JPS6125153A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6125153A
JPS6125153A JP14619784A JP14619784A JPS6125153A JP S6125153 A JPS6125153 A JP S6125153A JP 14619784 A JP14619784 A JP 14619784A JP 14619784 A JP14619784 A JP 14619784A JP S6125153 A JPS6125153 A JP S6125153A
Authority
JP
Japan
Prior art keywords
layer
oxygen
carbon
photoconductive layer
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14619784A
Other languages
Japanese (ja)
Other versions
JPH06100841B2 (en
Inventor
Yukio Tanigami
谷上 行夫
Shuji Iino
修司 飯野
Mitsutoshi Nakamura
中村 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP59146197A priority Critical patent/JPH06100841B2/en
Publication of JPS6125153A publication Critical patent/JPS6125153A/en
Publication of JPH06100841B2 publication Critical patent/JPH06100841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain excellent electrophotographic characteristics by providing such a gradient at which the concn. of C is low near an a-Si photoconductive layer and is higher toward the surface to the concn. of C of an a-Si overcoat layer which contains C and is provided on said photosensitive layer and incorporating oxygen into the part near the photoconductive layer. CONSTITUTION:The concn. gradient is provided to the light transmittable a-Si. C-H overcoat layer 3 provided on the photoconductive layer 2 contg. a-Si such a manner that the concn. of carbon is made low near the layer 2 and is made higher toward the surface. Oxygen is incorporated into said layer in a 35- 65at% range at the outermost surface and at <=10at% near the layer 2. The holding of electric charge is thus improved by using the a-Si.C-H in the layer 3 and the problem of the adhesion to the layer 2 and the accumulation of the charge can be solved by providing the above-mentioned gradient to the carbon content of the layer 3. Photo-fatigue and clouding are eliminated by doping the oxygen to the low carbon content part of the layer 3. The excellent photosensitivity, resolving power, gradation reproducibility, wear resistance, moisture resistance and durability are thus obtd. and the generation of white lines, white spots, etc. is prevented.

Description

【発明の詳細な説明】 巌果上n利用分野 本発明は電子写真感光体、就中、アモルファスシリコン
感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to an electrophotographic photoreceptor, particularly an amorphous silicon photoreceptor.

従来技術 ここ数年、グロー放電分解法やスパッタリング法によっ
て生成されるアモルファスシリコン(amorpbou
s 5illicon;以下a  Si と略す)の感
光体への応用が注目されてきている。また同様に、長波
長領域の感度を向上して半導体レーザによる作像を可能
とするアモルファスシリコン−ゲルマニウム(以下、a
−8i:Geと記す)の応用も注目されている。これは
a−8i y  a−8i:Geが従来のセレンやCd
S感光体と比して耐環境汚染性、耐熱性、摩耗性、光感
度特性等において一段と優れているためである。
Prior Art In recent years, amorphous silicon produced by glow discharge decomposition method or sputtering method has been developed.
The application of s 5 illicon (hereinafter abbreviated as a Si ) to photoreceptors has been attracting attention. Similarly, amorphous silicon-germanium (hereinafter referred to as a
-8i:Ge) is also attracting attention. This is because a-8i y a-8i: Ge is conventional selenium and Cd
This is because it is much better in terms of environmental pollution resistance, heat resistance, abrasion resistance, photosensitivity, etc. compared to S photoreceptors.

しかしながら、a −S i 、  a −S i:G
eは暗抵抗が低くそのままでは電荷保持層を兼ねた光導
電層として使用できないという欠点がある。このため、
酸素や窒素を含有させてその暗抵抗を向上させることが
提案されているが、逆に光感度が低下するという欠点が
あり、その含有量も制限がある。
However, a −S i , a −S i:G
E has a drawback that it has a low dark resistance and cannot be used as it is as a photoconductive layer that also serves as a charge retention layer. For this reason,
It has been proposed to improve the dark resistance by including oxygen or nitrogen, but this has the drawback of decreasing photosensitivity, and there are limits to the content.

このことにより、例えば\特開昭57=115551号
公報に示されるように、a  Si光導電層上に多量の
炭素を含むa−8i絶絶縁を形成して電荷保持の向上を
図ることが提案されている。しかしながら、この技術は
炭素含量が高く、光導電層との界面で剥離を生じ易く、
またコピーの繰返しに伴ない界面に電荷が蓄積し、残留
電位が上昇したり、あるいは蓄積電荷の横流れによる画
像のぼけが2発生し易い。また高炭素含量にもとづく感
度の低下に対し考慮されていない。さらに炭素含量70
 aLolIlic%(以下、at%と記す)以上のも
のについては表面硬度の低下に伴なう障害(例えば複写
に伴ない画像に白筋を生ずる)を避けることができない
As a result, it has been proposed to improve charge retention by forming an a-8i insulation containing a large amount of carbon on an a-Si photoconductive layer, as shown in, for example, JP-A-57-115551. has been done. However, this technology has a high carbon content and is prone to peeling at the interface with the photoconductive layer.
In addition, with repeated copying, charges are accumulated on the interface, which tends to increase the residual potential or cause blurring of the image due to horizontal flow of the accumulated charges. Also, no consideration is given to the reduction in sensitivity due to high carbon content. Furthermore, the carbon content is 70
If the content is higher than aLolIlic% (hereinafter referred to as at%), problems due to a decrease in surface hardness (for example, white streaks occur in images during copying) cannot be avoided.

