JPS61252404A - Controller for quantity of ventilation of superheater - Google Patents

Controller for quantity of ventilation of superheater

Info

Publication number
JPS61252404A
JPS61252404A JP9319585A JP9319585A JPS61252404A JP S61252404 A JPS61252404 A JP S61252404A JP 9319585 A JP9319585 A JP 9319585A JP 9319585 A JP9319585 A JP 9319585A JP S61252404 A JPS61252404 A JP S61252404A
Authority
JP
Japan
Prior art keywords
superheater
steam
ventilation
system piping
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9319585A
Other languages
Japanese (ja)
Other versions
JPH042842B2 (en
Inventor
徳幸 竹島
勲 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP9319585A priority Critical patent/JPS61252404A/en
Publication of JPS61252404A publication Critical patent/JPS61252404A/en
Publication of JPH042842B2 publication Critical patent/JPH042842B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野] 本発明は高速増殖炉の水蒸気系配管に配置される過熱器
の通気量を制御する過熱器通気量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superheater ventilation rate control device for controlling the ventilation rate of a superheater disposed in a steam system piping of a fast breeder reactor.

[発明の技術的背景とその問題点1 一般に、液体金属冷却形高速増殖炉プラントは、液体金
属冷却形高速増殖炉で発生した核エネルギを中間熱交換
器に移送する1次冷却系と、中間熱交換器からのエネル
ギを蒸発器に移送する2次冷却系と、蒸発器で得たエネ
ルギにより蒸気タービンを駆動する水・蒸気系とから主
体部分が構成されている。
[Technical background of the invention and its problems 1 Generally, a liquid metal-cooled fast breeder reactor plant consists of a primary cooling system that transfers the nuclear energy generated in the liquid metal-cooled fast breeder reactor to an intermediate heat exchanger, and an intermediate cooling system. The main part consists of a secondary cooling system that transfers energy from the heat exchanger to the evaporator, and a water/steam system that uses the energy obtained from the evaporator to drive the steam turbine.

第5図は、このような液体金属冷却形高速増殖炉プラン
トの一つである液体金属ナトリウム冷却形高速増殖炉プ
ラントの一例を示すもので、このプラントは、1次ナト
リウム系1.2次ナトリウム系2I3よび水・蒸気系3
とから主体部分が構成されている。
Figure 5 shows an example of a liquid metal sodium cooled fast breeder reactor plant, which is one of such liquid metal cooled fast breeder reactor plants. System 2I3 and water/steam system 3
The main part is composed of.

1次ナトリウム弔1は、原子炉4で発生した核エネルギ
を液体金属ナトリウムを介して中間熱交換115に移送
するために設けられており、原子炉4に液体金属ナトリ
ウムを循環させる一次系配管6には、上流から順に、中
間熱交換器5.1次系ポンプ7が設けられている。
The primary sodium pipe 1 is provided to transfer the nuclear energy generated in the reactor 4 to the intermediate heat exchanger 115 via liquid metal sodium, and the primary system piping 6 circulates the liquid metal sodium to the reactor 4. An intermediate heat exchanger 5 and a primary system pump 7 are provided in order from the upstream.

2次ナトリウム系2は、中間熱交換器5で得たエネルギ
を液体金属ナトリウムを介して過熱器8に移送するため
に設置けられており、中間熱交換器5で熱交換されエネ
ルギを得た液体金属ナトリウムを循環させる2次系配管
9には過熱器8、蒸発器1oおよび2次系ポンプ11が
順に設けられている。゛ 水・蒸気系3は、過熱器8および蒸発器1oで得たエネ
ルギにより蒸気タービン12を駆動するために設けられ
ており、過熱器8で熱交換した蒸気を循環さヰや水°蒸
門系配管13には蒸気タービン12、給水ポンプ14、
蒸発器1oおよび気水分離器15.が設けられている。
The secondary sodium system 2 is installed to transfer the energy obtained in the intermediate heat exchanger 5 to the superheater 8 via liquid metal sodium, and the secondary sodium system 2 is installed to transfer the energy obtained in the intermediate heat exchanger 5 to the superheater 8 through the liquid metal sodium. A superheater 8, an evaporator 1o, and a secondary pump 11 are provided in this order in a secondary system piping 9 that circulates liquid metal sodium.゛The water/steam system 3 is provided to drive the steam turbine 12 with the energy obtained from the superheater 8 and the evaporator 1o. The system piping 13 includes a steam turbine 12, a water supply pump 14,
Evaporator 1o and steam/water separator 15. is provided.

