JPS61252526A - Progressive multifocus spectacle lens - Google Patents

Progressive multifocus spectacle lens

Info

Publication number
JPS61252526A
JPS61252526A JP9438485A JP9438485A JPS61252526A JP S61252526 A JPS61252526 A JP S61252526A JP 9438485 A JP9438485 A JP 9438485A JP 9438485 A JP9438485 A JP 9438485A JP S61252526 A JPS61252526 A JP S61252526A
Authority
JP
Japan
Prior art keywords
astigmatism
lens
progressive
image
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9438485A
Other languages
Japanese (ja)
Other versions
JPH0680448B2 (en
Inventor
Toshikazu Yoshino
芳野 寿和
Koji Komiya
小宮 康治
Hiroyoshi Koyama
博義 小山
Koji Sato
孝二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP60094384A priority Critical patent/JPH0680448B2/en
Publication of JPS61252526A publication Critical patent/JPS61252526A/en
Publication of JPH0680448B2 publication Critical patent/JPH0680448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters

Abstract

PURPOSE:To decrease the shake of an image, to reduce the astigmatism of a peripheral part and to obtain a physiologically wide distant use visual field, a near use visual field and a wide intermediate progressive band visual field by constituting an aspherical surface as a specified power-function. CONSTITUTION:As for a progressive refracting surface, the respective functions are not determined in each part, the whole progressive refracting surface is determined as one function, and to put it concretely, it is constituted with an n-power function shown as an equation. In this regard, when determining both its shapes, they are determined by executing the evaluation of an astigmatism with regard to a beam passing through an eye-ball winding midpoint of an eye for wearing the lens. By grasping the progressing refractive surface as one function, its surface shape becomes smooth, the astigmatism can be decreased, the shake of an image can be suppressed remarkably, and also a new evaluating method which is called as a spherical aberration spot method is utilized for evaluating the shape of an image. This spherical aberration spot method is a method for making parallel rays incident on the whole surface of a lens L to be inspected and seeing the spot diaphragm of its rays at the place of a prescribed distance P' from the rear surface of the lens. In this way, the shake of an image is decreased remarkably, also the astigmatism of the peripheral part is reduced and a wearing sense and a use sense of the titled lens become better.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、累進多焦点眼鏡レンズに関するもので、特に
広い遠用部、広い近用部及びこれらをつなぐ比較的広い
中間累進帯部を有し、なお、かつ被装用眼の視線移動時
に発生する像のゆれを極力少なくした累進多焦点眼鏡レ
ンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a progressive multifocal eyeglass lens, and in particular has a wide distance portion, a wide near portion, and a relatively wide intermediate progressive band portion connecting these. The present invention also relates to a progressive multifocal eyeglass lens that minimizes image blurring that occurs when the line of sight of the wearer's eye moves.

(従来技術) 眼鏡レンズ用の累進多焦点レンズの提案、実用化は従来
から多く見られる。特に、遠用部や近用部を通しての静
的視における周辺部視野像や周辺部を一通しての視野像
あるいは遠用部から中間累進帯部をへて近用部への被装
用眼の視線移動に伴なう視野像の歪み、ゆがみ、波打ち
等の言わゆる「像のゆれ」の改良は、特公昭49−35
95号及び特公昭52−20211号によって提案され
ている。これら両特許の特徴は、遠用部の屈折面曲率と
近用部の屈折面曲率の違いを周辺部で近ずけるようにす
るために、周辺曲率を遠用部では主子午線から離れるに
従って強くし、逆に近用部では主子午線から離れるに従
って弱くした点にある。
(Prior Art) There have been many proposals and practical applications of progressive multifocal lenses for eyeglass lenses. In particular, the peripheral visual field image in static vision through the distance and near vision areas, the visual field image through the peripheral area, or the visual field image of the eye to be worn from the distance vision area through the intermediate progressive zone to the near vision area. Improvements to so-called "image wobbling" such as distortion, distortion, and undulation of visual fields caused by movement of the line of sight were made in the Special Publication Publication No. 49-35.
No. 95 and Japanese Patent Publication No. 52-20211. The feature of both of these patents is that in order to make the difference between the refractive surface curvature of the distance vision part and the refraction surface curvature of the near vision part closer in the peripheral part, the peripheral curvature becomes stronger in the distance part as it moves away from the principal meridian. However, in the near vision area, on the other hand, the distance from the principal meridian weakens.

この構成により、他の従来例に比して遠用部及び近用部
は狭くなったが、周辺部における像の曲がりを少なくす
ることができる。
With this configuration, although the distance portion and the near portion are narrower than in other conventional examples, it is possible to reduce the curvature of the image in the peripheral portion.

他方、上記両特許とは対照的な技術として、特公昭57
−53570号をあげることができる。
On the other hand, as a technology in contrast to both of the above patents,
-53570 can be mentioned.

この技術の特徴は、遠用部、近用部のそれぞれの屈折面
を略球面で構成し、これにより前記両特許に比して光学
的に広い遠用部及び近用部を与えている。さらに「像の
ゆれ」に対する対策として、周辺部の残留非点収差の主
軸方向を水里及び垂直方向としている点にある。
A feature of this technology is that each of the refractive surfaces of the distance and near vision sections is formed into a substantially spherical surface, thereby providing optically wider distance and near vision regions compared to those of the above-mentioned patents. Furthermore, as a countermeasure against "image wobbling", the main axis direction of residual astigmatism in the peripheral area is set to the vertical direction.

(本発明が解決しようとする問題点) 特公昭57−5357’0号における問題点としては、
遠用部、近用部は光学的(光学的とは、例えばレンズメ
ータ等による光学器械の測定によればという意味であり
、これに対し被装用者の視覚生理学的な像の見え方を以
下“生理学的”と表現する)には広くなっているが、こ
れらの領域外の周辺部iこおいては非点収差の発生が著
しく、光学的測定においても大きな円柱度として計測さ
れる。
(Problems to be solved by the present invention) The problems in Japanese Patent Publication No. 57-5357'0 are as follows:
The distance vision area and the near vision area are defined optically (optical means as measured by an optical instrument such as a lens meter, etc.) In contrast, the following describes how the wearer visually and physiologically sees the image. However, in the peripheral part i outside these areas, astigmatism occurs significantly and is measured as a large degree of cylindricity even in optical measurements.