オーバーコート層に炭素を含むアモルファスシリコンを
用いた感光体については、特開昭58−108543号
にも記載されている。この技術は、炭素濃度勾配につい
て示唆するものではなく、しかも炭素含量が30at%
までと低く、オーバーコート層としての耐湿性は不充分
なものしか得られず、10〜25at%程度を含有させ
たものでは複写枚数が増えるに従い、高湿中で画像流れ
を生じ易い。
A photoreceptor using amorphous silicon containing carbon in the overcoat layer is also described in JP-A-58-108543. This technology does not suggest a carbon concentration gradient, and the carbon content is 30 at%.
The moisture resistance as an overcoat layer is very low, and if the overcoat layer contains about 10 to 25 at%, image fading is likely to occur in high humidity as the number of copies increases.

アモルファスシリコン(光導電層)中の炭素濃度に勾配
をつける技術は特開昭57−119356号に提案され
ている。この技術はオーバーコート層ではなく、光導電
層の1部に炭素原子を含有する層領域を設けることを特
徴とするものであるが、その炭素含量はO・、03〜9
0at%と着るしく広範囲であり、特定の炭素含量のア
モルファスシリコンをオーバーコートに用いることにつ
いては全く提案されていない。また炭素を用いることに
伴ない問題となる光疲労や感度低下を解決するための技
術を提案していない。
A technique for creating a gradient in the carbon concentration in amorphous silicon (photoconductive layer) is proposed in Japanese Patent Laid-Open No. 119356/1983. This technology is characterized by providing a layer region containing carbon atoms in a part of the photoconductive layer instead of an overcoat layer, and the carbon content thereof is O.
The range is as wide as 0 at%, and no proposal has been made to use amorphous silicon with a specific carbon content for an overcoat. Furthermore, no technology has been proposed to solve the problems of optical fatigue and decreased sensitivity that occur when using carbon.

l贋勉1屹 本発明は、アモルファスシリコン系電子写真感光体の欠
点を改良し、光疲労がなく、光感度特性、電荷保持特性
、表面硬度、耐湿性等、電子写真特性全般にわたって優
れた性質を有する電子写真感光体を得ることを目的とす
る。
The present invention improves the drawbacks of amorphous silicon-based electrophotographic photoreceptors, and provides excellent overall electrophotographic properties such as photosensitivity, charge retention properties, surface hardness, and moisture resistance. The object of the present invention is to obtain an electrophotographic photoreceptor having the following properties.

l−@殻東 本発明は、7モル7アスシリコンを含む光導電層上に炭
素を含むアモルファスシリコンの透光性オーバーコート
層を設けた電子写真感光体において、オーバーコート層
が光導電層近接部で低く、表面に向けて高い炭素濃度勾
配を有し、最外表面において、35〜65a【%の範囲
にあり、かつ少なくとも光導電層近接部分において10
aL%以下の酸素を含有することを特徴とする電子写真
感光体に関する。
The present invention provides an electrophotographic photoreceptor in which a light-transmitting overcoat layer of amorphous silicon containing carbon is provided on a photoconductive layer containing 7 mol 7 as silicon, in which the overcoat layer is adjacent to the photoconductive layer. It has a carbon concentration gradient of 35% to 65% on the outermost surface, and a carbon concentration gradient of 10% at least in the vicinity of the photoconductive layer.
The present invention relates to an electrophotographic photoreceptor characterized by containing oxygen of aL% or less.

本発明の基本構成を第1図および第2図で説明する。The basic configuration of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は本発明電子写真感光体の部分断面模式図中、(
1)は基体、(2)は光導電層および(3)はオーバー
コート層を示す。
FIG. 1 is a schematic partial cross-sectional view of the electrophotographic photoreceptor of the present invention.
1) represents a substrate, (2) represents a photoconductive layer, and (3) represents an overcoat layer.

基体は通常の電子写真感光体に一般に用いられる導電性
材料、例えばAIドラム等であり、本発明はこの点に特
徴はない。
The substrate is a conductive material commonly used in ordinary electrophotographic photoreceptors, such as an AI drum, and the present invention is not characterized in this respect.

光導電層(2)は、アモルファスシリコン系感光層であ
り、アモルファスシリコン−水素(以下、a−8i:H
と云う)を基本とし、これに部分的に酸素、窒素、ハロ
ゲン(特にフッ素)等を加えたものであってもよい、、
マたa−8i:Geの層であってもよく、さらに硼素や
燐等を加えて、P、N制御を行なってもよい。
The photoconductive layer (2) is an amorphous silicon-based photosensitive layer, and is made of amorphous silicon-hydrogen (hereinafter a-8i: H
), but it may also be partially supplemented with oxygen, nitrogen, halogen (especially fluorine), etc.
Material a-8i: It may be a Ge layer, and boron, phosphorus, etc. may be added to perform P and N control.

a−8i を含む光導電層はグロー放電分解法等、常法
によって形成させればよい6層厚は10〜100μ転好
ましくは10〜60μ粕である。
The photoconductive layer containing a-8i may be formed by a conventional method such as a glow discharge decomposition method.The thickness of the photoconductive layer is 10 to 100 .mu.m, preferably 10 to 60 .mu.m.

