JPS61251534A - Production of multi-core optical fiber - Google Patents

Production of multi-core optical fiber

Info

Publication number
JPS61251534A
JPS61251534A JP9219285A JP9219285A JPS61251534A JP S61251534 A JPS61251534 A JP S61251534A JP 9219285 A JP9219285 A JP 9219285A JP 9219285 A JP9219285 A JP 9219285A JP S61251534 A JPS61251534 A JP S61251534A
Authority
JP
Japan
Prior art keywords
core
rod
fiber
glass rod
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9219285A
Other languages
Japanese (ja)
Inventor
Hiroshi Suganuma
寛 菅沼
Hiroshi Yokota
弘 横田
Minoru Watanabe
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9219285A priority Critical patent/JPS61251534A/en
Publication of JPS61251534A publication Critical patent/JPS61251534A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Abstract

PURPOSE:To obtain the titled fiber having extremely improved dimensional accuracy, being easily coincided with the axis, by inserting plural glass rods having high refractive indexes, respectively, into plural holes bored in a starting quartz glass rod, integrating them under heating and grinding specifically the starting quartz glass rod. CONSTITUTION:The plural holes 2 are bored in the quartz glass rod 1 which becomes a clad in such a way that the centers of the holes are arranged in the straight line A passing the center of the section in the diameter direction. Then, the glass rod 3 having higher refractive index than the glass 1 is inserted into each of the hole 2, integrated under heating under the heat source 5 to form the preform 4, which is drawn or drawn while being integrated under heating to give a fiber. Consequently, a multi-core fiber having extremely improved dimensional accuracy is obtained. Or, the rod 1 is cut in parallel with the straight line A. Consequently, since the arranged axis of the plural cores can be easily judged from the outside, complicated operations of axis coincidence are not required and the axis coincidence can be easily carried out only by confirmation of the external form.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い寸法精度を有するマルチコアファイバの製
造方法に関する。近年、情報の伝達が銅ケーブルから元
ケーブルに置きかわりつつあり、それに従って、ケーブ
ル断面積に対する伝達情報量が飛躍的に増大し九が、さ
らに情報量を増大することが要請されている。そのため
1本のファイバに複数個のコアを形成するパンチファイ
バの開発が行われている。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a multi-core fiber with high dimensional accuracy. In recent years, copper cables have been replaced by original cables for transmitting information, and accordingly, the amount of information transmitted relative to the cross-sectional area of the cable has increased dramatically, and there is a demand for further increases in the amount of information. For this reason, punch fibers in which a plurality of cores are formed in one fiber are being developed.

(従来の技術) パンチファイバの従来の製造方法としては、コアとクラ
ッドとなるガラス棒を複数本束ね、石英管の中に挿入し
加熱一体化後線引きする方法等があつ危。
(Conventional technology) Conventional methods for producing punched fibers include bundling multiple glass rods that serve as the core and cladding, inserting them into a quartz tube, heating them together, and then drawing them.

(発明が解決しようとする問題点) しかしながら、上記したような複数本束ねて加熱一体化
する方法ではコアの位置とか非円になる等、寸法精度が
全く悪いという欠点があった。本発明の目的はこのよう
な欠点を解消した新規なマルチコアファイバの製造方法
を提供することにある・ (問題点を解決する九めの手段) 本発明は、出発石英ガラス棒に・該出発棒の径方向にお
いて中心を通る一直線上にそれぞれの中心が並ぶように
複数個の穴t−あけ、該複数個の孔に上記出発棒より屈
折率が高いガラス棒全挿入してコアとし、これを加熱一
体化する方法であって、上記石英ガラス棒を上記直線に
平行な弦をVする断面となるよう研削することt特徴と
するマルチコア元ファイバの製造方法である。
(Problems to be Solved by the Invention) However, the above-described method of bundling a plurality of sheets and heating them together has the disadvantage that the dimensional accuracy is completely poor, such as the position of the core being non-circular. The purpose of the present invention is to provide a novel method for manufacturing a multi-core fiber that eliminates the above-mentioned drawbacks. (Ninth means for solving the problem) Drill a plurality of holes so that their centers are lined up on a straight line passing through the center in the radial direction, insert all of the glass rods with a higher refractive index than the starting rod into the plurality of holes, and use this as a core. This is a heating and unifying method, and the method for producing a multi-core original fiber is characterized in that the quartz glass rod is ground so as to have a cross section that is V-shaped in a chord parallel to the straight line.