ただし周辺部における円柱軸方向は、水平あるいは垂直
方向にそろえられており「像のゆれ」はさほど感じない
However, the cylindrical axis direction in the peripheral area is aligned horizontally or vertically, so "image wobbling" is not felt so much.

しかしながら実際の装用においては、この周辺部の非点
収差が原因して周辺部はほとんど不可能となっている。
However, in actual wearing, this peripheral astigmatism makes it almost impossible to see the peripheral area.

また、中間累進帯や近用部を使用する場合、被装用眼の
網膜では、周辺視野は、はとんど合焦していない像とし
て知覚される。この周辺部の非合焦状態は、ただでさえ
違和感を与えるものであり、特に読書等の文章解読に著
しい速度低下をもたらすと言われている。また、この周
辺部の非合焦状態は、生理学的に中間及び近用視野の狭
さとして知覚される。すなわち、中間及び近用部は光学
的に像の良い部分は広くは計測されるが、それを越える
周辺部ではその像が光学的に著しく悪くなっているため
に、生理学的には中間、近用視野が狭く感じられという
欠点を有している。
Furthermore, when using the intermediate progressive zone or the near vision zone, the peripheral visual field is perceived as an image that is hardly focused on the retina of the recipient eye. This out-of-focus state in the periphery already gives a sense of discomfort, and is said to cause a significant slowdown in reading and deciphering text in particular. Additionally, this peripheral out-of-focus state is physiologically perceived as a narrowing of intermediate and near vision. In other words, in the intermediate and near areas, the optically good image is widely measured, but in the peripheral area beyond this, the image is optically significantly poor, so physiologically, the intermediate and near areas are measured. It has the disadvantage that the field of view feels narrow.

他方、上述の特公昭49−3595号、特公昭52−2
0271号については、上記特公昭57−53570号
と比較して遠用部、近用部は光学的には狭いが、周辺部
の非点収差の量が少ないため、生理学的にはむしろ広く
感じる。
On the other hand, the above-mentioned Special Publication No. 49-3595 and Special Publication No. 52-2
Regarding No. 0271, compared to the above-mentioned Japanese Patent Publication No. 57-53570, the distance and near vision areas are optically narrower, but the amount of astigmatism in the peripheral areas is smaller, so it feels physiologically wider. .

しかしながら、その周辺部の非点収差量はまだまだ多く
、遠用部や近用部を通しての静的視における像の曲がり
は改良されてはいるものの、視線の移動に伴う「像のゆ
れ」はまだ十分改良されているとはいえない。このよう
な問題点は、主子午線と直角に交わる断面で主子午線を
切断した場合の各断面曲線が少なくとも一つの円形形状
を含む2次曲線から成っている非球面形状にとどまって
いるごとに起因している。また、従来例の非球面屈折面
が微分幾何学で云うところの「へそ点」の追求からの面
形状である事による。もちろん光学的には出来るだけ「
へそ点」であることが好ましいが、生理学的観点からは
必ずしも、それが妥当であるとは言えない。
However, the amount of astigmatism in the periphery is still large, and although image curvature in static vision through distance and near vision has been improved, "image wobbling" that occurs when the line of sight moves still remains. It cannot be said that it has been sufficiently improved. These problems are caused by the fact that when the principal meridian is cut at a cross section perpendicular to the principal meridian, each cross-sectional curve remains an aspherical shape consisting of a quadratic curve containing at least one circular shape. are doing. Another reason is that the aspherical refractive surface of the conventional example has a surface shape based on the pursuit of what is called a "navel point" in differential geometry. Of course, optically as much as possible
Although it is preferable that the point be the navel point, it cannot necessarily be said to be appropriate from a physiological viewpoint.

さらに、前述のいずれの従来例においても累進屈折面の
面形状の決定は、遠用部、近用部、中間累進部、及び周
辺部をそれぞれ1つの関数で与え、これらの境界部をあ
る条件で滑かに結ぶという、一種の多面体的構成として
いた。
Furthermore, in all of the conventional examples described above, the surface shape of the progressive refractive surface is determined by giving a distance portion, a near portion, an intermediate progressive portion, and a peripheral portion each by one function, and defining these boundary portions under certain conditions. It had a kind of polyhedral structure, with smooth ties.

ところで、決定された面形状をもつレンズの評価法は従
来は格子物体のそのレンズによる像のまがりて評価する
方法や、屈折面の微小領域毎の最大曲率(Teaつ)と
最小曲率(Tmin)を求め(n:レンズの屈折率) として微小領域内の曲率差Asを求める。言換えれば、
この微小領域に立てた法線方向に入射してくる光線によ
る非点収差を求め、屈折面全体にわたる非点収差等布線
で求めるものであった。しかしながら、レンズの実際の
装用状態を考えるとき、上記法線方向からの光線を利用
して物を見ることは現実的でなく、必ずしも正して評価
法とは言えなかった。さらに、従来、「像のゆれ」に対
する十分な評価方法はなかった。
By the way, conventional methods for evaluating a lens with a determined surface shape include evaluating the curvature of an image of a grating object caused by the lens, and evaluating the maximum curvature (Tear) and minimum curvature (Tmin) of each minute region of the refractive surface. (n: refractive index of the lens), and the curvature difference As within the micro region is determined. In other words,
The astigmatism due to the light rays incident in the normal direction to this minute area was determined, and the astigmatism distribution was determined over the entire refractive surface. However, when considering the actual wearing condition of the lens, it is not practical to view objects using light rays from the normal direction, and it cannot necessarily be called a correct evaluation method. Furthermore, conventionally, there has been no sufficient evaluation method for "image wobbling."

(本発明の目的) 本発明は上記従来の欠点を解消するためになされたもの
で、その目的は、「像のゆれ」を著しく減少させるとと
−もに、周辺部の非点収差を少なくすることにより生理
学的に広い遠用視野、広い近用視野さらに広い中間累進
帯祝゛野が得られる新規な累進多焦点眼鏡レンズの提供
することにある。
(Object of the present invention) The present invention was made to eliminate the above-mentioned conventional drawbacks, and its purpose is to significantly reduce "image wobbling" and to reduce astigmatism in the peripheral area. The object of the present invention is to provide a new progressive multifocal eyeglass lens which can physiologically provide a wide distance visual field, a wide near visual field, and a wide intermediate progressive zone correction field.