基体(1)と光導電層(2)の間にはアンダーフート層
を設けてもよい。
An underfoot layer may be provided between the substrate (1) and the photoconductive layer (2).

本発明においては光導電層上にさらにオーバーコート層
を設ける。オーバーコート層はアモルファスシリコン−
炭素(以下、a−8i・C−Hと云う)で形成される。
In the present invention, an overcoat layer is further provided on the photoconductive layer. The overcoat layer is amorphous silicon.
It is formed from carbon (hereinafter referred to as a-8i.C-H).

a−8i−C−Hの炭素含量は表面層に至る程高く、最
表面層では、35〜65aL%(ic原子数/(C原子
数+Si原子数))×100)の範囲に設定するのが好
ましい。最表面層の炭素濃度が35社%より小さいと感
度が不十分で光疲労が発生すると共に、期待する耐湿安
定性が得られない。また、6Sat%以上では、表面硬
度が低下し、白筋状の画像欠陥を生ずる。炭素含量35
〜65at%の層は0.01〜1.5μ如、より好まし
くは0.03〜0.5μmである。層厚がこれより薄い
と耐湿性、耐刷性の面から保護層としての機能が不十分
となり、厚すぎると感度が低下し残留電位が高くなる欠
点を生ずる。
The carbon content of a-8i-C-H is high as it reaches the surface layer, and in the outermost layer, it is set in the range of 35 to 65aL% (number of IC atoms/(number of C atoms + number of Si atoms)) x 100). is preferred. If the carbon concentration in the outermost layer is less than 35%, the sensitivity will be insufficient and optical fatigue will occur, and the expected moisture resistance stability will not be obtained. Further, if the content is 6Sat% or more, the surface hardness decreases and white streak-like image defects occur. Carbon content 35
The ~65 at% layer has a thickness of 0.01 to 1.5 μm, more preferably 0.03 to 0.5 μm. If the layer thickness is thinner than this, the function as a protective layer will be insufficient in terms of moisture resistance and printing durability, and if it is too thick, the sensitivity will decrease and the residual potential will increase.

炭素含量は光導電層に近づくに従って漸減させ、オーバ
ーコート層と光導電層との間で実質上、炭素濃度に関す
るギャップを生じないようにする。
The carbon content is tapered as one approaches the photoconductive layer so that there is virtually no gap in carbon concentration between the overcoat layer and the photoconductive layer.

このことによって、オーバーコート層と光導電層間の密
着性を向上させ、剥離を防止すると共に、両者の界面部
における電荷の蓄積による残留電位の上昇や、蓄積され
た電荷の横流れによる画像のボケを防止する。炭素濃度
勾配部の層厚は、密着性の点からはできるだけなだらか
な濃度勾配をもたせるため厚くする方が好ましいが、光
導電特性を考慮すると約200〜9000人とするのが
好ましい6濃度勾配部の厚みが小さすぎると、実質上濃
度勾配部がないのと同様の欠陥を生じ、逆に9000Å
以上としても、上記の効果をそれ以上に達成することが
できないぽかりでなく、a−8i・C−H層が厚くなり
すぎて、感度低下等別の問題を生じ易くなる。
This improves the adhesion between the overcoat layer and the photoconductive layer and prevents them from peeling off, and also prevents an increase in residual potential due to the accumulation of charges at the interface between the two and blurring of the image due to horizontal flow of accumulated charges. To prevent. From the viewpoint of adhesion, it is preferable that the layer thickness of the carbon concentration gradient part be thicker in order to have a concentration gradient as gentle as possible, but in consideration of photoconductive properties, it is preferable to make the layer thickness about 200 to 9000. If the thickness is too small, defects similar to virtually no concentration gradient will occur;
Even if the above is done, the above effects cannot be further achieved, and the a-8i/C-H layer becomes too thick, which tends to cause other problems such as a decrease in sensitivity.

a−3i−CH層において炭素濃度が低い部分(即ち炭
素濃度勾配部)では光吸収が大きく、光導電層への光の
透過を阻害し、感度低下をきたし、同時に光疲労を生じ
易くなる。
In the a-3i-CH layer, the portion where the carbon concentration is low (ie, the carbon concentration gradient portion) has a large amount of light absorption, which inhibits the transmission of light to the photoconductive layer, resulting in a decrease in sensitivity and, at the same time, a tendency to cause optical fatigue.

上記問題を解決するため、本発明では炭素濃度勾配部に
酸素をドープさせる。酸素のドープによりa  Si・
C−Hの炭素濃度が低い部分における光の透過性が向上
し、光疲労が少なくなると共に光導電層との密着性をよ
り向上させることができる。酸素のドープは、炭素濃度
35〜G5aL%の領域では意図的に行なう必要はない
が、少量(例えば数%まで)ドープすると表面硬度をよ
り向上させることが可能である。
In order to solve the above problem, in the present invention, the carbon concentration gradient portion is doped with oxygen. By doping with oxygen, a Si・
The light transmittance in the C-H portion where the carbon concentration is low is improved, optical fatigue is reduced, and the adhesion with the photoconductive layer can be further improved. Although it is not necessary to intentionally dope oxygen in the carbon concentration range of 35 to G5aL%, it is possible to further improve the surface hardness by doping a small amount (for example, up to several percent).