以下図面を参照して本発明方法t−説明する。The method of the present invention will be explained below with reference to the drawings.

第1図及び第2図は本発明の1実施態様を示すものであ
って、第1図(a)及び(1))はそれぞnクラッドと
なるガラス(石英棒)1の在方同断面図及び軸方向正面
図であって、2はクラッドとなるガラス1にそれぞれの
中心が径方同断面の中心を通る一厘線A上に並ぶように
コアを入nる九めの軸方向にらけらtした孔である。該
孔2にクラッドとなるガラス1より屈折率が高いコア用
ガラス棒3t−挿入する。孔あけは超音波開孔器による
1 and 2 show one embodiment of the present invention, and FIGS. 1(a) and (1)) are the same cross-sections of the glass (quartz rod) 1 that becomes the n-cladding, respectively. Figure 2 is a front view in the axial direction, and 2 is the ninth axial direction in which the cores are inserted into the glass 1 serving as the cladding so that the centers of each core are lined up on a line A passing through the center of the same radial cross section. It is a hollow hole. A core glass rod 3t having a higher refractive index than the glass 1 serving as the cladding is inserted into the hole 2. Drilling is done using an ultrasonic hole drill.

第2図にクラッド用ガラス1の孔2にコア用ガラス3t
−挿入し、熱源5により加熱一体化してプリフォーム4
t−作成する工程を模式的に示す。tIE2図の火炎等
を熱源とする方法の他に、電気炉全熱源として加熱する
方法でもよい。このように加熱一体化した後に線引きす
るか、あるいは加熱一体化しつつ線引きして、ファイバ
とする。
Figure 2 shows 3t of core glass in hole 2 of cladding glass 1.
- Insert the preform 4 by heating it with the heat source 5 and integrating it into the preform 4.
The process of creating t- is schematically shown. In addition to the method of using flame or the like as a heat source as shown in Figure tIE2, a method of heating using an electric furnace as a total heat source may be used. A fiber is produced by drawing after heating and integrating in this manner, or by drawing while heating and integrating.

加熱一体化しながら線引を行う方法としては、開孔した
クラッド用ガラス棒1にコア用ガラス棒3を挿入後、ク
ラッド用ガラス棒1の孔の一端を加熱融着により塞ぎ、
このプリフォームを孔内上減圧しながら線引する方法、
あるいは開孔したクラッド用ガラス棒1にコア用ガラス
棒5r4−挿入後、該クラッド用ガラスの孔の一端を加
熱融着により塞いた後、該孔内金真窒としながら、孔の
閉じてないもう一部の端を同様に塞いで・該孔の内部が
真空状態であり、かつ該孔の内部にコア用ガラス棒ヲ臂
するプリフォームを得、該プリフォーム金線引きする方
法等がある。
A method for drawing wire while heating and integrating is to insert the core glass rod 3 into the opened cladding glass rod 1, and then close one end of the hole in the cladding glass rod 1 by heating and fusing.
A method of drawing this preform while reducing pressure inside the hole,
Alternatively, after inserting the core glass rod 5r4 into the opened cladding glass rod 1, one end of the hole in the cladding glass is closed by heat fusion, and while the hole is filled with gold, the hole is not closed. There is a method in which the other end is similarly closed to obtain a preform in which the inside of the hole is in a vacuum state and a glass rod for a core is placed inside the hole, and the preform is drawn with gold wire.

このように、クラッドの軸方向中心を通る一平面上に複
数個の孔をあけ、コアを挿入し、加熱一体化し、ファイ
バ化する本発明の方法によれば、ファイバのコアの位置
精度は、開孔時の寸法精度のみによるので、非常に寸法
精度の良いマルチコアファイバを得ることが可能となる
As described above, according to the method of the present invention in which a plurality of holes are drilled on one plane passing through the axial center of the cladding, the core is inserted, and the core is heated and integrated to form a fiber, the positional accuracy of the fiber core is as follows. Since this depends only on the dimensional accuracy at the time of opening, it is possible to obtain a multi-core fiber with very high dimensional accuracy.