    −すなわち、過熱器8で熱交換され高温となっ
た蒸気は、隔離弁16、主蒸気止め弁17、蒸気加減弁
18が設置された配管を通り蒸気タービン12に導かれ
、蒸気タービン12を駆動した後、復水器19により復
水とされて、復水ポンプ20゜低圧給水過熱器21、を
順に経て給水ポンプ14に導かれる。
- That is, the steam heated to high temperature through heat exchange in the superheater 8 is guided to the steam turbine 12 through a pipe in which an isolation valve 16, a main steam stop valve 17, and a steam control valve 18 are installed, and drives the steam turbine 12. After that, the water is converted into condensate by the condenser 19, and is led to the feed water pump 14 through the condensate pump 20° and the low pressure feed water superheater 21 in this order.

なお、蒸気タービン12の入口側配管には主蒸気止め弁
17の上流側から分岐し、一端を復水器19に接続され
、タービンバイパス弁22を介挿されたタービンバイパ
ス配管23が配設されている。
In addition, a turbine bypass pipe 23 is arranged in the inlet side pipe of the steam turbine 12, which branches from the upstream side of the main steam stop valve 17, has one end connected to the condenser 19, and has a turbine bypass valve 22 inserted therein. ing.

そして、給水ポンプ14に導かれた水は、高圧給水過熱
器24、給水制御弁25を通り蒸発器10に流入し、こ
こで蒸気とされた後、気水分離器15に流入し、隔離弁
26を経て過熱器8に導かれる。
The water led to the feed water pump 14 flows into the evaporator 10 through the high-pressure feed water superheater 24 and the feed water control valve 25, where it is turned into steam, and then flows into the steam water separator 15, where it enters the isolation valve. 26 and is led to the superheater 8.

なお、気水分離器15から隔離弁26を介して過熱器8
に至る配管に隔離弁26の上流側から分岐し過熱器8の
低温出口側配管の隔離弁16の上゛流側に一端を接続さ
れ、過熱器バイパス弁27を介挿された過熱器バイパス
配管28が配設されている。
Note that the superheater 8 is connected to the steam/water separator 15 via the isolation valve 26.
A superheater bypass pipe branched from the upstream side of the isolation valve 26 to a pipe leading to the pipe, one end of which is connected to the upstream side of the isolation valve 16 of the low temperature outlet side pipe of the superheater 8, and a superheater bypass valve 27 is inserted. 28 are arranged.

以上のように構成された液体金属ナトリウム冷却形高速
増殖炉プラントでは、原子炉4で発生した核エネルギは
、1次ナトリウム系1.2次ナトリウム系2、水・蒸気
系3を介して蒸気タービン12を駆動するエネルギとし
て用いられる。
In the liquid metal sodium cooled fast breeder reactor plant configured as described above, the nuclear energy generated in the reactor 4 is transferred to the steam turbine via the primary sodium system 1, the secondary sodium system 2, and the water/steam system 3. It is used as energy to drive 12.

しかしながら11以上のように構成された高速増殖炉発
電プラントでは、過熱器8の通気量を増大させる場合に
は、原子炉熱出力のjv加に合せて蒸発器10廻りのヒ
ートバランスを保ちながら行なう必要があり、従来は過
熱器出口ナトリウム温度を所定の値に保つことにより制
御が行なわれているが、冷却材、たとえばナトリウムを
流通する二次冷却系配管9の無駄時間、時定数等により
蒸発810回りのヒートバランスを保ちながら過熱器8
の通気量の増大を図ることは非常に困難であった。
However, in a fast breeder reactor power plant configured as above, when increasing the ventilation amount of the superheater 8, it is done while maintaining the heat balance around the evaporator 10 in accordance with the addition of reactor thermal output jv. Conventionally, control has been carried out by keeping the sodium temperature at the outlet of the superheater at a predetermined value. Superheater 8 while maintaining heat balance around 810
It was extremely difficult to increase the amount of ventilation.