本発明では酸素ドープは主として、炭素濃度勾配部に対
して行なう。酸素のドープ量は0.05−10at%(
IOM子数/(S1原子数+C原子数十〇原子数)lx
loo)、より好ましくは0゜1〜5 aL%である。
In the present invention, oxygen doping is mainly performed on the carbon concentration gradient section. The amount of oxygen doped is 0.05-10 at% (
Number of IOM children/(number of S1 atoms + number of C atoms, tens of atoms) lx
loo), more preferably 0°1 to 5 aL%.

酸素ドープは一定でよいが、必要ならば炭素含量が減少
するに従って増加してもよい。酸素含量が5 at%、
特に10at%以上になると残留電位発生の原因となる
The oxygen doping may be constant or may be increased as the carbon content decreases if necessary. Oxygen content is 5 at%,
In particular, if it exceeds 10 at%, it will cause residual potential to occur.

第2図は上記の態様を模式的に示したものである。経紬
はオーバーコート層(3)の最表面から光導電層との界
面に至る厚さを示し、緯軸は炭素濃度と酸素濃度を示す
。領域(OPQR3O)はオーバーコート層の深さに対
応する本発明炭素濃度の凡の範囲ゝを模式的に示してい
る。この領域において炭素濃度は線(4)および(5)
に示すごとく変化してもよい。線(4)は、オーバーコ
ート層表面から深さ0.5μI11まで炭素濃度50a
t%を含むasi−c−Hで構成され、以後炭素濃度は
漸減し、光導電層との界面では実質上0となっているこ
とを示す。#i(5)は、最表面層から界面に向、かっ
て、炭素濃度が直線的に減少していることを示している
FIG. 2 schematically shows the above embodiment. The axis indicates the thickness from the outermost surface of the overcoat layer (3) to the interface with the photoconductive layer, and the latitude axis indicates the carbon concentration and oxygen concentration. The region (OPQR3O) schematically shows the approximate range of the carbon concentration of the present invention corresponding to the depth of the overcoat layer. In this region, the carbon concentration is on lines (4) and (5)
It may be changed as shown in . Line (4) shows a carbon concentration of 50a from the overcoat layer surface to a depth of 0.5μI11.
It is shown that the carbon concentration is composed of asi-c-H containing t%, and thereafter the carbon concentration gradually decreases and becomes substantially 0 at the interface with the photoconductive layer. #i(5) indicates that the carbon concentration decreases linearly from the outermost layer toward the interface.

領域(OVTUO)は酸素のドープ量を示している。線
(6)は、線(4)で示す炭素含量減少領域に酸素を一
定量(0,3at%)ドープしたことを示す図である。
The region (OVTUO) indicates the amount of oxygen doped. Line (6) is a diagram showing that a certain amount (0.3 at%) of oxygen is doped into the carbon content reduced region shown by line (4).

酸素のドープ量は線(7)で示すごとく、界面に近い程
多くしでもよい。
As shown by line (7), the amount of oxygen doped may be increased closer to the interface.

発明の効果 本発明は、a−3i−H電子写真感光体の暗抵抗が低い
と云う欠点を、オーバーコート層に特定量の炭素を有す
るa  5i−CHを用いて電荷保持の向上を図り;a
−8i−C−Hと光導電層間の密着性と電荷の蓄積の問
題を、オーバーコート層の炭素含量に勾配をもたせるこ
とにより解決し;さらに、asi−cHの低炭素含量部
分によって生じ易い光疲労や不透明化を、低炭素含量部
分に酸素をドープすることによって解消している。従っ
て、得られた電子写真感光体は感度、解像力、階調再現
性、鮮明性、耐摩耗、耐湿性、耐久性に優れ、かっa−
8i  −CHでオーバーコートした電子写真感光体に
よる複写において生じ易い白筋、白斑等の発生が抑制さ
れる。
Effects of the Invention The present invention solves the drawback of low dark resistance of a-3i-H electrophotographic photoreceptors by using a5i-CH having a specific amount of carbon in the overcoat layer to improve charge retention; a
The problems of adhesion and charge accumulation between -8i-C-H and the photoconductive layer were solved by creating a gradient in the carbon content of the overcoat layer; Fatigue and opacity are overcome by doping the low carbon content with oxygen. Therefore, the obtained electrophotographic photoreceptor has excellent sensitivity, resolution, gradation reproducibility, sharpness, abrasion resistance, moisture resistance, and durability.
The occurrence of white streaks, white spots, etc. that tend to occur when copying using an electrophotographic photoreceptor overcoated with 8i-CH is suppressed.

