small diameter ball (12).
3) is slidably inserted. This operating body (13)
has a tapered surface (1
4) is formed. Also, on the outside of the tip of the second cylinder (2), as shown in FIG.

その外側面を120@に等配するラジアル方向に3個の
筒体(15)が突設され、これら各筒体(15)内には
Three cylindrical bodies (15) are protruded in the radial direction with their outer surfaces equally spaced at 120@, and inside each of these cylindrical bodies (15).

段付き柱状の測定子(16)がその軸方向に摺動自在に
挿入されている。上記各測定子(16)は、その径大側
の端面が上記作動体(13)のテーパ面(14)と線接
触するテーパ面に形成され、またその径小部は、各筒体
(15)の先端部に螺合する袋ナツト(17)の端面を
貫通し、その中間部のまわりに装着された圧縮コイルば
ね(18)によって、常時上記径大部のテーパ面が作動
体(13)のテーパ面(14)に圧接するようになって
いる。また上記袋ナツト(17)から突出している径小
部の先端部には、筒状体■の軸線と同方向に延在して、
被測定物(W)の孔(H)の内側面に当接するアンビル
(19)が設けられている。このアンビル(19)を孔
(H)の内側面に正しく当接させるため、各測定子(1
6)の側面には、その測定子(16)の軸に沿って、第
2筒体■の端面側から挿入されたキイ(20)と摺動自
在に嵌合するキイ溝(21)が設けられている。
A stepped columnar measuring element (16) is slidably inserted in its axial direction. Each measuring element (16) has a large-diameter end face formed into a tapered surface that makes line contact with the tapered surface (14) of the actuating body (13), and a small-diameter portion of each of the cylindrical bodies (15). ) The tapered surface of the large diameter part is always connected to the actuating body (13) by a compression coil spring (18) that passes through the end face of the cap nut (17) that is screwed into the tip of the cap nut (17) and is attached around the middle part of the cap nut (17). It comes into pressure contact with the tapered surface (14) of. In addition, at the tip of the small diameter portion protruding from the cap nut (17), extending in the same direction as the axis of the cylindrical body (2),
An anvil (19) is provided that comes into contact with the inner surface of the hole (H) of the object to be measured (W). In order to properly abut this anvil (19) on the inner surface of the hole (H), each measuring element (1
A key groove (21) is provided on the side surface of the probe (6) along the axis of the probe (16) to slidably fit with a key (20) inserted from the end face side of the second cylinder (2). It is being

B。移動機構:□ 移動機構は、第5図に示すように、前記第3筒体(2)
の一端部左右両側に対向する如くねじどめされた一対の
接手板(30)に取り付けられて、筒状体0と平行に延
在する一対のエアシリンダ(31)を備える。このエア
シリンダ(31)の各ロッド(32)の先端部は、前記
測定子(16)方向に位置し、その各先端部には、それ
ぞれ接手(33)を介して第1筒体■の外側面に摺合動
性に嵌合するリング状の外部係合部材(34)が連結さ
れている。この外部係合部材(34)の位置する第1筒
体■の側面には、この筒体■の軸方向に細長い長孔(3
5)が左右対称に貫通形成され、またこの第1筒体■内
には、上記外部係合部材(34)に対応して、ねじどめ
、圧入、接着などによりスピンドル■に一体に取り付け
られた内部係合部材(36)が設けられている。この内
部係合部材(36)と上記外部係合部材(34)とは、
第6図に示すように、上記各長孔(35)を貫通する一
対のピン(37)で連結され、各エアシリンダ(31)
のロッド(32)の進退勤をスピンドル■に伝達するよ
うになっている。
B. Moving mechanism: □ The moving mechanism is, as shown in FIG.
It is provided with a pair of air cylinders (31) extending parallel to the cylindrical body 0 and attached to a pair of joint plates (30) which are screwed so as to face each other on both left and right ends of the cylinder. The tip of each rod (32) of this air cylinder (31) is located in the direction of the probe (16), and the tip of each rod (32) is connected to the outside of the first cylinder (2) via a joint (33). A ring-shaped external engagement member (34) that is slidably fitted to the side surface is connected. The side surface of the first cylindrical body (2) where this external engagement member (34) is located has a long and narrow hole (3) extending in the axial direction of this cylindrical body (2).
5) are formed symmetrically through the first cylindrical body (3), and in correspondence with the external engaging member (34), the external engaging member (34) is integrally attached to the spindle (2) by screwing, press-fitting, gluing, etc. An internal engagement member (36) is provided. This internal engagement member (36) and the external engagement member (34) are
As shown in FIG. 6, each air cylinder (31) is connected by a pair of pins (37) passing through each long hole (35).
The movement of the rod (32) is transmitted to the spindle (■).

また、上記第1筒体■の外側面には、外部係合部材(3
4)に隣接して、第7図に示すように、各エアシリンダ
(31)のロッド(32)の後退位置を規制するリング
状のストッパ(38)が取付位置調整可能にねじどめさ
れている。
Further, an external engaging member (3
4), a ring-shaped stopper (38) for regulating the retreating position of the rod (32) of each air cylinder (31) is screwed so that its mounting position can be adjusted, as shown in FIG. There is.

C0自動調心機構:□ 自動調心機構は、前記第1筒体中外側に設けられた第1
調心部と、前記第3筒体に)上に設けられた第2調心部
とからなる。
C0 self-aligning mechanism: □ The self-aligning mechanism is a first cylinder provided on the inside and outside of the first cylinder.
It consists of a centering part and a second centering part provided on the third cylindrical body.