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
過熱器の通気量を増大させる場合に、熱出力の増加に合
せて蒸発器廻りのヒートバランスを保ちながら過熱器の
通気量を安定して増大させることのできる過熱器通気量
制御装置を提供しようとするものである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
An object of the present invention is to provide a superheater ventilation amount control device that can stably increase the amount of ventilation in the superheater while maintaining the heat balance around the evaporator in accordance with the increase in heat output when increasing the amount of ventilation in the superheater. That is.

[発明の概要] すなわち、本発明は水蒸気系配管に上流側から順に蒸発
器、気水分離器および過熱器を配置し、前記過熱器およ
び蒸発器において二次冷却系配管を流れる冷却材と熱交
換を行なう高速増殖炉の過熱器の通気lを制御する過熱
器通気量制御装置において、前記水蒸気系配管の過熱器
出口側に配置される流敞計からの過熱器通気m、前記二
次冷却系配管の過熱器入口側に配置される温度検出器か
らの過熱器入口側冷却材温度、前記気水分離器に配置さ
れる圧力計からの気水分離器圧力をそれぞれ入力し、前
記気水分離器に配置されるドレン弁のl11rtKを操
作することを特徴とする過熱器通気量制御装置である。
[Summary of the invention] That is, the present invention arranges an evaporator, a steam water separator, and a superheater in order from the upstream side in a steam system piping, and in the superheater and evaporator, the coolant and heat flowing through the secondary cooling system piping are disposed. In a superheater ventilation amount control device for controlling ventilation l of a superheater of a fast breeder reactor undergoing exchange, the superheater ventilation m from a flow meter disposed on the superheater exit side of the steam system piping, the secondary cooling Input the superheater inlet side coolant temperature from the temperature detector placed on the superheater inlet side of the system piping and the steam water separator pressure from the pressure gauge placed in the steam water separator, and This is a superheater ventilation amount control device characterized by operating a drain valve l11rtK disposed in a separator.

〔発明の実施例] 以下、本発明の詳細を図面に示す一実施例について説明
する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の過熱器通気ffi !II all装
置の入出力関係を示すもので、図において符号13は水
蒸気系配管を示している。この水蒸気系配管13には、
上流側から順に蒸発器10、気水分離器15および過熱
器8が配置されている。気水分離器15にはドレン配管
29が接続されており、このドレン配!!29にはドレ
ン弁30が介挿されている。
Figure 1 shows the superheater ventilation ffi! of the present invention. II shows the input/output relationship of the all device, and in the figure, reference numeral 13 indicates the water vapor system piping. In this water vapor system piping 13,
An evaporator 10, a steam separator 15, and a superheater 8 are arranged in this order from the upstream side. A drain pipe 29 is connected to the steam/water separator 15, and this drain pipe! ! A drain valve 30 is inserted in 29.

また気水分離器15には気水分離器15内の圧力を測定
する圧力計31が配置されている。水蒸気系配管13の
過熱器8下流側には過熱器通気量を測定する流量計32
が配置されている。
Further, a pressure gauge 31 for measuring the pressure inside the steam/water separator 15 is arranged in the steam/water separator 15 . On the downstream side of the superheater 8 in the steam system piping 13, there is a flow meter 32 for measuring the superheater ventilation amount.
is located.

図において符号9は冷却材、たとえば液体金属ナトリウ
ムを流通する二次冷却系配管を示しており、この二次冷
却系配管9内の冷却材は過熱器8で水蒸気系配管13の
蒸気と熱交換した後、さらに蒸発器10において水蒸気
系配管13の給水と熱交換される。
In the figure, reference numeral 9 indicates a secondary cooling system piping through which a coolant, for example, liquid metal sodium, flows. After that, heat is exchanged with the water supplied from the steam system piping 13 in the evaporator 10.