実施例1 第3図に示すグロー放電分解装置において、まず、回転
ポンプ(23)を、それに続いて拡散ポンプ(24)を
作動させ、反応室(25)の内部を10−6Torr程
度の高真空にした後、第1〜第3及び第5調整弁(13
)、 (14)、 (15)、 (17)を開放し、第
1タンク(8)より、H2ガス、第2タンク(9)より
100%5iH=ガス、第3タンク(10)よりH2で
200 pp+nに希釈されたB2H’、ガス、更に第
5タンク(12)より02ガスを出力圧ゲージIKg/
Cm2の下でマス70−コントローラ(38)、 (1
,9)、 (20)、 (22)内へ流入させた。そし
て、各マス70−コントローラの目盛を調整して、H2
の流量を486.5sccm、SiH,を90 sec
m、 B2H6を22.5secm、02を1. Os
ccmとなるように設定して反応室(25)内へ流入し
た。夫々の流量が安定した後に、反応室(25)の内圧
が1. OTorrとなるよう゛に調整した。一方、導
電性基板(27)とし□ては直径80IIII11のア
ルミニウムドラムを用いて240゛Cに予しめ加熱して
おぎ、各ガス流量が安定し、内圧が安定した状態で高周
波電源(26)を投入し電極板(28)に250 u+
attsの電力(周波数13.56MHz )を印加し
てグロー放電を発生させた。このグロー放電を約6時間
持続して行い、導電性基板(27)上に水素、硼素並び
に微量の酸素を含む厚さ約20μMのa  Si光導電
層(29)(第4図)を形成した。
Example 1 In the glow discharge decomposition apparatus shown in FIG. 3, first, the rotary pump (23) is operated, followed by the diffusion pump (24), and the interior of the reaction chamber (25) is brought to a high vacuum of about 10-6 Torr. After setting the first to third and fifth regulating valves (13
), (14), (15), and (17) are opened, H2 gas is supplied from the first tank (8), 100% 5iH=gas is supplied from the second tank (9), and H2 is supplied from the third tank (10). B2H' diluted to 200 pp+n, gas, and 02 gas from the 5th tank (12) are added to the output pressure gauge IKg/
Mass 70-controller (38) under cm2, (1
, 9), (20), and (22). Then, adjust the scale of each square 70-controller to
Flow rate of 486.5 sccm, SiH, 90 sec
m, B2H6 22.5sec, 02 1. Os
ccm and flowed into the reaction chamber (25). After each flow rate stabilizes, the internal pressure of the reaction chamber (25) reaches 1. I adjusted it to OTorr. On the other hand, as the conductive substrate (27), an aluminum drum with a diameter of 80III11 is preheated to 240°C, and the high frequency power source (26) is turned on when the flow rate of each gas is stable and the internal pressure is stable. Insert 250 u+ into the electrode plate (28)
Atts power (frequency 13.56 MHz) was applied to generate glow discharge. This glow discharge was continued for about 6 hours to form an a-Si photoconductive layer (29) (Fig. 4) with a thickness of about 20 μM containing hydrogen, boron, and a trace amount of oxygen on the conductive substrate (27). .

a  Si光導電層が形成されると、高周波電源(26
)からの電力印加を停止せず、連続的に移行層の成膜を
する。すなわち、マス70−コントローラ(22)によ
り0.ガスを素早< 3  sec+n となルヨウに
、主tこマス70−コントローラ<20)j:よりB 
、 I−1,ガスも同時にOsc c +nとなるよう
に設定し反応室(25)内へ流入又は停止させ、約2分
間この状態を保った。
a Once the Si photoconductive layer is formed, a high frequency power source (26
) The transition layer is continuously deposited without stopping the power application from ). That is, 0. The gas is quickly < 3 sec + n, and the main t-mass 70 - controller < 20) j: from B
, I-1, and gas were also set to Osc c +n at the same time, flowing into or stopping the reaction chamber (25), and maintained in this state for about 2 minutes.

また、この2分間の開にマス70−コントローラ(21
)により、C2H,ガスを0から45sccI。
Also, during this 2 minute period, the mass 70-controller (21
) with C2H, gas from 0 to 45 sccI.

となるように徐々に変えていった。こうして約0゜1μ
lのa  5i−C移行層(30’)(第4図)を形成
した。さらに高周波を印加したまま、約3分間をか(す
て、マス70−コントローラにより5IH4〃スを90
secmから30secmまで、02〃スを3 sec
mからOscc■まで一様に減少させていった。この間
C2Hawスは45secm流れたままである。こうし
て約0.1μmのa−3i−C移行層(30”)(第4
図)を形成した。
It was gradually changed so that In this way, about 0°1μ
A 5i-C transition layer (30') (FIG. 4) of 1 was formed. After applying the high frequency for about 3 minutes, the mass 70-controller turned the 5IH4 to 90%.
From sec to 30 sec, 02〃 3 sec
It was uniformly decreased from m to Oscc■. During this time, the C2Haws continues to flow for 45 seconds. Thus approximately 0.1 μm a-3i-C transition layer (30”) (fourth
Figure) was formed.

さらに、高周波電力を印加したままB2)(6ガスを止
め、この状態を6分間保つことにより、約0゜1μmn
のオーバーコート最表面層(31)を形成し。
Furthermore, by stopping B2) (6 gas while applying high frequency power and maintaining this state for 6 minutes, approximately 0°1 μmn
An overcoat outermost layer (31) is formed.

その直後高周波電力印加を停止した。Immediately thereafter, high frequency power application was stopped.

こうして成膜されたオーバーコート最表面層(31)に
は約40at%の炭素が含まれ、移行層(30)には最
大約3at%の酸素が含まれている。
The overcoat outermost layer (31) thus formed contains about 40 at% carbon, and the transition layer (30) contains up to about 3 at% oxygen.