(本発明の構成) 本発明の構成上の特徴は、累進屈折面を従来のように部
分部分でそれぞれの関数を決めるのでなく、累進屈折面
全体を1つの関数として定める。
(Structure of the Present Invention) A structural feature of the present invention is that instead of determining each function for each part of the progressive refractive surface as in the conventional case, the entire progressive refractive surface is determined as one function.

より具体的には、 として表わされるn次べき関数で、構成した点にある。More specifically, It is an n-th power function expressed as .

なお、その面形状の決定に際しては、被装用眼の眼球回
旋中点を通過する光線について非点収差の評価を行って
決定するという、まったく新しい評価方法を確立して採
用し、また像のゆれ、屈折面の滑らかさについては、球
面収差スポート法を採用した点に注目すべきであgo (本発明の効果) 本発明によれば、従来例に比して「像のゆれ」を著しく
減少させ、また周辺部の非点収差の少ない、より装用感
、使用感のよい累進多焦点眼鏡レンズを提供することが
できる。
In addition, when determining the surface shape, we established and adopted a completely new evaluation method in which the astigmatism of the light ray passing through the midpoint of eyeball rotation of the recipient eye was evaluated. Regarding the smoothness of the refractive surface, it should be noted that the spherical aberration sport method was adopted. Furthermore, it is possible to provide a progressive multifocal eyeglass lens that has less astigmatism in the peripheral area and is more comfortable to wear and use.

(本発明の原理説明) 第1図は本発明に係る累進多焦点眼鏡レンズの累進屈折
面を模式的に示した斜視図である。本実施例では累進屈
折面はレンズの前側屈折面として構成され、後側屈折面
は球面またはトロイダル面として構成される。これによ
りレンズの球面屈折力や円柱屈折力、円柱軸角度は後側
屈折面の曲率半径を変化させることにより決められる。
(Explanation of Principle of the Present Invention) FIG. 1 is a perspective view schematically showing a progressive refractive surface of a progressive multifocal eyeglass lens according to the present invention. In this embodiment, the progressive refractive surface is configured as the front refractive surface of the lens, and the rear refractive surface is configured as a spherical or toroidal surface. As a result, the spherical refractive power, cylindrical refractive power, and cylindrical axis angle of the lens are determined by changing the radius of curvature of the rear refractive surface.

なお本発明は逆に前側屈折面を球面またはトロイダル面
とし、後側屈折面を累進屈折面としてもよい。以下の説
明は上述したように前側屈折面を累進屈折面とした場合
につき説明し、第1図にはその累進屈折面のみを図示し
ている。
In the present invention, the front refractive surface may be a spherical or toroidal surface, and the rear refractive surface may be a progressive refractive surface. The following explanation will be made based on the case where the front refractive surface is a progressive refractive surface as described above, and FIG. 1 shows only the progressive refractive surface.

第1図において、説明を理解しやすくするためにAの部
分は遠用部、Cの部分は近用部、Bの部分は中間累進帯
、Dの部分は周辺部と便宜的に区分するが、本発明にお
いては、この各部分毎に従来例のようにその面形状がそ
れぞれ一つ一つの関数として与えられるものではなく、
累進屈折面S全体が以下に記述する一つp関数としてあ
たえられる。
In Fig. 1, in order to make the explanation easier to understand, part A is the distance part, part C is the near part, part B is the intermediate progressive zone, and part D is the peripheral part. , in the present invention, the surface shape of each part is not given as an individual function as in the conventional example, but
The entire progressive refractive surface S is given as one p function described below.

今、第1図に示すように、累進屈折面にX−Y−2の3
次元座標系を考える。累進屈折面S上の点の2の値は、
Z=f (x−y)というXとyの関数として与えられ
る。このことは、逆にZ=f(x−y)として与えられ
るZを連続的に結びつけることにより面Sの形状は一義
的に決定できることになる。
Now, as shown in Figure 1, 3 of X-Y-2 is placed on the progressive refracting surface.
Consider a dimensional coordinate system. The value of 2 at the point on the progressive refractive surface S is
It is given as a function of X and y, Z=f (x-y). This means that, conversely, the shape of the surface S can be uniquely determined by continuously connecting Z given as Z=f(x-y).

一般に曲面は、 というn次のべき関数として表現できる。このように累
進屈折面を一つの関数としてとらえることの利点は、そ
の面形状が滑らかになり、非点収差を減少でき、像のゆ
れを著しく押えることが出来ることである。しかし、上
記関数においてもその次数nが小さすぎると、B部、0
部、すなわち中間累進帯と近用部が形成出来ないし、逆
に次数nを大きくすると、光学的滑らかさが少なくなり
、非点収差の発生が多くなる。
Generally, a curved surface can be expressed as an n-th power function. The advantage of considering the progressive refracting surface as a single function in this way is that the surface shape becomes smooth, astigmatism can be reduced, and image blur can be significantly suppressed. However, even in the above function, if the order n is too small, the B part becomes 0
On the other hand, if the order n is increased, optical smoothness decreases and astigmatism increases.

そこで、次に最適な次数nの範囲につき具体的実施例を
示す。まず上述した一つの関数として得られた累進屈折
面を有するレンズの非点収差評価法について述べる。
Therefore, a specific example will be shown below regarding the range of the optimum order n. First, a method for evaluating astigmatism of a lens having a progressive refractive surface obtained as one of the functions described above will be described.

第2a図はその評価法を模式的に示す図である。FIG. 2a is a diagram schematically showing the evaluation method.

この評価法は眼鏡レンズLを通過し、被装用眼Eの回旋
点Qを通過する光線βについて以下の式で非点収差を計
算するものである。
This evaluation method calculates astigmatism for a light ray β that passes through a spectacle lens L and passes through a rotation point Q of the eye E to be worn, using the following formula.

第2b図は屈折面Rへの入射光線βと屈折光線β′との
関係を示す座標系である。面Rの法線NをZ軸とする直
交座標系x−y−z、入射光線lの入射方向をZ軸とす
る直交座標系x−y−z。
FIG. 2b is a coordinate system showing the relationship between the incident ray β on the refracting surface R and the refracted ray β'. An orthogonal coordinate system x-y-z whose Z-axis is the normal N to the surface R, and an orthogonal coordinate system x-y-z whose Z-axis is the direction of incidence of the incident ray l.