上記第1Il心部は、上記第1筒体■の外側面に一体に
設けられてエアシリンダ(31)のロッド(32)の後
退方向に径大なテーパ部(40)と、第1筒体■の第2
筒体■側端部およびこれに隣接する第2筒体部分を自在
に挿通して、上記テーパ部(40)のテーパ面と密接す
るテーパ側面をもつガイド孔(41)が設けられた第1
ブラケット(調心座) (42)とから構成されている
The first Il core portion includes a tapered portion (40) that is integrally provided on the outer surface of the first cylindrical body (2) and has a large diameter in the backward direction of the rod (32) of the air cylinder (31); ■Second
A first guide hole (41) is provided with a guide hole (41) having a tapered side surface that is in close contact with the tapered surface of the tapered part (40), through which the cylinder body side end part (1) and the second cylinder part adjacent thereto are freely inserted.
It consists of a bracket (alignment seat) (42).

また第2調心部は、第3筒体に)上の一対の接手板(3
0)間に位置して筒状体■の軸線と同方向に立設された
一対のテーパ状突部(43)が設けられた第2ブラケッ
ト(調心座)(44)と、第8図に示すように、一対の
接手板(30)の先端部にねじどめされて。
In addition, the second alignment part is connected to a pair of joint plates (3) on the third cylinder body).
0) A second bracket (alignment seat) (44) provided with a pair of tapered protrusions (43) located between them and erected in the same direction as the axis of the cylindrical body (2); As shown in the figure, it is screwed onto the tips of a pair of joint plates (30).

上記一対のテーパ状突部(43)の径大部と嵌合する一
対の貫通孔(45)が設けられたガイド板(46)とか
ら構成されている。
The guide plate (46) is provided with a pair of through holes (45) that fit into the large diameter portions of the pair of tapered protrusions (43).

上記第1、第2調心部の各ブラケット(42) 、 (
44)は、前記測定機構および移動機構の背後に配設さ
れた第1支持板(47)に取り付けられ、特に第2ブラ
ケット(44)は、第1ブラケット(4z)のガイド孔
(41)にテーパ部(40)のテーパ面を密接させたと
き。
Each bracket (42) of the first and second alignment parts, (
44) is attached to a first support plate (47) arranged behind the measuring mechanism and moving mechanism, and in particular, the second bracket (44) is attached to the guide hole (41) of the first bracket (4z). When the tapered surfaces of the tapered portion (40) are brought into close contact.

一対のテーパ状突部(43)の径大部がガイド板(46
)の各貫通孔(45)に嵌合し、かつこの第2ブラケッ
ト(44)の基板面とガイド板(46)との間に、1〜
2閣の間隙を残すように取り付けられている。
The large diameter portion of the pair of tapered protrusions (43) is connected to the guide plate (46).
), and between the substrate surface of this second bracket (44) and the guide plate (46),
It was installed so as to leave a gap between the two temples.

また第1ブラケット(42)は、測定機構を鉛直方向に
設置したとき、その自重によりこの測定機構の下部を自
動調心し、かつこれを支える。またこのとき、第2ブラ
ケット(44)は、その一対のテーパ状突部(43)と
ガイド板(46)の貫通孔(45)との嵌合により、上
記測定機構の上部を自動調心し、かつ筒状体■の軸まわ
りの回転を拘束するようになっている。
Further, when the measuring mechanism is installed in the vertical direction, the first bracket (42) automatically aligns and supports the lower part of the measuring mechanism by its own weight. At this time, the second bracket (44) automatically aligns the upper part of the measuring mechanism by fitting its pair of tapered projections (43) into the through holes (45) of the guide plate (46). , and the rotation around the axis of the cylindrical body (2) is restrained.

D、進退機構:□ 進退機構は、前記測定機構の筒状体■と平行かつ前記移
動機構のエアシリンダ(31)とロッド(50)の向き
を逆にして、接手(51)により基体(52)に取り付
けられたエアシリンダ(53)と、このエアシリンダ(
53)の軸に沿って延在する第2支持板(54)とを有
する。この第2支持板(54)は、エアシリンダ(53
)のロッド(50)に接手(55)、 (56)を介し
て連結され、このロッド(50)の進退勤により、図示
しないリニアガイドに沿って上記ロッド(50)と同方
向に移動するようになっている。
D. Advance/retreat mechanism: □ The advance/retract mechanism is parallel to the cylindrical body (■) of the measuring mechanism, and the air cylinder (31) and rod (50) of the moving mechanism are reversed in direction, and the base body (52) is moved by the joint (51). ) and the air cylinder (53) attached to this air cylinder (
and a second support plate (54) extending along the axis of the second support plate (53). This second support plate (54) is connected to the air cylinder (53).
) is connected to the rod (50) of the rod (50) via joints (55) and (56), and as the rod (50) moves forward and backward, it moves in the same direction as the rod (50) along a linear guide (not shown). It has become.