図において符号33は本発明の過熱器通気量制御装置を
示しており、この過熱器通気量制御装置は、水蒸気系配
管13の過熟器8出口側に配置される流量計32からの
過熱器通気量、二次冷却系配管9の過熱器8人口側に配
置される温度検出器34からの過熱器入口側冷却材温度
、気水分離器15に配置される圧力計31からの気水分
離器圧力をそれぞれ入力し、気水分IIIIl器15に
配置されるドレン弁30の開度を操作する。なお、この
過熱器通気量制御装置にはディジタル計算機を用いた計
算機直接制御(DDC)が用いられている。
In the figure, reference numeral 33 indicates a superheater air flow rate control device of the present invention, and this superheater air flow rate control device is configured to control the flow rate of the superheater from the flow meter 32 disposed on the exit side of the superheater 8 of the steam system piping 13. Airflow rate, superheater inlet side coolant temperature from temperature detector 34 placed on the superheater 8 population side of secondary cooling system piping 9, steam/water separation from pressure gauge 31 placed in steam/water separator 15 The opening degree of the drain valve 30 disposed in the steam/moisture vessel 15 is controlled by inputting the vessel pressure. Note that this superheater ventilation amount control device uses computer direct control (DDC) using a digital computer.

第2図は過熱器通気量制御装置の詳細を示すもので、こ
の装置では、入力された過熱器入口側冷却材温度に基づ
いてあらかじめ定められたプログラムにより過熱器通気
量が設定され、この過熱器通気量と流量計32で測定さ
れた過熱器通気mとの偏差が求められ、この偏差信号は
Pr演算され低値優先回路(LVG)に出力される。一
方、気水分離器15の圧力計31から入力された気水分
離器圧力と、圧力設定値との偏差がとられ、この偏差信
号はPI演算された後、低値優先回路に出力される。低
値優先回路からは過熱器通気量に基づく信号あるいは気
水分離器圧力に基づく信号のうち低い方の値が選択され
、この値はドレン弁の非線形補償fz  (X)を加え
られた後、気水分離器15のドレン弁30のn度が操作
される。
Figure 2 shows the details of the superheater ventilation rate control device. In this device, the superheater ventilation rate is set according to a predetermined program based on the input coolant temperature at the inlet of the superheater. The deviation between the airflow rate of the superheater and the airflow m of the superheater measured by the flowmeter 32 is determined, and this deviation signal is subjected to Pr calculation and output to the low value priority circuit (LVG). On the other hand, the deviation between the steam and water separator pressure input from the pressure gauge 31 of the steam and water separator 15 and the pressure setting value is calculated, and this deviation signal is subjected to PI calculation and then output to the low value priority circuit. . From the low value priority circuit, the lower value of the signal based on the superheater air flow rate or the signal based on the steam separator pressure is selected, and this value, after adding the nonlinear compensation fz (X) of the drain valve, is selected. The drain valve 30 of the steam/water separator 15 is operated n degrees.

第3図は第2図で示したプログラムの関数f1(X)を
グラフで示すもので、横軸には過熱器入口側冷却材温度
が、縦軸には過熱器通気量がとられており、曲線aは第
2図の/+(X)を示している。
Figure 3 is a graph showing the function f1(X) of the program shown in Figure 2, where the horizontal axis represents the coolant temperature at the inlet of the superheater, and the vertical axis represents the superheater ventilation rate. , curve a shows /+(X) in FIG.

第4図は以上のように構成された過熱器通気量制御装置
により過熱器通気mを制御したときの各位置における流
量、あるいは温度を示すもので、横軸には時間がとられ
ている。すなわら図において曲線すは過熱器通気量を、
曲線Cは過熱器入口側冷却材温度を、曲線dは過熱器出
口側冷却材温度を、また破線で示す曲線eは気水分離器
15のドレン弁流量をそれぞれ示している。図から明ら
かなように、過熱器通気量は第3図に示すプログラム曲
Jllaに従って非常によく制御されている。
FIG. 4 shows the flow rate or temperature at each position when the superheater ventilation m is controlled by the superheater ventilation amount control device configured as described above, and time is plotted on the horizontal axis. In other words, the curve in the figure represents the superheater airflow rate,
Curve C shows the coolant temperature on the inlet side of the superheater, curve d shows the coolant temperature on the outlet side of the superheater, and curve e shown by a broken line shows the drain valve flow rate of the steam-water separator 15. As is clear from the figure, the superheater ventilation rate is very well controlled according to the program song Jlla shown in FIG.