こうして得られた感光体を粉像転写型複写m(EP−6
50Z:ミノルタカメラ(株)製)にセットし、(+)
帯電にてコピーしたところ解像力に優れ、階調再現性の
良い鮮明な高濃度の画像が得られた。
The thus obtained photoreceptor was used for powder image transfer type copying (EP-6).
50Z: Set in Minolta Camera Co., Ltd.), (+)
When copied using electrostatic charging, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained.

また、400.000枚の連続複写を行っても白筋・白
斑点等の画像特性の低下は認められず最後まで良好なコ
ピーが得られた。更に、30℃、85%という高温・高
湿の条件での複写でもその電子写真特性、画像特性は常
温常温条件下と何ら変ることはなかった。
Furthermore, even after 400,000 sheets were continuously copied, no deterioration in image characteristics such as white streaks or white spots was observed, and good copies were obtained to the end. Further, even when copying was performed under conditions of high temperature and high humidity of 30° C. and 85%, the electrophotographic characteristics and image characteristics were no different from those under normal temperature conditions.

灸煮tO二二糺 実施例1の手順に準じて感光体を作成した。但し、移行
層(30’)では、エチレン流量をOからZ S(!0
111に単調増加させ、移行層(30″)及び表面層(
31)では酸素は用いず、エチレンはZsecmそのま
ま流して成膜した。
A photoreceptor was prepared according to the procedure of Example 1. However, in the transition layer (30'), the ethylene flow rate is changed from O to Z S (!0
111, the transition layer (30″) and the surface layer (
In 31), oxygen was not used and ethylene was directly passed through Zsec to form a film.

Zを変え、それぞれについてオーバーコート層中のカー
ボン量をオージェ分析により定量した結果を表−1に示
す。
Table 1 shows the results of quantification of the amount of carbon in the overcoat layer by Auger analysis by changing Z.

表−1 得られた感光体を実施例1と同一の複写機により40 
、 OOO枚の連続複写を行なった。その結果、参考例
8の感光体は、コピー画像に白筋が発生し、さらに30
℃、85%環境下にて実写を行なったところ、参考例1
および2の感光体は画像流れが発生した。従って、オー
バルコート層のカーボン量が少ない場合、耐湿性が不充
分であり、多すぎると表面硬度が低下し、実写中に白筋
が発生する不具合点が発生することがわかった。このた
めカーボンの適正量としては、35〜65at%である
Table 1: The obtained photoreceptor was printed on the same copying machine as in Example 1.
, I made continuous copies of OOO sheets. As a result, with the photoreceptor of Reference Example 8, white streaks occurred in the copied image, and
℃, 85% environment, reference example 1
Image deletion occurred in photoreceptors No. 2 and 2. Accordingly, it has been found that when the amount of carbon in the oval coat layer is small, the moisture resistance is insufficient, and when it is too large, the surface hardness decreases, resulting in problems such as white streaks during actual copying. Therefore, the appropriate amount of carbon is 35 to 65 at%.

施例2〜6および比較例1および2 実施例1の手順に準じて感光体を作成した。但し、移行
層(30’)では、酸素流量を1からYsccmに素早
く増加させ、移行層(30”)では、YからOseem
単調減少させ、表面層(31)では酸素がOseemと
なるように成膜した。
Examples 2 to 6 and Comparative Examples 1 and 2 Photoreceptors were produced according to the procedure of Example 1. However, in the transition layer (30'), the oxygen flow rate is rapidly increased from 1 to Ysccm, and in the transition layer (30''), the oxygen flow rate is increased from Y to Oseem.
The film was formed so that the surface layer (31) contained oxygen in a monotonically decreasing manner.

Yを変え、それぞれについて移行層中の最大酸素量をオ
ージェ分析により定量した結果を表−2に示す。
Table 2 shows the results of quantification of the maximum amount of oxygen in the transition layer by Auger analysis by varying Y.

表、−2 得られた感光体を感光体試験機にセフ)し、コロナ・チ
ャージングとイレーシングの繰返しテストを行なった。
Table 2 The obtained photoreceptor was placed in a photoreceptor testing machine, and corona charging and erasing tests were repeated.

その結果、移行層中に酸素が添加されていない比較例1
の感光体では表面電位の低下が観測された。そして酸素
の添加量を増加することによって表面電位の低下率がお
さえられる傾向にあることがわかった。この表面電位の
低下率を光疲労(L 1Bht F aLigue)と
名付け、特に1回転目の表面電位(Vow)と10回転
目の表面電位(VO,、))の差から下記式に基き、光
疲労度を求めた。
As a result, Comparative Example 1 in which oxygen was not added to the transition layer
A decrease in surface potential was observed for the photoreceptor. It was also found that increasing the amount of oxygen added tends to suppress the rate of decrease in surface potential. This rate of decrease in surface potential is called photofatigue (L1BhtFaLigue), and based on the difference between the surface potential at the first rotation (Vow) and the surface potential at the 10th rotation (VO, , )), the rate of decrease in surface potential is The degree of fatigue was determined.

光疲労度”I (V’o+  Voto)/ VOll
x 100この光疲労度と移行層中の酸素量との関係を
示したものが第5図である。
Light fatigue level “I (V'o+ Voto) / VOll
x 100 FIG. 5 shows the relationship between this degree of optical fatigue and the amount of oxygen in the transition layer.