上記第2支持板(54)は、前記第1支持板(47)を
介して、測定機構、移動機構および自動調心機構を支持
するものであって、その板面上に突出した一対の位置ぎ
めピン(57a) 、 (57b)と第1支持板(47
)に設けられた一対の位置ぎめ孔とにより、この第1支
持板(47)を位置ぎめし、かつ3個のつまみねじ(5
8a)〜(58c)により、これを脱着自在に固定する
ようになっている。かくして第1支持板(47)がこの
第2支持板(54)を正しく位置ぎめ固定されたとき、
自動調心機構に支持された測定機構は、この内径測定装
置固有の軸線上に正しく位置するようになる。
The second support plate (54) supports the measuring mechanism, the movement mechanism, and the self-aligning mechanism via the first support plate (47), and has a pair of protruding positions on the plate surface. The lock pins (57a), (57b) and the first support plate (47
), the first support plate (47) is positioned by a pair of positioning holes provided in the
8a) to (58c) are configured to removably fix this. Thus, when the first support plate (47) and this second support plate (54) are correctly positioned and fixed,
The measuring mechanism supported by the self-aligning mechanism is positioned correctly on the axis specific to this internal diameter measuring device.

E、制御部:□ 前記進退機構のエアシリンダ(53)のシリンダ内に、
ロッド(50)とともに移動するロッド位置検出用の磁
石が封入され、かつこのシリンダの外側に、上記磁石と
協同してロッド(50)の前進停止位置を制御するリー
ドスイッチ(60)、および前記測定機構の測定子(1
6)が被測定物(W)の孔(H)内の測定位置(孔の深
さ)まで挿入されたことを検知するり一ドスイッチ(6
1)が、それぞれバンド(62)、 (63)により取
り付けられ、かつリードスイッチ(61)は取付位置可
変となっている。また上記エアシリンダ(53)の先端
部には、このエアシリンダ(53)のロッド(50)に
取付位置可変に取り付けられたストッパ(64)と対向
して、ロッド(50)の後退停止を検知するたとえば磁
気センサなどから近接センサ(65)が取付金具(66
)により取り付けられている。
E. Control unit: □ Inside the cylinder of the air cylinder (53) of the advance/retreat mechanism,
A magnet for detecting the rod position that moves together with the rod (50) is enclosed, and a reed switch (60) that cooperates with the magnet to control the forward stop position of the rod (50), and a reed switch (60) that controls the forward stop position of the rod (50), and a reed switch (60) that cooperates with the magnet to detect the rod position. Mechanism probe (1
6) is inserted into the hole (H) of the object to be measured (W) up to the measurement position (depth of the hole).
1) are attached by bands (62) and (63), respectively, and the reed switch (61) has a variable attachment position. Further, the tip of the air cylinder (53) faces a stopper (64) that is attached to the rod (50) of the air cylinder (53) in a variable mounting position to detect when the rod (50) has stopped moving backward. For example, the proximity sensor (65) is attached to the mounting bracket (66) from a magnetic sensor, etc.
) is attached.

図示しない制御装置は、上記リードスイッチ(60)、
 (61)および近接センサ(65)の出力に基づいて
、前記移動機構および進退機構の動作および測長ユニッ
ト■から表示装置への出力の取り込みなどを制御する。
The control device (not shown) includes the reed switch (60),
(61) and the outputs of the proximity sensor (65), the operation of the moving mechanism and the forward/backward mechanism, the input of the output from the length measuring unit (2) to the display device, etc. are controlled.

つぎにこの内径測定装置の動作について述べる。Next, the operation of this inner diameter measuring device will be described.

まず移動機構の一対のエアシリンダ(31)を後退方向
に作動させると、これらエアシリンダ(31)のロッド
(32)の動きは、接手(33)、外部係合部材(34
)、ピン(37)、内部係合部材(36)を介してスピ
ンドル■に伝達され、?1!I長ユニット■の測定子(
10)を後退させるとともに、圧縮コイルばね(18)
の付勢により、作動体(13)を上記スピンドル(17
)の動きに追従させながら測定子(16)を第2筒体■
の軸線に向って後退させる。
First, when the pair of air cylinders (31) of the moving mechanism are operated in the backward direction, the movement of the rods (32) of these air cylinders (31) is caused by the movement of the joint (33) and the external engagement member (34).
), the pin (37), and the internal engagement member (36) are transmitted to the spindle ■, ? 1! Measuring head of I-length unit (
10) and the compression coil spring (18).
The actuating body (13) is urged by the spindle (17).
) while following the movement of the probe (16) into the second cylinder ■
retreat toward the axis of

一方、進退機構のエアシリンダ(53)を前進方向に作
動させると、このエアシリンダ(53)のロッド(50
)の動きは、接手(55)、 (55)、第2支持板(
54)。
On the other hand, when the air cylinder (53) of the advancing/retracting mechanism is operated in the forward direction, the rod (50) of this air cylinder (53)
), the movement of the joints (55), (55), and the second support plate (
54).

第1支持板(47)を介して自動調心機構の第1、第2
ブラケット(42)、 (44)に伝達され、筒状体■
の下部に設゛けられた第1調心部で測定機構を支持しな
がら、この第1調心部および筒状体■の上方に設けられ
た第2調心部で測定機構を自動調心する。
The first and second self-aligning mechanisms are connected via the first support plate (47).
It is transmitted to the brackets (42) and (44), and the cylindrical body ■
While the measuring mechanism is supported by the first aligning part provided at the bottom of the body, the measuring mechanism is self-aligned by the first aligning part and the second aligning part provided above the cylindrical body. do.

エアシリンダ(53)は、その後その前進端で停止し。The air cylinder (53) then stops at its forward end.

その前進停止は、その外側に取り付けられたリードスイ
ッチ(62)で検知される。このとき1m定機構は装置
固有の軸線上に調心支持された状態にある。
The stoppage of forward movement is detected by a reed switch (62) attached to the outside. At this time, the 1 m fixing mechanism is in a state where it is aligned and supported on the axis line unique to the device.