すなわち以上のように構成された過熱器通気■制御装置
では、過熱器入口側冷却材温度の温度上昇に合せて過熱
器通気量を増大させる制御を計算機直接制御により行な
ったので、蒸発器10廻りのヒートバランスを保ちなが
ら安定して過熱器8の通気量を増大させることができる
。また計算機直接制御のためドレン弁30の非線形補償
を容易に行なうことができ、制御性の向上を図ることが
できる。
In other words, in the superheater ventilation control device configured as described above, the control to increase the superheater ventilation amount in accordance with the temperature rise of the coolant on the inlet side of the superheater is performed by direct computer control. The ventilation amount of the superheater 8 can be stably increased while maintaining the heat balance. Moreover, since it is directly controlled by a computer, nonlinear compensation of the drain valve 30 can be easily performed, and controllability can be improved.

また、以上述べた実施例では、計算機直接11Jtll
を用いたので、この結果、運転員の労力の削減を図るこ
とができ、また誤動作を防止することができるので、制
御装置の信頼性を従来より大幅に向上することができる
In addition, in the embodiment described above, the computer directly 11Jtll
As a result, since the operator's labor can be reduced and malfunctions can be prevented, the reliability of the control device can be significantly improved compared to the conventional one.

[発明の効果1 以上述べたように、本発明の過熱器通気fft &lJ
 III装置によれば、運転員の操作を介さずに過熱器
通気量を安定に制御することができ、制御性および経済
性の向上を図ることができる。また過熱器の出口側冷却
材温度をほぼ一定に保つことができるため、蒸発器およ
び過熱器の健全性を向上することができる。
[Effect of the invention 1 As described above, the superheater ventilation fft &lJ of the present invention
According to the III device, the superheater ventilation amount can be stably controlled without operator intervention, and controllability and economical efficiency can be improved. Furthermore, since the temperature of the coolant on the exit side of the superheater can be kept substantially constant, the health of the evaporator and the superheater can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の過熱器通気II IIdJ tin装
置の入出力関係を示す配管系統図、第2図は本発明の過
熱器通気量制御装置の一実施例を示すブロック図、第3
図は第2図のプログラムに用いられる過熱器入口側冷却
材温度と過熱器通気量との関係を示すグラフ、第4図は
第2図に示す過熱器通気量制御装置により制御された過
熱器通気量を示すグラフ、第5図は従来の高速増殖炉プ
ラントを示す配管系統図である。 8・・・・・・過熱器 9・・・・・・二次冷却系配管 10・・・・・・蒸発器 13・・・・・・水蒸気系配管 15・・・・・・気水分離器 30・・・・・・ドレン弁 31・・・・・・圧力計 32・・・・・・流量計 34・・・・・・温度検出器 代理人弁理士   須 山 佐 − 第1図 第2図
FIG. 1 is a piping system diagram showing the input/output relationship of the superheater ventilation II IIdJ tin device of the present invention, FIG. 2 is a block diagram showing an embodiment of the superheater ventilation amount control device of the present invention, and FIG.
The figure is a graph showing the relationship between the superheater inlet side coolant temperature and the superheater ventilation rate used in the program in Figure 2, and Figure 4 is a graph showing the relationship between the superheater inlet side coolant temperature and the superheater ventilation rate used in the program in Figure 2. The graph showing the ventilation amount, FIG. 5, is a piping system diagram showing a conventional fast breeder reactor plant. 8... Superheater 9... Secondary cooling system piping 10... Evaporator 13... Steam system piping 15... Steam water separation Container 30... Drain valve 31... Pressure gauge 32... Flow meter 34... Temperature detector Patent attorney Suyama Sa - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)水蒸気系配管に上流側から順に蒸発器、気水分離
器および過熱器を配置し、前記過熱器および蒸発器にお
いて二次冷却系配管を流れる冷却材と熱交換を行なう高
速増殖炉の前記過熱器の通気量を制御する過熱器通気量
制御装置において、前記水蒸気系配管の過熱器出口側に
配置される流量計からの過熱器通気量、前記二次冷却系
配管の過熱器入口側に配置される温度検出器からの過熱
器入口側冷却材温度、前記気水分離器に配置される圧力
計からの気水分離器圧力をそれぞれ入力し、前記気水分
離器に配置されるドレン弁の開度を操作することを特徴
とする過熱器通気量制御装置。
(1) A fast breeder reactor in which an evaporator, a steam separator, and a superheater are arranged in order from the upstream side in the steam system piping, and the superheater and evaporator exchange heat with the coolant flowing through the secondary cooling system piping. In the superheater ventilation rate control device that controls the ventilation rate of the superheater, the superheater ventilation rate from a flow meter disposed on the superheater outlet side of the steam system piping, and the superheater ventilation rate on the superheater inlet side of the secondary cooling system piping. The superheater inlet side coolant temperature from the temperature detector placed in the steam separator and the steam water separator pressure from the pressure gauge placed in the steam water separator are input, respectively, and A superheater ventilation amount control device characterized by controlling the opening degree of a valve.
JP9319585A 1985-04-30 1985-04-30 Controller for quantity of ventilation of superheater Granted JPS61252404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9319585A JPS61252404A (en) 1985-04-30 1985-04-30 Controller for quantity of ventilation of superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9319585A JPS61252404A (en) 1985-04-30 1985-04-30 Controller for quantity of ventilation of superheater