曲Rにより屈折された入射光線lの屈折光線l′をZ′
軸とする直交座標系x′−y′−2′をそれぞれ考える
。そして法線Nに対する入射光線βの方向をΦ(i)、
屈折光線β′の方向をΦ(W)とする。入射光線l側の
屈折媒質の屈折率をn1屈折面Rの屈折媒質の屈折率を
n′とすると両者の比は  r=n/n ’ 屈折面番号をj(j=1.2・・n:眼鏡レンズの場合
はj=1.2)とする と Ωj 8 γj  C,O8Φj (i)+cos  
Φj (智)とすると屈折光線L′の屈折波面の垂直成
分の曲率KI J (w)は KB(kυ =TJ  Kat(i>  十  〇」 
K五j屈折光線l′の屈折波面の平行成分の曲率K 口
J (W)は KIIJ  (w)  =TJ Co52ΦJ  (i
)K t l J  (i)/cos”Φ、Cvr)+
Ωj K目J /cos’ΦJ (W)一方、捩率τJ
 (w>  は、 τj(w)=r>  τJ(i)cosΦJ (i) 
 /cos Φ’J (w)+Ωj τJ  /(:0
82ΦJ  (w)として、それぞれ表わされる。次に
、上記各成分をもとに微分幾何学を使って主曲率を求め
る。ま4τ2J(W)) K3□(W)  はそれぞれ にΦJ (w)  =HJ (w)  +ξJ (w)
ξSJ (w)  =HJ (ν))−ξ、(W)とし
て表わされる。また、主曲率の傾きはsign (τ=
 (w)  ) として表わされる。この第j番目の屈折面R1を射出し
た光線β′を入射光線としてj+1番目の屈折面に対し
ても上記と同様の演算を実行し、最終屈折面における極
値にΦ(W)、KS (W)から、最終面の射出点から
の像距離は 1/ f 5=Ks  (w) 1/fΦ=にΦ (W) として与えられ、像の非点収差Asは As= (1/f s−1/ fΦ) X100O(単
位:ディオプター) として求められる。
The refracted ray l' of the incident ray l refracted by the curve R is Z'
Consider the orthogonal coordinate system x'-y'-2' with axes. Then, the direction of the incident ray β with respect to the normal N is Φ(i),
Let the direction of the refracted ray β' be Φ(W). If the refractive index of the refractive medium on the side of the incident ray l is n1 and the refractive index of the refractive medium on the refractive surface R is n', the ratio of the two is r=n/n' The refractive surface number is j (j=1.2...n : For eyeglass lenses, if j = 1.2), Ωj 8 γj C, O8Φj (i) + cos
If Φj (wi) is the curvature of the vertical component of the refracted wavefront of the refracted ray L', KI J (w) is KB (kυ = TJ Kat (i> 10).
K5j The curvature of the parallel component of the refracted wavefront of the refracted ray l' is K IIJ (W) = TJ Co52ΦJ (i
) K t l J (i)/cos”Φ, Cvr)+
Ωj Kth J /cos'ΦJ (W) On the other hand, the torsion coefficient τJ
(w> is τj(w)=r> τJ(i) cosΦJ (i)
/cos Φ'J (w)+Ωj τJ /(:0
82ΦJ (w), respectively. Next, the principal curvature is determined using differential geometry based on each of the above components. M4τ2J(W)) K3□(W) are respectively ΦJ (w) =HJ (w) +ξJ (w)
It is expressed as ξSJ (w) =HJ (ν))−ξ, (W). Also, the slope of the principal curvature is sign (τ=
(w) ). Using the ray β' emitted from the j-th refractive surface R1 as the incident ray, the same calculation as above is performed for the j+1-th refractive surface, and the extremum value at the final refractive surface is Φ(W), KS ( W), the image distance from the exit point of the final surface is given as 1/f 5=Ks (w) 1/fΦ= as Φ (W), and the image astigmatism As is As= (1/f s -1/ fΦ) X100O (unit: diopter).

本願の累進多焦点レンズにおける上記像距離1/fs、
1/fΦの光学的模式図を第2C図に示す。J1#目の
屈折面が累進屈折面であり、(J+1)番目の屈折面は
球面としである。本願ではJ=1、すなわち累進屈折面
が第1面、球面が最終面である2面構成である。
The above image distance 1/fs in the progressive multifocal lens of the present application,
An optical schematic diagram of 1/fΦ is shown in FIG. 2C. The J1#th refractive surface is a progressive refractive surface, and the (J+1)th refractive surface is a spherical surface. In this application, J=1, that is, a two-surface configuration in which the progressive refractive surface is the first surface and the spherical surface is the final surface.

(従来の技術の評価) 第3図は上記の評価法にもとず〈従来の累進多焦点レン
ズの非点収差等布線を示している。ここで使用したレン
ズは、前側屈折面が累進屈折面であり、遠用部Aを球面
(または非球面)、近用部Cを球面(または非球面)と
し中間累進帯部Bは近用加入度数に従い「へそ点」とな
るように構成し、周辺部りはこれらASB、C各部をあ
る所定条件で滑らかにつないだ面形状をもっている。そ
の後側屈折面は曲率半径rb = 100m/mであり
、レンズ中心厚はt = 2m1m 、レンズの屈折率
N f =1.500 とし、そのレンズの遠用度数S
=0.00デイオプター、近用加入度数Add=2.O
Oディオプクーをもつレンズである。
(Evaluation of Prior Art) FIG. 3 shows the astigmatism contour of a conventional progressive multifocal lens based on the above evaluation method. In the lens used here, the front refractive surface is a progressive refractive surface, the distance zone A is spherical (or aspherical), the near zone C is spherical (or aspherical), and the intermediate progressive zone B is for near vision. It is configured to form a ``navel point'' according to the power, and the peripheral portion has a surface shape that smoothly connects these ASB and C portions under a certain predetermined condition. The radius of curvature of the rear refractive surface is rb = 100 m/m, the lens center thickness is t = 2 m1 m, the refractive index of the lens is N f = 1.500, and the distance power of the lens is S.
=0.00 dayopter, near addition power Add=2. O
It is a lens with O diopter.