この状態からエアシリンダ(53)を後退方向に作動さ
せると、このエアシリンダ(53)のロッド(50)の
動きにしたがって第2支持板(54)およびこの第2支
持板(54)に取り付けられた第1支持板(47)が移
動し、上記第1支持板(47)に取り付けられた第1、
第2ブラケット(42)、 (44)により調心支持さ
れた測定機構を図示しない位置ぎめ機構により位置ぎめ
された被測定物(W)の孔(H)に向って前進させる。
When the air cylinder (53) is operated in the backward direction from this state, the rod (50) of this air cylinder (53) moves and is attached to the second support plate (54) and this second support plate (54). The first support plate (47) is moved, and the first support plate (47) attached to the first support plate (47) is moved.
The measuring mechanism supported by the second brackets (42) and (44) is advanced toward the hole (H) of the object to be measured (W) positioned by a positioning mechanism (not shown).

かくしてこの測定機構の先端部に設けられた測定子(1
6)が孔(H)内の測定位置に達すると、これを検知す
るように取付位置調整されたリードスイッチ(61)が
作動して、制御装置に接点信号が送出される。制御装置
はこの接点信号に基づいて移動機構のエアシリンダ(3
1)に前進動作指令を発し、それによりエアシリンダ(
31)のロッド(32)が前進する。
Thus, the measuring head (1
6) reaches the measurement position in the hole (H), the reed switch (61) whose mounting position is adjusted to detect this is activated and a contact signal is sent to the control device. The control device controls the air cylinder (3) of the moving mechanism based on this contact signal.
1) issues a forward movement command to the air cylinder (
The rod (32) of 31) moves forward.

このエアシリンダ(31)のロッド(32)の前進は、
接手(33)、外部係合部材(34)、ピン(37)、
内部係合部材(36)を介してスピンドル■に伝達され
、作動体(13)を介して3個の測定子(16)をそれ
ぞれ孔(H)の内側面に向って突出させる。一方、測長
ユニット■の測定子(10)は、上記スピンドル■の動
きに追従して移動する。
The advancement of the rod (32) of this air cylinder (31) is
Joint (33), external engagement member (34), pin (37),
It is transmitted to the spindle (2) via the internal engagement member (36), and causes the three probes (16) to respectively protrude toward the inner surface of the hole (H) via the operating body (13). On the other hand, the measuring stylus (10) of the length measuring unit (2) moves following the movement of the spindle (2).

上記3個の測定子(16)の突出により、各測定子(1
6)の先端に設けられたアンビル(19)が孔(H)の
内側面に当接すると、この内側面との間に生ずる摩擦力
によって測定機構はその位置に停止する。
Due to the protrusion of the three measuring points (16), each measuring point (1
When the anvil (19) provided at the tip of the anvil (19) comes into contact with the inner surface of the hole (H), the measuring mechanism stops at that position due to the frictional force generated between the anvil (19) and the inner surface.

上記のように測定機構が停止しても、エアシリンダ(5
3)の後退は続けられ、上記停止した測定機構の第1筒
体■に形成された第1調心部のテーパ部(40)と第1
ブラケット(42)との間に間隙を生ずる。それと同時
に、第2調心部の第2ブラケット(44)に設けられた
テーパ状突部(43)とガイド板(46)との嵌合もと
かれる。かくしてエアシリンダ(53)のロッド(50
)に取り付けられたストッパ(64)がシリンダの端部
に当接して停止するとき、測定機構は、自動調心機構か
ら解放されて、各測定子(16)に設けられたアンビル
(19)により、孔(H)の内側面を基準にしてこの孔
(H)の軸線上に調心支持される。
Even if the measuring mechanism stops as described above, the air cylinder (5
3) continues to retreat, and the tapered part (40) of the first alignment part formed in the first cylindrical body (3) of the stopped measuring mechanism and the first
A gap is created between the bracket (42) and the bracket (42). At the same time, the fit between the tapered protrusion (43) provided on the second bracket (44) of the second alignment part and the guide plate (46) is also released. Thus, the rod (50) of the air cylinder (53)
) comes into contact with the end of the cylinder and stops, the measuring mechanism is released from the self-aligning mechanism and is moved by the anvil (19) provided on each measuring point (16). , are aligned and supported on the axis of the hole (H) with reference to the inner surface of the hole (H).

上記のようにエアシリンダ(53)のロッド(50)に
取り付けられたストッパ(64)がシリンダの端部に当
接すると、近接センサ(65)がこのストッパ(64)
の接近を検知し、このときこの近接センサ(65)から
送出される出力信号に基づいて、制御装置は、測長ユニ
ット■の出力をラッチし、これを表示装置に表示し、さ
らには記録装置に記録させることができる。
When the stopper (64) attached to the rod (50) of the air cylinder (53) comes into contact with the end of the cylinder as described above, the proximity sensor (65) detects the stopper (64).
Detects the approach of the proximity sensor (65), and based on the output signal sent from the proximity sensor (65), the control device latches the output of the length measuring unit (■), displays it on the display device, and further displays the output of the recording device. can be recorded.