また、移行層中の酸素量を増加することにより、分光感
度、特に短波長感度が向上することをか第6図から理解
される。
Furthermore, it can be seen from FIG. 6 that by increasing the amount of oxygen in the transition layer, the spectral sensitivity, particularly the short wavelength sensitivity, is improved.

しかし、酸素を多量に含む比較例2の感光体は常温常温
の環境下でも画像が流れ、通常の電子写真プロセスでは
鮮明な画像が得られない。さらに実施例6の感光体は上
記欠点はないが、これを実施例1に記載された複写機に
セットして連続複写を行なったところ、数千枚位から画
像カブリが認められ、繰返し複写により顕著となった。
However, in the photoreceptor of Comparative Example 2 which contains a large amount of oxygen, the image is blurred even in an environment at room temperature, and a clear image cannot be obtained by a normal electrophotographic process. Furthermore, although the photoreceptor of Example 6 does not have the above-mentioned drawbacks, when it was set in the copying machine described in Example 1 for continuous copying, image fogging was observed after several thousand copies. It became noticeable.

以上のことから移行層中の酸素量の特に好ましい範囲は
0.1〜5at%である。
From the above, a particularly preferable range of the amount of oxygen in the transition layer is 0.1 to 5 at%.

比較例3〜8 実施例1と同一条件でa  Si光導電層(29)を成
膜した後、高周波電力印加を停止するととも多こ、マス
7tj−フントローラの流量をすべて0設定にし、反応
室(25)内を十分脱気した。その後、第1タン、り(
8)よりH2wスを486. 5  secm、第2タ
ンク(9)より100%5iH4ffスを309QCm
、第4タンク(11)よりC2H4ガスを120sec
mとなるようマス70−コントローラの目盛りを調整し
、夫々の流量が安定した後に再び250u+attsの
高周波電力を投入し、6分開成膜を行なった後、高周波
電力印加を停止した。これは実施例1に第3いて(30
)の移行層を設けなかったものに相当する。
Comparative Examples 3 to 8 After forming a Si photoconductive layer (29) under the same conditions as in Example 1, the application of high-frequency power was stopped, and the flow rates of all mass rollers were set to 0, and the reaction chamber was closed. (25) The inside was sufficiently degassed. After that, the first tongue, ri (
8) from H2w 486. 5 sec, 100% 5iH4ff from the second tank (9) 309QCm
, C2H4 gas from the fourth tank (11) for 120 seconds
The scale of the mass 70-controller was adjusted so that the mass 70-controller became 100 m, and after each flow rate became stable, high-frequency power of 250 u+atts was applied again, and after 6 minutes of open film formation, high-frequency power application was stopped. This is the third example in Example 1 (30
) without the transition layer.

同様にc 2H4ガス流量のみを変えて、数種類の感光
体を作製した結果を表−3に示す。
Table 3 shows the results of fabricating several types of photoreceptors by similarly changing only the c2H4 gas flow rate.

実施例1と同一の複写機により40,000枚の連続複
写を行なった結果、比較例5.6.7および8から得ら
れた感光体は、すべて画像に白筋が発生した。これは、
オーバーコート層と光導電層との接着性が悪く、複写機
内のクリーニング過程でオーバーコート層が剥離してく
ることによる。
As a result of continuous copying of 40,000 sheets using the same copying machine as in Example 1, all of the photoreceptors obtained from Comparative Examples 5, 6, 7 and 8 had white streaks on the images. this is,
This is because the adhesion between the overcoat layer and the photoconductive layer is poor, and the overcoat layer peels off during the cleaning process inside the copying machine.

40.000 枚複写後に30℃、85%という高温高
湿下で実写を行なったところ、比較例3および4から得
られた感光体は画像流れが発生した。
After copying 40,000 sheets, actual copying was performed at 30° C. under high temperature and high humidity conditions of 85%, and image deletion occurred in the photoreceptors obtained from Comparative Examples 3 and 4.

このため、オーバーコート層の剥離防止と高耐湿性を両
方満足するためには、移行層(29−)が必要であるこ
とがわかった。
Therefore, it was found that the transition layer (29-) is necessary in order to satisfy both the prevention of peeling of the overcoat layer and the high moisture resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の模式的部分断面図、第
2図はオーバーコート層中の炭素濃度と酸素濃度を示す
模式図、第3図は本発明感光体を製造するために用いる
装置の概略図、第4図は実施例を説明するための感光体
の部分断面図、第5図はオーバーコート層中の酸素濃度
と光疲労度を示すグラフおよび第6図は本発明感光体の
対波長感度を示すグラフ。 (1)基 体、  (2)光導電層、 (3)オーバーコート層。 第1図 第2因
Fig. 1 is a schematic partial cross-sectional view of the electrophotographic photoreceptor of the present invention, Fig. 2 is a schematic diagram showing the carbon concentration and oxygen concentration in the overcoat layer, and Fig. 3 is a schematic diagram showing the carbon concentration and oxygen concentration in the overcoat layer. A schematic diagram of the apparatus, FIG. 4 is a partial sectional view of a photoreceptor for explaining an example, FIG. 5 is a graph showing the oxygen concentration in the overcoat layer and the degree of optical fatigue, and FIG. 6 is a photoreceptor of the present invention. Graph showing sensitivity versus wavelength. (1) Substrate, (2) Photoconductive layer, (3) Overcoat layer. Figure 1 2nd cause