第3図に示した等高線は被装用眼が回旋点を中心に回旋
し、レンズの種々の方向を通して遠方視したときの平行
入射光束によるレンズ面(累進屈折面)における使用光
束部分毎の非点収差量を結んだ等高線である。図中1.
0と附された等高線は非点収差が1.0デイオプターを
意味する。等高線は0.1.0.5.1.0.1.5.
2.0デイオプターのものを示した(0.1デイオプタ
一等高線は近用部Cのもののみを示した。以下同じ)。
The contour lines shown in Figure 3 are astigmatism points for each part of the used light beam on the lens surface (progressive refractive surface) due to parallel incident light beams when the eye to be worn rotates around the rotation point and views from a distance through various directions of the lens. These are contour lines connecting the amounts of aberration. 1 in the figure.
A contour line marked with 0 means that the astigmatism is 1.0 diopter. The contour lines are 0.1.0.5.1.0.1.5.
2.0 dayopter is shown (0.1 dayopter first contour line is shown only for near vision area C. The same applies hereinafter).

この第3図の結果から、この従来型のレンズは、遠用部
Aはその大部分が非点収差がゼロとなり、近用部Cも狭
い範囲内ではあるが非点収差はゼロの領域をもっている
。それに比較して周辺部りは最高2.0デイオプクーま
での非点収差が現われ、各等高線の遊びも大きく乱れて
いる。このことより周辺部りの面形状は著し−く悪いも
のとなっていることがわ。
From the results shown in Figure 3, this conventional lens has zero astigmatism in most of the distance zone A, and zero astigmatism in the near zone C, albeit within a narrow range. There is. In comparison, astigmatism of up to 2.0 dp appears at the periphery, and the play between each contour line is also greatly disturbed. This shows that the surface shape of the peripheral area is extremely poor.

かる。Karu.

(第1実施例) 第4図は本発明に係る累進多焦点眼鏡レンズの第1の実
施例の非点収差等布線図である。第1の実施例は、前述
の従来例と同様に前側屈折面を累進屈折面としその面形
状は前記第(1)式の1次べき関数において次数nをn
=10とした面形状で構成される。他の構成ファクター
すなわち後側屈折面の曲率半径rb 、中心厚tルンズ
の屈折率、N1、近用加入度数Add及び遠用度数Sは
上述の。
(First Example) FIG. 4 is an astigmatism contour diagram of the first example of the progressive multifocal eyeglass lens according to the present invention. In the first embodiment, the front refracting surface is a progressive refracting surface as in the conventional example described above, and the surface shape is such that the order n is n in the linear power function of the above equation (1).
It is configured with a surface shape where =10. The other constituent factors, namely the radius of curvature rb of the rear refractive surface, the refractive index of the central thickness t of the lenses, N1, the near addition power Add, and the distance power S are as described above.

従来例と同じ値をもつ(以下第2ないし第4実施例につ
いても次数nのみ変化させ、他の構成ファクターは従来
例と同じとする)。
It has the same value as the conventional example (hereinafter, in the second to fourth embodiments, only the order n is changed, and other constituent factors are the same as in the conventional example).

ここで第4図の本願第1実施例の非点収差等高線を第3
図の従来例のそれとを比較すると、周辺部りの非点収差
(各等高線の走る面積)が少ないことが理解できる。ま
た各等高線間の間隔を広く、その走り方も滑らかであり
、このことより面形状が極めて滑らかであることが明瞭
にわかる。
Here, the astigmatism contour lines of the first embodiment of the present application shown in FIG.
When compared with that of the conventional example shown in the figure, it can be seen that there is less astigmatism (the area over which each contour line runs) around the periphery. Furthermore, the intervals between each contour line are wide and the way they run is smooth, which clearly shows that the surface shape is extremely smooth.

眼鏡レンズ、特に累進多焦点レンズの評価では、前述し
たように生理学的な評価が必要となる。例えば、視力1
.2の人にC= + 1.0デイオプターの円柱レンズ
を装用させて視力を測定すると、その人の視力は0.7
〜0.8程度に低下するが、決してゼロにはならない。
As mentioned above, physiological evaluation is required in the evaluation of spectacle lenses, especially progressive multifocal lenses. For example, visual acuity 1
.. When the visual acuity of 2 people is measured by wearing a cylindrical lens with C = + 1.0 dayopters, the person's visual acuity is 0.7.
It decreases to about 0.8, but never reaches zero.

本発明者は種々の装用テストの結果 ■ 非点収差が0.25〜0.50ディオプタ゛−では
装用者に不快感を与えない。
As a result of various wearing tests, the inventor has found that (1) an astigmatism of 0.25 to 0.50 diopter does not cause discomfort to the wearer.

■ 非点収差を徐々に加入すること(非点収差の等高線
間隔がゆるやかに変化する)は装用者に違和感を与えな
い。
■ Gradual addition of astigmatism (the contour interval of astigmatism changes gradually) does not cause any discomfort to the wearer.

■ 像が非合焦状態であることを知覚できるのは非点収
差が1.0デイオプタ一前後である。
(2) It is possible to perceive that the image is out of focus when the astigmatism is around 1.0 diopter.

以上の生理学的な装用テスト結果から、第3図とvg4
図を比較すると、本発明(第4図)は、近用BCの上方
において累進帯部Bの近くで従来例同様0.50デイオ
プターと数点収差等高線が狭くなるが、装用老眼の瞳径
(例えば4 m1mΦ)を考慮すれば0.50デイオプ
ターの非点収差は生理学的に問題とならない。このこと
は、従来例において理想的な非点収差ゼロのへそ点構成
の面を使用しても、累進帯中で遠用光線中心から15m
/mの位置で加入度2.0デイオプターのレンズを考え
た場合、瞳径を4 m/m Φとすると、装用眼の瞳は
その上部と下部とで (2,00/ 15) x4=o、53Dptrの屈折
力の違いを有するにもかかわらず生理学的になんら問題
にならなかったことからも、本願の  。
From the above physiological wear test results, Fig. 3 and vg4
Comparing the figures, in the present invention (Fig. 4), the several-point aberration contour line is narrower to 0.50 dayopter near the progressive zone B above the near BC, as in the conventional example, but the pupil diameter of the presbyopic wearer ( For example, if we consider the diameter of 4 m1 mΦ), astigmatism of 0.50 diopter is not a physiological problem. This means that even if a surface with an ideal umbilicus point configuration with zero astigmatism is used in the conventional example, it is possible to
When considering a lens with an addition power of 2.0 diopters at a position of , 53Dptr, but it did not pose any physiological problem, and therefore, the present invention.