上記孔(H)の内径測定が終了すると、エアシリンダ(
31)を後退方向に作動させるとともに、エアシリンダ
(53)を前進方向に作動させる。このエアシリンダ(
31)の作動により測定子(16)は、スピンドル■の
移動に追従して圧縮コイルばね(18)の付勢により後
退し、孔(H)内側面との接触が解除される。この孔(
H)内側面との接触が解除された測定機構゛は、上記エ
アシリンダ(53)の作動により移動する第1ブラケッ
ト(42)に支持されながら孔(H)から引き上げられ
、エアシリンダ(53)がその前進端で停止し、リード
スイッチ(62)が作動するとき、測定機構は第1、第
2調心部で自動調心された状態で停止する。
When the measurement of the inner diameter of the hole (H) is completed, the air cylinder (
31) in the backward direction, and the air cylinder (53) in the forward direction. This air cylinder (
31) causes the probe (16) to follow the movement of the spindle (2) and retreat due to the bias of the compression coil spring (18), thereby releasing contact with the inner surface of the hole (H). This hole (
H) The measuring mechanism, which has been released from contact with the inner surface, is pulled up from the hole (H) while being supported by the first bracket (42), which is moved by the operation of the air cylinder (53), and is removed from the air cylinder (53). When the measuring mechanism stops at its forward end and the reed switch (62) is actuated, the measuring mechanism stops in a self-centered state at the first and second centering portions.

上記のように内径測定装置を構成するとつぎのような効
果がある。
Configuring the inner diameter measuring device as described above has the following effects.

(イ)被測定物(W)の孔(H)の内径測定に際し。(a) When measuring the inner diameter of the hole (H) of the object to be measured (W).

この内径測定装置は、自動調心機構により調心支持され
た測定機構の軸線が位置ぎめ機構により位置ぎめされた
被測定物(W)の孔(H)の軸線と一致するように位置
ぎめされるが、測定子(16)を孔(H)内に挿入する
とき、測定機構の軸線に向って後退させた状態で挿入す
るので、孔(H)に対して測定機構が偏心していても容
易に自動挿入することができる。すなわち、従来のエア
マイクロや電気マイクロなどを用いた高精度の測定装置
は、孔の内側面との間隙が数10〜100μs程度であ
るため、高精度の位置ぎめが必要であるが、この内径測
定装置では、十分大きなストロークをもつ測定子(16
)を使用できるので、孔(H)に対して測定機構が偏心
していても自動挿入が可能であり、したがって簡単な位
置ぎめ機構でも孔(H)の内径を自動測定することがで
きる。
This inner diameter measuring device is positioned so that the axis of the measuring mechanism aligned and supported by the self-aligning mechanism coincides with the axis of the hole (H) of the object to be measured (W) positioned by the positioning mechanism. However, when inserting the probe (16) into the hole (H), it is inserted in a backward position toward the axis of the measuring mechanism, so even if the measuring mechanism is eccentric with respect to the hole (H), it can easily be inserted. can be automatically inserted into. In other words, with conventional high-precision measuring devices using air microscopy, electric micros, etc., the gap between the inner surface of the hole and the hole is approximately several tens to 100 μs, so high-precision positioning is required. The measuring device uses a measuring tip (16 mm) with a sufficiently large stroke.
), automatic insertion is possible even if the measuring mechanism is eccentric with respect to the hole (H), and therefore the inner diameter of the hole (H) can be automatically measured even with a simple positioning mechanism.

(ロ)測定子(16)が孔(H)内の測定位置に達した
ときに、移動機構が作動して測定子(16)を孔(H)
の内側面に当接させるとともに、自動調心機構の拘束を
解除して、測定機構の軸線が自動的に孔(H)の軸線と
一致するようにしたので、安定した理想的な測定をおこ
なうことができる。
(b) When the probe (16) reaches the measurement position in the hole (H), the moving mechanism operates to move the probe (16) into the hole (H).
At the same time, the self-aligning mechanism is released and the axis of the measuring mechanism automatically aligns with the axis of the hole (H), allowing stable and ideal measurements. be able to.

(ハ)高精度測定をおこなう場合、被測定物(W)の材
質によって測定圧を適宜変更する必要があるが、この内
径測定装置は、エアシリンダ(31)の空気圧で測定子
(16)を孔(H)の内側面に当接させるので、その空
気圧を圧力調整弁で変えることにより測定圧を任意かつ
容易に調整することができ。
(c) When performing high-precision measurement, it is necessary to change the measurement pressure appropriately depending on the material of the object to be measured (W), but this inner diameter measuring device uses the air pressure of the air cylinder (31) to move the probe (16). Since it is brought into contact with the inner surface of the hole (H), the measured pressure can be arbitrarily and easily adjusted by changing the air pressure with a pressure regulating valve.

従来のスプリングによる測定圧調整機構をもつ内径測定
装置にくらべて、被測定物(W)の材質に合せて容易に
高精度の測定をおこなうことができる。
Compared to the conventional inner diameter measuring device having a measuring pressure adjustment mechanism using a spring, it is possible to easily perform highly accurate measurement according to the material of the object (W) to be measured.

(ニ)測定機構のハウジングを構成する筒状体■には、
移動機構のピン(37)が貫通する長孔(35)がある
が、この長孔(35)は、筒状体■の外側から外部係合
部材(34)により遮蔽され、測定機構を密閉構造にし
ているので、筒状体■内への塵埃の侵入を防止し、安定
した測定をおこなうことができる。
(d) The cylindrical body ■ that constitutes the housing of the measuring mechanism is
There is a long hole (35) through which the pin (37) of the moving mechanism passes, but this long hole (35) is shielded from the outside of the cylindrical body (3) by an external engagement member (34), making the measuring mechanism a sealed structure. This prevents dust from entering the cylindrical body (2), allowing stable measurements to be made.