Claims (1)

【特許請求の範囲】 1、アモルファスシリコンを含む光導電層上に炭素を含
むアモルファスシリコンの透光性オーバーコート層を設
けた電子写真感光体において、オーバーコート層が光導
電層近接部で低く、表面に向けて高い炭素濃度勾配を有
し、最外表面において、35〜65at%の範囲にあり
、かつ少なくとも光導電層近接部分において10at%
以下の酸素を含有することを特徴とする電子写真感光体
。 2、オーバーコート層の全厚が0.05〜1.5μmで
あり、炭素濃度勾配部の厚さが0.02〜1μmである
第1項記載の電子写真感光体。 3、オーバーコート層の酸素濃度が0.1〜5at%で
ある第1項記載の電子写真感光体。 4、酸素濃度が光導電層に近づくにつれて増加する第3
項記載の電子写真感光体。
[Claims] 1. In an electrophotographic photoreceptor in which a transparent overcoat layer of amorphous silicon containing carbon is provided on a photoconductive layer containing amorphous silicon, the overcoat layer is low near the photoconductive layer; It has a high carbon concentration gradient toward the surface, in the range of 35 to 65 at% at the outermost surface, and at least 10 at% in the vicinity of the photoconductive layer.
An electrophotographic photoreceptor characterized by containing the following oxygen: 2. The electrophotographic photoreceptor according to item 1, wherein the overcoat layer has a total thickness of 0.05 to 1.5 μm, and the carbon concentration gradient portion has a thickness of 0.02 to 1 μm. 3. The electrophotographic photoreceptor according to item 1, wherein the overcoat layer has an oxygen concentration of 0.1 to 5 at%. 4. Third, the oxygen concentration increases as it approaches the photoconductive layer.
The electrophotographic photoreceptor described in .
JP59146197A 1984-07-14 1984-07-14 Electrophotographic photoreceptor Expired - Lifetime JPH06100841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59146197A JPH06100841B2 (en) 1984-07-14 1984-07-14 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59146197A JPH06100841B2 (en) 1984-07-14 1984-07-14 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS6125153A true JPS6125153A (en) 1986-02-04
JPH06100841B2 JPH06100841B2 (en) 1994-12-12

Family

ID=15402321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59146197A Expired - Lifetime JPH06100841B2 (en) 1984-07-14 1984-07-14 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH06100841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737429A (en) * 1986-06-26 1988-04-12 Xerox Corporation Layered amorphous silicon imaging members
JPH05249722A (en) * 1993-01-07 1993-09-28 Minolta Camera Co Ltd Photosensitive body
US7684733B2 (en) 2006-03-30 2010-03-23 Kyocera Corporation Electrophotographic photosensitive member rotatably supported in an image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119356A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5920237U (en) * 1982-07-28 1984-02-07 株式会社東芝 Amorphous silicon photoreceptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119356A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5920237U (en) * 1982-07-28 1984-02-07 株式会社東芝 Amorphous silicon photoreceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737429A (en) * 1986-06-26 1988-04-12 Xerox Corporation Layered amorphous silicon imaging members
JPH05249722A (en) * 1993-01-07 1993-09-28 Minolta Camera Co Ltd Photosensitive body
US7684733B2 (en) 2006-03-30 2010-03-23 Kyocera Corporation Electrophotographic photosensitive member rotatably supported in an image forming apparatus

Also Published As

Publication number Publication date
JPH06100841B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JPS63178248A (en) Amorphous silicon image forming section having barier layer
US4659639A (en) Photosensitive member with an amorphous silicon-containing insulating layer
JPH1083091A (en) Electrophotographic photoreceptor and its production
US5068762A (en) Electrophotographic charging device
JPH0711706B2 (en) Electrophotographic photoreceptor
US4794064A (en) Amorphous silicon electrophotographic receptor having controlled carbon and boron contents
JPS6125153A (en) Electrophotographic sensitive body
JPS59119358A (en) Photosensitive body for electrophotography
JP3279926B2 (en) Electrophotographic photoreceptor and image forming apparatus
US4673629A (en) Photoreceptor having amorphous silicon layers
JPH0256664B2 (en)
US5268247A (en) Electrophotographic copying machine and electrophotographic member therefor and method of forming an electrophotographic member
JPS6125154A (en) Electrophotographic sensitive body
JPS6126054A (en) Electrophotographic sensitive body
US4738914A (en) Photosensitive member having an amorphous silicon layer
JP2002091040A (en) Electrophotographic photoreceptor and electrophotographic device
JPS61183661A (en) Photosensitive body
JPS628162A (en) Photosensitive body
JP2000171995A (en) Electrophotographic photoreceptive member
JP2000019759A (en) Electrophotographic photoreceptor
JPH034233A (en) Sheet-like photosensitive body
JP2002116569A (en) Electrophotographic photoreceptive member and electrophotographic device
JPS628161A (en) Photosensitive body
JPS628163A (en) Photosensitive body
JPS61165762A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term