Publications (2)

Publication Number Publication Date
JPS61252404A true JPS61252404A (en) 1986-11-10
JPH042842B2 JPH042842B2 (en) 1992-01-21

Family

ID=14075796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9319585A Granted JPS61252404A (en) 1985-04-30 1985-04-30 Controller for quantity of ventilation of superheater

Country Status (1)

Country Link
JP (1) JPS61252404A (en)

Also Published As

Publication number Publication date
JPH042842B2 (en) 1992-01-21

Similar Documents

Publication Publication Date Title
US3467577A (en) Water moderated and cooled nuclear reactor power plant
KR830010337A (en) Steam generator for heat recovery
US4088182A (en) Temperature control system for a J-module heat exchanger
JPS6027882B2 (en) Automatic rearrangement device for water supply for steam generators
JPS61252404A (en) Controller for quantity of ventilation of superheater
US3947319A (en) Nuclear reactor plants and control systems therefor
JPS6179905A (en) Drain recovery system
CN212622559U (en) Corrosion control device for water vapor system of power plant
JPS61252405A (en) Temperature controller for outlet steam of evaporator
JPS6380101A (en) Evaporator-outlet sodium temperature controller
JPS61252406A (en) Temperature controller for outlet steam of superheater
JP2507357B2 (en) Reactor power controller
JPH01208605A (en) Apparatus for controlling outlet steam temperature of superheater
JPS5869309A (en) Liquid metal cooling type fast breeder reactor plant
JPS58102003A (en) Liquid metal cooling type fast breeder reactor plant
JPS5842779Y2 (en) Control device for condensate system in nuclear power generation equipment
JPS5899601A (en) Liquid metal cooling type fast breeder reactor plant
JPS6291708A (en) Warming controller for plant
JPS63295997A (en) Warming control apparatus of plant
SU1377508A1 (en) Steam superheater
CN115036049A (en) Passive residual heat removal test device based on hot water boiler simulation boundary
JPS5869307A (en) Liquid metal cooling type fast breeder reactor plant
JPS6020193A (en) Water supply system for boiling-water type reactor
JPH0646174B2 (en) Sodium sampling system
JPS6410798B2 (en)