(ホ)m定子(16)を支持する第2筒体■を脱着自在
、すなおち交換可能に構成するとともに、測定機構全体
を支持する第1支持板(47)を進退機構に対して脱着
自在かつ容易に位置ぎめできるように構成したので、複
数型路の筒体■または測定機構を用意して、そのなかか
ら被測定物(W)の孔(H)内径に見合った測定範囲の
ものを選択することにより、広範囲の測定をおこなうこ
とができる。
(e) The second cylindrical body (2) that supports the m constant (16) is configured to be detachable or replaceable, and the first support plate (47) that supports the entire measuring mechanism is detachable from the advancing/retracting mechanism. Moreover, since it is configured so that it can be easily positioned, prepare a cylindrical body with multiple types or a measuring mechanism, and select one of them that has a measurement range that corresponds to the inner diameter of the hole (H) of the object to be measured (W). Depending on the selection, a wide range of measurements can be performed.

たとえば、測定間隔5III11の筒体■6組で内径2
0〜50WIm、測定間隔10nmの筒体05組で内径
50−100閣、測定範囲25!1111の筒体■4組
で内径100〜200mmの孔(H)に対応させ、かつ
上記測定間隔に合った測定ユニット■を備える測定機構
を3種類用意することにより、内径20〜200 mの
範囲を支障なく測定することができる。この場合、筒体
■の交換はねじ込みでおこなうことができ、また測定機
構の交換は、簡単な位置ぎめとつまみねじによる締め付
けでおこなうことができるので、孔(H)内径に対応す
る筒体■または測定機構を迅速容易に交換することがで
きる。
For example, for 6 sets of cylinders with measurement intervals of 5III and 11, the inner diameter is 2.
0 to 50 WIm, 05 pairs of cylinders with a measurement interval of 10 nm, an inner diameter of 50 to 100 mm, and a measurement range of 25 to 1111 ■4 pairs of cylinders with an inner diameter of 100 to 200 mm, and matching the above measurement interval. By preparing three types of measuring mechanisms each equipped with a measuring unit (2), it is possible to measure an inner diameter range of 20 to 200 m without any problem. In this case, the cylinder ■ can be replaced by screwing it in, and the measuring mechanism can be replaced by simple positioning and tightening with a thumbscrew, so the cylinder ■ corresponding to the inner diameter of the hole (H) can be replaced. Alternatively, the measuring mechanism can be quickly and easily replaced.

つぎに他の実施例について述べる。Next, other embodiments will be described.

前記実施例では、スピンドルに無用な不均衡なトルクが
加わらないように測定機構の両側に一対のエアシリンダ
を配置したが、この移動機構のエアシリンダは、測定機
構と同軸にその端部上に1個配置し、連結部材を迂回さ
せて外部係合部材と連結させるように構成してもよい。
In the above embodiment, a pair of air cylinders were placed on both sides of the measuring mechanism to prevent unnecessary unbalanced torque from being applied to the spindle, but the air cylinder of this moving mechanism was placed coaxially with the measuring mechanism on its end. It may also be configured such that one piece is disposed and the connecting member is detoured and connected to the external engagement member.

この場合、前記実施例にくらべて測定機構および移動機
構部分を細身にできるから、小径深孔の内径測定に適用
することができる。
In this case, since the measuring mechanism and the moving mechanism can be made thinner than those in the above embodiment, it can be applied to measuring the inner diameter of a small-diameter deep hole.

また、測定機構の測長ユニットは、磁気スケールに限ら
ず他の方式のものでもよい。
Further, the length measuring unit of the measuring mechanism is not limited to the magnetic scale, and may be of other types.

また、前記実施例では、測長ユニットの出力を表示装置
に送出して1表示しさらには記録できるようにしたが、
これを演算装置に送って、より高度な寸法、形状データ
などの処理をおこなうようにしてもよい。
Furthermore, in the embodiment described above, the output of the length measuring unit is sent to the display device so that it can be displayed as 1 and can also be recorded.
This may be sent to an arithmetic unit for more advanced processing such as dimension and shape data.

〔発明の効果〕〔Effect of the invention〕

自動調心機構を設け、測定子を後退させた状態で測定機
構を装置固有の軸線上に調心支持して被測定物の孔に挿
入し、測定位置に達したとき、上記調心支持を解除する
とともに、測定子を突出させて孔の内゛側面に当接させ
て、測定機構を孔の軸線上に自動調心するように構成し
たので、測定機構が孔と偏心していても容易に自動挿入
でき、かつ安定した高精度の内径測定をおこなうことが
できる。
A self-aligning mechanism is provided, and the measuring mechanism is aligned and supported on the device's own axis with the measuring point retracted, and inserted into the hole of the object to be measured. When the measurement position is reached, the above-mentioned alignment support is installed. When the measuring mechanism is released, the measuring element is made to protrude and come into contact with the inner side of the hole, and the measuring mechanism is automatically aligned on the axis of the hole, so even if the measuring mechanism is eccentric to the hole, it can be easily adjusted. It can be inserted automatically and can perform stable and highly accurate inner diameter measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である内径測定装置を一部
断面で示した正面図、第2図は同じくその側面図、第3
図は第1図における■−■線断面図、第4図は第1図に
示した内径測定装置の測定機構の下面図、第5図ないし
第8図はそれぞれ第1図における■−■線ないし■−■
線断面図である。
FIG. 1 is a partially sectional front view of an internal diameter measuring device according to an embodiment of the present invention, FIG. 2 is a side view thereof, and FIG.
The figure is a sectional view taken along the line ■-■ in FIG. 1, FIG. 4 is a bottom view of the measuring mechanism of the inner diameter measuring device shown in FIG. 1, and FIGS. 5 to 8 are a sectional view taken along the line ■-■ in FIG. 1. No ■-■
FIG.