累進帯部の0.50デイオプターの非点収差は問題にな
らないことが裏付けされる。
This confirms that the astigmatism of 0.50 diopter in the progressive band portion is not a problem.

累進帯部の周辺の非点収差等高線は、従来例(第3図)
に比して本発明(第4図)の方がなだらかな傾斜をもっ
ており、特に非合焦状態の評価境界となる1、0デイオ
プターの非点収差は著しく改良されている。また、近用
部Cも、光学的に0.5デイオプタ一非点収差等高線で
比較すると、従来例(第3図)の方が広いように思われ
るが前述したように生理学的観点から見れば本発明(第
4図)の方が非点収差等布線の傾斜及び分布が滑らかと
なり広い近用視野として知覚できる長所を有する。しか
し、0.1デイオプターの等高線領域内(ゼロディオプ
ター領域:斜線部)は従来例に比して狭くなっている。
The astigmatism contour lines around the progressive zone are as shown in the conventional example (Fig. 3).
Compared to this, the lens according to the present invention (FIG. 4) has a gentler slope, and in particular, the astigmatism of 1.0 dayopter, which is the evaluation boundary in the out-of-focus state, has been significantly improved. Also, when comparing the near vision area C optically using the 0.5 day-one-astigmatism contour line, it seems that the conventional example (Fig. 3) is wider, but from a physiological point of view as mentioned above, The present invention (FIG. 4) has the advantage that the slope and distribution of the astigmatism distribution line are smoother and can be perceived as a wider near field of vision. However, the contour line area of 0.1 diopter (zero diopter area: shaded area) is narrower than in the conventional example.

これは次数nが小さいためである。This is because the order n is small.

次に、「像のゆれ」について本発明を従来例と比較する
。本発明では、「像のゆれ」評価に球面収差スポット法
という新しい評価方法を確立して利用した。この球面収
差スポット法は、従来球面レンズの収差状態を見るため
の方法として応用されたものであるが、第5図に模式的
に示すように被検レンズLの全面に平行光線を入射させ
、レンズ後面から一定距離P′の所でその光線のスポッ
トダイアフラムを見るという方法である。これを上述の
従来例や本実施例のように遠用度数0.00ディオプタ
ー、近用加入度2−00デイオプターのレンズの評価に
利用する場合、評価面を図示のように例えばP ’ =
 500m/m にとれば、近用光学中心を通る光線の
みが評価面上に収束され、周辺部、累進帯部、遠用部と
近用光学中心から遠ざかるにしたがって、拡散の程度が
大きくなるスポットダイヤグラムが得られる。そして、
このスポットの拡散の不規則性が面形状の滑らかさの低
いことを示す。そしてこのスポットダイヤグラムの不規
則性と装用テストによる「像のゆれ」の知覚量との間に
は相関関係があることが本発明者の装用テストかられか
った。
Next, the present invention will be compared with the conventional example regarding "image wobbling". In the present invention, a new evaluation method called the spherical aberration spot method was established and utilized for evaluating "image wobbling." This spherical aberration spot method has conventionally been applied as a method for observing the aberration state of a spherical lens, but as schematically shown in FIG. This method involves viewing the spot diaphragm of the light beam at a certain distance P' from the rear surface of the lens. When this is used to evaluate a lens with a distance power of 0.00 diopters and a near power of 2-00 diopters, as in the conventional example and the present example, the evaluation surface is, for example, P' =
500 m/m, only the rays passing through the near optical center are converged on the evaluation surface, and the degree of diffusion increases as the distance from the near optical center increases in the peripheral area, progressive zone, and distance area. A diagram is obtained. and,
This irregularity in spot diffusion indicates that the surface shape is less smooth. The inventor's wear test revealed that there is a correlation between the irregularity of the spot diagram and the perceived amount of "image wobbling" in the wear test.

第6A図は評価面距離P’=400の場合の、第6B図
は評価面粗!P’=500の場合の従来例のスポットダ
イヤグラムをそれぞれ示している。
Figure 6A shows the evaluation surface distance P'=400, and Figure 6B shows the evaluation surface roughness! A spot diagram of a conventional example when P'=500 is shown.

また、第7A図、第7B図はそれぞれ評価面距離“P 
’ = 400m/m 、 P ’ = 500m/m
の本発明によるレンズのスポットダイヤグラムを示して
いる。
In addition, FIGS. 7A and 7B each show the evaluation surface distance “P”.
' = 400m/m, P' = 500m/m
1 shows a spot diagram of a lens according to the invention;

これら第6八図ないし第7B図から本発明は従来例に比
して周辺部の面形状が極めて滑らかであり、このことは
、「像のゆれ」が極めて少ないということを示している
As can be seen from FIGS. 68 to 7B, the surface shape of the peripheral portion of the present invention is extremely smooth compared to the conventional example, which indicates that "image wobbling" is extremely small.

(第2実施例) 第8A図は、第(1)式の次数nをn=16とじたとき
の非点収差等布線図であり、第8B図はこの第2実施例
における球面収差スポットダイヤグラムを示している。
(Second Example) Figure 8A is an astigmatism distribution diagram when the order n of equation (1) is set to n=16, and Figure 8B is a spherical aberration spot in this second example. Shows a diagram.

この第2実施例では近用部Cにおける0、1デイオプタ
ー以下の非点収差分布が比較的狭くなっ°ている。レン
ズメーターで近用部の屈折力を光学的に測定する場合、
0.1デイオプタ一以上の非点゛収差は視覚できるため
0.1デイオプターの範囲が狭いことは欠点となる。近
用部の非点収差分布は次数が低くなるにしたがって低デ
ィオプターの非点収差領域が狭くなり、生理学的には問
題ないが光学的には、次数n=16が実用上の下限と言
える。また、第8B図に示すように、スポットダイヤグ
ラムからも周辺部から遠用部にかけ、少し湾曲した分布
をもち「像のゆれ」が少しあることがわかる。
In this second embodiment, the astigmatism distribution below 0.1 diopter in the near vision area C is relatively narrow. When optically measuring refractive power in the near vision area with a lensmeter,
Since astigmatism of 0.1 diopter or more is visible, the narrow range of 0.1 diopter is a disadvantage. Regarding the astigmatism distribution in the near vision area, as the order becomes lower, the astigmatism region of low diopter becomes narrower, and although there is no physiological problem, optically, the order n=16 can be said to be the practical lower limit. Further, as shown in FIG. 8B, it can be seen from the spot diagram that the distribution is slightly curved from the peripheral area to the distance area, and there is a slight "image wobbling".