Claims (7)

【特許請求の範囲】[Claims] (1)筒状体内にスピンドルがその軸方向に進退自在に
内装され、このスピンドルの動きに追従して測定子が上
記スピンドルの軸に対して直交する方向に進退するよう
にされた測定機構と、上記スピンドルをその軸方向に動
かして上記測定子を上記スピンドルの軸と直交する方向
に進退させる移動機構と、上記測定機構を支持する支持
体を有し、かつこの測定機構を測定孔の内径測定位置に
向って進退させる進退機構と、上記測定機構を上記進退
機構により移動させるとき上記測定機構を装置固有の軸
線上に調心して支持し、上記測定孔の内径を測定すると
き上記支持を解除して上記測定子の測定孔内側面への接
触にともなってこの測定機構を上記測定孔の軸線上に調
心させる自動調心機構とを具備することを特徴とする内
径測定装置。
(1) A measuring mechanism in which a spindle is installed inside a cylindrical body so that it can move forward and backward in the axial direction, and a measuring element follows the movement of the spindle and moves forward and backward in a direction perpendicular to the axis of the spindle. , a moving mechanism that moves the spindle in its axial direction to move the measuring head forward and backward in a direction orthogonal to the axis of the spindle, and a support that supports the measuring mechanism, and the measuring mechanism is connected to the inner diameter of the measuring hole. an advancing/retracting mechanism that moves the measuring mechanism forward and backward toward a measurement position; when the measuring mechanism is moved by the advancing/retracting mechanism, the measuring mechanism is aligned and supported on an axis specific to the device; and when an inner diameter of the measurement hole is measured, the support is released. and a self-aligning mechanism that aligns the measuring mechanism on the axis of the measuring hole when the measuring tip comes into contact with the inner surface of the measuring hole.
(2)自動調心機構は筒状体の一端部外側に設けられた
テーパ部および進退機構の支持体に取り付けられ上記テ
ーパ部と嵌合して測定機構を支持するガイド孔をもつ第
1ブラケットからなる第1調心部と、上記進退機構の支
持体に取り付けられて上記筒状体の他、端部上方に設け
られたテーパ状突部をもつ第2ブラケットおよび上記測
定機構に一体に取り付けられ上記テーパ状突部の径大部
と嵌合する孔をもつガイド体からなる第2調心部とを有
することを特徴とする特許請求の範囲第1項記載の内径
測定装置。
(2) The self-aligning mechanism includes a tapered part provided on the outside of one end of the cylindrical body and a first bracket that is attached to the support of the advance/retreat mechanism and has a guide hole that fits into the tapered part and supports the measuring mechanism. a second bracket that is attached to the support of the advance/retreat mechanism and has a tapered protrusion provided above the end in addition to the cylindrical body; and a second bracket that is integrally attached to the measurement mechanism. 2. The inner diameter measuring device according to claim 1, further comprising a second centering portion made of a guide body having a hole that fits into the large diameter portion of the tapered projection.
(3)第1ブラケットのガイド孔は筒状体の一端部外側
に設けられたテーパ部のテーパ面と密接するテーパ側面
を有することを特徴とする特許請求の範囲第2項記載の
内径測定装置。
(3) The inner diameter measuring device according to claim 2, wherein the guide hole of the first bracket has a tapered side surface that comes into close contact with a tapered surface of a tapered part provided outside one end of the cylindrical body. .
(4)第2調心部の第2ブラケットおよびガイド体は筒
状体のその軸まわりの回転を拘束するまわりどめ構造に
形成されていることを特徴とする特許請求の範囲第2項
記載の内径測定装置。
(4) The second bracket and the guide body of the second alignment part are formed to have a rotation stop structure that restrains the rotation of the cylindrical body about its axis. inner diameter measuring device.
(5)第2調心部のまわりどめ構造は第2ブラケットに
般けられた複数個のテーパ状突部と、これら各テーパ状
突部の径大部に嵌合するガイド体に設けられた複数個の
孔とからなることを特徴とする特許請求の範囲第4項記
載の内径測定装置。
(5) The rotation prevention structure of the second alignment part is provided on a plurality of tapered protrusions on the second bracket and a guide body that fits into the large diameter portion of each of these tapered protrusions. The inner diameter measuring device according to claim 4, characterized in that the inner diameter measuring device comprises a plurality of holes.
(6)筒状体内にスピンドルがその軸方向に進退自在に
内装され、このスピンドルの動きに追従して測定子が上
記スピンドルの軸に対して直交する方向に進退するよう
にされた測定機構と、上記スピンドルをその軸方向に動
かして上記測定子を上記スピンドルの軸と直交する方向
に進退させる移動機構と、上記測定機構を測定孔の内径
測定位置に向って進退させる進退機構と、上記移動機構
および上記進退機構の動作を制御する制御部と、上記測
定機構を上記進退機構により進退させるとき上記測定機
構を装置固有の軸線上に調心して支持し、上記測定孔の
内径を測定するとき上記支持を解除して上記測定子を測
定孔内側面への接触にともなってこの測定機構を上記測
定孔の軸線上に調心させる自動調心機構とを具備し、 上記制御部は上記測定機構に対する上記自動調心機構の
調心支持位置を検出するセンサの出力に基づいて上記進
退機構の動作を制御する手段と、上記測定機構に対する
上記自動調心機構の支持解除位置を検出するセンサの出
力に基づいて上記移動機構の動作を開始するように制御
する手段と、上記測定機構に対する上記自動調心機構の
支持解除後の上記進退機構の動作停止位置を検出するセ
ンサの出力に基づいて上記進退機構の動作を停止するよ
うに制御する手段とを有することを特徴とする内径測定
装置。
(6) A measuring mechanism in which a spindle is housed in a cylindrical body so as to be able to move forward and backward in the axial direction, and a measuring element follows the movement of the spindle and moves forward and backward in a direction perpendicular to the axis of the spindle. , a moving mechanism that moves the spindle in its axial direction and advances and retreats the measuring element in a direction perpendicular to the axis of the spindle; an advancing and retreating mechanism that advances and retreats the measuring mechanism toward an inner diameter measurement position of the measurement hole; a control unit that controls the operation of the mechanism and the advancing/retracting mechanism; a control unit that supports the measuring mechanism in alignment with an axis specific to the device when the advancing/retracting mechanism advances/retracts the measuring mechanism; an automatic alignment mechanism that aligns the measuring mechanism on the axis of the measuring hole when the support is released and the measuring head comes into contact with the inner surface of the measuring hole; means for controlling the operation of the advance/retreat mechanism based on the output of a sensor that detects an alignment support position of the self-aligning mechanism; and an output of a sensor that detects a support release position of the self-aligning mechanism with respect to the measuring mechanism. means for controlling the moving mechanism to start its operation based on the output of a sensor that detects an operation stop position of the advancing/retracting mechanism after the support of the self-aligning mechanism for the measuring mechanism is released; An inner diameter measuring device comprising: means for controlling the operation of the device to stop the operation of the device.
(7)進退機構は駆動シリンダを有し、この駆動シリン
ダに沿って各センサが設けられていることを特徴とする
特許請求の範囲第6項記載の内径測定装置。
(7) The inner diameter measuring device according to claim 6, wherein the advancing/retracting mechanism has a drive cylinder, and each sensor is provided along this drive cylinder.
JP9555485A 1985-05-07 1985-05-07 Inside diameter gauge Pending JPS61253403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9555485A JPS61253403A (en) 1985-05-07 1985-05-07 Inside diameter gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9555485A JPS61253403A (en) 1985-05-07 1985-05-07 Inside diameter gauge