(第3実施例) 第9A図は、本発明の第3の実施例を示すもので第(1
)式の次数nをn=20として、rb = 100m/
m 5S=0.00デイオプター、t=2m/m 、 
Add=2.OOディオプター、Nji!=1.500
である、累進屈折面を構成したレンズの非点収差等高線
図であり、第9B図は、そのスポットダイヤグラムであ
る。
(Third Embodiment) Figure 9A shows the third embodiment of the present invention.
), the order n of the equation is n=20, rb = 100m/
m5S=0.00 dayopter, t=2m/m,
Add=2. OO diopter, Nji! =1.500
FIG. 9B is an astigmatism contour map of a lens having a progressive refractive surface, and FIG. 9B is a spot diagram thereof.

なお、本実施例における係数a  は’fal1図αβ に示す値をもつ。第11図は横行にαの値を縦列にβの
値を示し、これら各α、βの組合せで表わ例えばα=2
、n=3で与えられる゛係数a23は、as、=−0,
512x 10’ =−51,2テあることを示してい
る。本発明の累進屈折面は、第11図この第3実施例は
5、第2実施例に比して近用部の0.1デイオプタ一非
点収差等高線領域が広くなり、生理学的にはもちろん光
学的にも十分実用になると言える。また、第9B図のス
ポットダイヤグラムのスポット分布状態も極めて滑らか
で、「像のゆれ」が極めて少ないことが理解できる。
Note that the coefficient a in this embodiment has a value shown in αβ in 'fal1 diagram. Figure 11 shows the values of α in the horizontal rows and the values of β in the vertical columns, and is expressed as a combination of these α and β. For example, α=2
, the coefficient a23 given by n=3 is as,=-0,
This shows that there are 512x 10' = -51,2 te. The progressive refractive surface of the present invention is shown in FIG. It can be said that it is sufficiently practical optically. It can also be seen that the spot distribution in the spot diagram of FIG. 9B is extremely smooth, and there is extremely little "image wobbling."

(第4実施例) 第10A図は第(1)式において次数nをn=24とし
た累進屈折面をもつレンズの非点収差等布線図であり、
第10B図はそのレンズのスポ−/ )ダイヤグラムで
ある。
(Fourth Example) FIG. 10A is an astigmatism contour diagram of a lens having a progressive refractive surface with the order n=24 in equation (1),
FIG. 10B is a sports/) diagram of the lens.

近用部Cの0.1デイオプタ一非点収差等高線の広さは
第3実施例よりさらに広くなっているが、周辺部りにお
ける非点収差等布線の分布が第1ないし第3実施に比し
て悪化して右り、周辺部の面形状の滑らかさの低下と、
非点収差量の増大がわかる。このことは第10B図のス
ポットダイヤグラムのスポット分布にも明確に表われ、
「像のゆれ」が多いことがわかる。この周辺部の非点収
差の増加と「像のゆれ」の増加は次数がより高くなるに
従って顕著となり、光学的及び生理学的な実用限界は次
数n=24と言える。
The width of the 0.1 day optic one-astigmatism contour line in the near area C is wider than that of the third embodiment, but the distribution of the astigmatism contour line in the peripheral area is different from that in the first to third embodiments. It gets worse compared to the previous one, and the smoothness of the surface shape at the periphery decreases.
It can be seen that the amount of astigmatism increases. This is clearly seen in the spot distribution in the spot diagram in Figure 10B.
It can be seen that there is a lot of "image shaking". This increase in astigmatism in the peripheral area and increase in "image wobbling" become more pronounced as the order becomes higher, and it can be said that the optically and physiologically practical limit is at order n=24.

なお、係数a  については、近用加入変敗αβ Addや、後側屈折面のカーブ値(曲率半径rb )す
なわち遠用度数S及び/または円柱度数やその軸角度や
、累進屈折面の次数nによって変化する。
Regarding the coefficient a, the near addition change αβ Add, the curve value (curvature radius rb) of the rear refractive surface, that is, the distance power S and/or the cylindrical power and its axis angle, and the order n of the progressive refractive surface It changes depending on.

きくなる。次数nを10≦n≦24とするときのa、。I hear it. a when the order n is 10≦n≦24.

はすべて−102≦ao3、a12  、a21  o
ra、。≦102の係数を持つことを示している。なお
、本発明の累進屈折面は偶関数で構成されるため、前述
したようにαが奇数であるall  はa12=00係
数値をとる。表2はこの場合も含めて表わしていると解
釈されたい。また、非点収差。
are all -102≦ao3, a12, a21 o
ra. It shows that it has a coefficient of ≦102. Note that since the progressive refractive surface of the present invention is constituted by an even function, as described above, all where α is an odd number takes the coefficient value a12=00. Table 2 should be interpreted to include this case. Also, astigmatism.

除去の観点からみると、第(1)式の次数nの方が非点
収差量はそれ程度化しない。
From the viewpoint of removal, the amount of astigmatism does not become as large as the order n of equation (1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、累進屈折面と座標系との関係を示す説明図、
第2図は本発明の非点収差評価法を説明するための図、
第3図は比較従来例の非点収差等高線図、第4図は本発
明の第1の実施例の非点収差等高線図、第5図は球面収
差スポットダイヤグラム法を説明するための図、第6A
図、第6B図は従来例のスポットダイヤグラム、第7A
図、第7B図は第1実施例のスポットダイヤグラム、第
8A図は本発明の第2の実施例の非点収差等高線図、第
8B図はそのスポットダイヤグラム、第9A図は本発明
の第3の実施例の非点収差等高線図、第9B図はそのス
ポットダイヤグラム、第10A図は本発明の第3の実施
例の非点収差等高線図、第1(18図はそのスポットダ
イヤグラム、第11L・・・・・・レンズ、S・・・・
・・累進屈折面、A・旧・・遠用部、B・・・・・・中
間累進帯部、C・・・・・・近用部、D・・・・・・周
辺部。
FIG. 1 is an explanatory diagram showing the relationship between the progressive refraction surface and the coordinate system;
FIG. 2 is a diagram for explaining the astigmatism evaluation method of the present invention,
3 is an astigmatism contour diagram of the comparative conventional example, FIG. 4 is an astigmatism contour diagram of the first embodiment of the present invention, and FIG. 5 is a diagram for explaining the spherical aberration spot diagram method. 6A
Figure 6B is a spot diagram of the conventional example, and Figure 7A is a spot diagram of the conventional example.
Figure 7B is a spot diagram of the first embodiment, Figure 8A is an astigmatism contour diagram of the second embodiment of the present invention, Figure 8B is its spot diagram, and Figure 9A is the spot diagram of the third embodiment of the present invention. FIG. 9B is a spot diagram thereof, FIG. 10A is an astigmatism contour diagram of the third embodiment of the present invention, 1st (FIG. 18 is its spot diagram, 11L. ...Lens, S...
... Progressive refractive surface, A. Old distance vision part, B... Intermediate progressive zone part, C... Near vision part, D... Peripheral part.

Claims (2)

【特許請求の範囲】[Claims] (1)前側屈折面と後側屈折面のいずれか一方の屈折面
は、遠用部、近用部、さらに該遠用部より該近用部に面
の屈折力が連続的に変化する中間累進帯部を有する非球
面で構成され、他の屈折面は球面またはトロイダル面と
して構成された累進多焦点レンズにおいて 前記非球面を Z=Σ^α^+^β^=^n_0≦α,β≦n a_α
_β・x^α・y^β(a_α_β:係数) 10≦n≦24 のべき関数として構成したことを特徴とする累進多焦点
眼鏡レンズ。
(1) Either the front refractive surface or the rear refractive surface has a distance portion, a near portion, and an intermediate portion where the refractive power of the surface changes continuously from the distance portion to the near portion. In a progressive multifocal lens composed of an aspherical surface having a progressive zone and other refractive surfaces constructed as spherical or toroidal surfaces, the aspherical surface is defined as Z=Σ^α^+^β^=^n_0≦α,β ≦na_α
A progressive multifocal eyeglass lens configured as a power function of _β・x^α・y^β (a_α_β: coefficient) 10≦n≦24.
(2)上記次数nは、16≦n≦24であることを特徴
とする特許請求の範囲第(1)項記載の累進多焦点眼鏡
レンズ。
(2) The progressive multifocal eyeglass lens according to claim (1), wherein the order n is 16≦n≦24.
JP60094384A 1985-05-01 1985-05-01 Progressive multifocal spectacle lens Expired - Lifetime JPH0680448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094384A JPH0680448B2 (en) 1985-05-01 1985-05-01 Progressive multifocal spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094384A JPH0680448B2 (en) 1985-05-01 1985-05-01 Progressive multifocal spectacle lens

Publications (2)

Publication Number Publication Date
JPS61252526A true JPS61252526A (en) 1986-11-10
JPH0680448B2 JPH0680448B2 (en) 1994-10-12

Family

ID=14108797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094384A Expired - Lifetime JPH0680448B2 (en) 1985-05-01 1985-05-01 Progressive multifocal spectacle lens

Country Status (1)

Country Link
JP (1) JPH0680448B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121412A (en) * 1989-07-14 1991-05-23 Nikon Corp Progressive focus lens
US5886766A (en) * 1994-10-06 1999-03-23 Seiko Epson Corporation Progressive multifocal lens and manufacturing method therefor
JP2002122825A (en) * 2000-10-12 2002-04-26 Ito Kogaku Kogyo Kk Progressive refracting power ophthalmic lens
CN101968575A (en) * 2010-08-31 2011-02-09 苏州科技学院 Progressive additional lens and preparation method thereof
JP2016206338A (en) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 Vision correction lens designing method and vision correction lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958415A (en) * 1982-09-29 1984-04-04 Seiko Epson Corp Progressive multifocal lens
JPS6048017A (en) * 1983-07-22 1985-03-15 ソ−ラ インタナシヨナル ホ−ルデイングス リミテツド Spectacles lens and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958415A (en) * 1982-09-29 1984-04-04 Seiko Epson Corp Progressive multifocal lens
JPS6048017A (en) * 1983-07-22 1985-03-15 ソ−ラ インタナシヨナル ホ−ルデイングス リミテツド Spectacles lens and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121412A (en) * 1989-07-14 1991-05-23 Nikon Corp Progressive focus lens
US5886766A (en) * 1994-10-06 1999-03-23 Seiko Epson Corporation Progressive multifocal lens and manufacturing method therefor
JP2002122825A (en) * 2000-10-12 2002-04-26 Ito Kogaku Kogyo Kk Progressive refracting power ophthalmic lens
CN101968575A (en) * 2010-08-31 2011-02-09 苏州科技学院 Progressive additional lens and preparation method thereof
JP2016206338A (en) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 Vision correction lens designing method and vision correction lens

Also Published As

Publication number Publication date
JPH0680448B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US11067832B2 (en) Lens element
US5000559A (en) Ophthalmic lenses having progressively variable refracting power
EP3561578A1 (en) Lens element
US7025455B2 (en) Multifocal contact lenses having a pinhole
EP0578833A1 (en) Variable focus visual power correction apparatus
AU2004267527B2 (en) Method for determination of an ophthalmic lens using an astigmatism prescription for far sight and for near sight
GB2058391A (en) Ophthalmic lens having a progressively variable focal power
GB2277997A (en) Progressive multifocal ophthalmic lens pair
JPH0990291A (en) Progressive multifocus lens
CN102171599A (en) Toric ophthalmic lenses having selected spherical aberration characteristics
JP3617004B2 (en) Double-sided aspherical progressive-power lens
US9307899B2 (en) Process for determining a pair of progressive ophthalmic lenses
KR20070100900A (en) Method of defining a supplementary face for spectacles
EP2835682A1 (en) Progressive-power lens and method for designing progressive-power lens
CA2471193A1 (en) Multifocal ophthalmic lenses
US6186626B1 (en) Pair of multifocal progressive spectacle lenses
US7029117B2 (en) Contact lens and contact lens design method
JPS61252525A (en) Progressive multifocus lens for spectacles
JPS61252526A (en) Progressive multifocus spectacle lens
US6322215B1 (en) Non-progressive trifocal ophthalmic lens
JPS5988718A (en) Progressive focusing spectacle lens considering vergence of eye
KR20050029203A (en) Method for indicating optical performance of spectacle lens
US20130148078A1 (en) Progressive multifocal ophthalmic lens
Ogle Distortion of the image by ophthalmic prisms
EP2824503B1 (en) Lens set manufacturing method