Publications (1)

Publication Number Publication Date
JPS61253403A true JPS61253403A (en) 1986-11-11

Family

ID=14140794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9555485A Pending JPS61253403A (en) 1985-05-07 1985-05-07 Inside diameter gauge

Country Status (1)

Country Link
JP (1) JPS61253403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135801A (en) * 1986-11-28 1988-06-08 Toyota Motor Corp Inner diameter measuring head
US5205047A (en) * 1990-05-30 1993-04-27 Marposs Societa' Per Azioni Method and apparatus for dynamically checking dimensions of mechanical parts
JP2000329509A (en) * 1999-05-19 2000-11-30 Sanmei Electric Co Ltd Electromagnetic sensor
JP2008026276A (en) * 2006-07-25 2008-02-07 Nanya Seisakusho:Kk Coordinate detector for measuring position degree, and position degree measuring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135801A (en) * 1986-11-28 1988-06-08 Toyota Motor Corp Inner diameter measuring head
JPH0785001B2 (en) * 1986-11-28 1995-09-13 トヨタ自動車株式会社 Inner diameter measurement head
US5205047A (en) * 1990-05-30 1993-04-27 Marposs Societa' Per Azioni Method and apparatus for dynamically checking dimensions of mechanical parts
JP2000329509A (en) * 1999-05-19 2000-11-30 Sanmei Electric Co Ltd Electromagnetic sensor
JP2008026276A (en) * 2006-07-25 2008-02-07 Nanya Seisakusho:Kk Coordinate detector for measuring position degree, and position degree measuring system

Similar Documents

Publication Publication Date Title
CN108007295B (en) Automatic detection device for M value and tooth surface jumping of worm
CN103411744A (en) Electric eddy transducer dynamic calibration device
US3826011A (en) Pre-setting tool gauge for spindle machines
JPS59173710A (en) Measuring head for checking size of work
CN103822565B (en) A kind of pitch-row comparing measuring apparatus
JPS6332122B2 (en)
US3911586A (en) Precision control apparatus
CN203432677U (en) Dynamic calibration device of eddy current sensor
CN110823066B (en) Inner cavity diameter detection device and method
US4228595A (en) Tool setting gage
CN114061521A (en) Precision measuring device for inner hole excircle of workpiece
JPS61253403A (en) Inside diameter gauge
CN1979085A (en) Shift-hit-meter method for measuring axiality eoor of thread axiality male gauge
JPH0711404B2 (en) Measuring device for three-dimensional measurement of object dimensions
CN101262979B (en) Method and device for adjusting the fitting depth of a tool in a tool-holder
US3940854A (en) Three axis precision measuring device
JPH0511761B2 (en)
CN105823400A (en) Dedicated measuring tool for two-hole verticality detection of medium and small parts and measuring method thereof
JPS61254801A (en) Inner-diameter measuring instrument
CN100405001C (en) Head for the linear dimension checking of mechanical pieces
JPH05332766A (en) Copying probe
JPH0249441B2 (en)
CN216523798U (en) Precision measuring device for inner hole and excircle of workpiece
US3070891A (en) Dial indicator caliper gage
JPH0262901A (en) External diameter measuring instrument