また、クラッドの孔と挿入するコアの直径をほぼ等しく
することにより、コアをクラッドのすきまを微少にでき
るので、加熱一体化後の形状変化も小さく、コアの非円
率を極少にすることが可能である。
In addition, by making the diameter of the hole in the cladding and the inserted core almost the same, the gap between the core and the cladding can be minimized, so that the change in shape after heating and integration is small, and the non-circularity of the core can be minimized. It is possible.

更に、マルチコアファイバ同志の接続において、コアの
軸合わせは非常に重要かつ困難である。tず、ファイバ
自身の寸法精度が良好でないと、同時に複数個のコアの
軸合わせは不可能であるが、本発明の方法によれば、非
常に良好な寸法精度のファイバが得られるので、この点
を解決できる。te、り2ツドt−コアの中心を結ぶ直
線と平行にカットすることにより複数個のコアの並び軸
を外部から容易に判断できるよ 。
Furthermore, in connecting multi-core fibers, alignment of core axes is very important and difficult. Unless the dimensional accuracy of the fiber itself is good, it is impossible to align the axis of multiple cores at the same time. However, according to the method of the present invention, a fiber with very good dimensional accuracy can be obtained. I can solve the points. By cutting parallel to the straight line connecting the centers of the two cores, you can easily determine the axis of alignment of multiple cores from the outside.

うになるので、複雑な操作の軸合わせの必要はなくなり
、外形のみ確認するだけで、容易に軸合わせが可能とな
る。
This eliminates the need for complicated axis alignment operations, and allows axis alignment to be performed easily by simply checking the outer shape.

またクラッドの断面は第5図に示すように平行な2本の
弦e!するように研削さnていてもよい。
Also, the cross section of the cladding has two parallel chords e!, as shown in Figure 5. It may be ground so that it does.

本発明方法におけるクラッドなる石英ガラスは純石英の
他に添加物を含有するものでもよく、コアも任意のガラ
スを用いることができる。
The quartz glass serving as the cladding in the method of the present invention may contain additives in addition to pure quartz, and any glass may be used for the core.

(実施例) 実施例1 WAD法により純シリカスートを合成し、電気炉中にて
脱水後、8F、ガス及びHe  ガス雰囲気中にて透明
化して、弗素含M石英ガラスを得た@得られた直径40
mのガラスクランド用ガラス棒に超音波開孔機で、直径
1211IIの孔を同一?[極上の中心に対し対称位置
に2つ設けた。
(Example) Example 1 Pure silica soot was synthesized by the WAD method, dehydrated in an electric furnace, and then made transparent in an 8F, gas, and He gas atmosphere to obtain fluorine-containing M quartz glass. Diameter 40
A hole with a diameter of 1211II is made using an ultrasonic hole drilling machine on a glass rod for a glass clamp of 1.5mm. [Two were installed at symmetrical positions with respect to the center of the best.

その後、孔の並ぶ軸と平行な弦を有する形状と力るよう
このロッドの外周の一部を研削した。
A portion of the outer periphery of this rod was then ground to give it a shape with chords parallel to the axis of the holes.

次いでこの2つの孔に七nぞれ直径11 w、o ”I
AD法にて製造した8101−G90Bガラス棒をコア
用ガラス棒として挿入し、孔の一端にてクラッド用ガラ
スとコア用ガラスを加熱融着して孔を塞いだ後、真壁ポ
ンプを用いて孔内全減圧しながら電気炉にて線引きし、
外径125μmのファイバを得九〇 得られたファイバの2つのコア径は34.4μm及び3
43μmであり、楕円率は1%以下と極めテ寸法ff度
の良いマルチコア・マルチモードファイバが得られ友。
Then, in these two holes, 7n each with a diameter of 11 w, o ”I
An 8101-G90B glass rod manufactured by the AD method is inserted as a core glass rod, and the cladding glass and core glass are heated and fused at one end of the hole to close the hole, and then a Makabe pump is used to open the hole. Wire is drawn in an electric furnace while completely depressurizing the inside.
A fiber with an outer diameter of 125 μm was obtained.90 The two core diameters of the obtained fiber were 34.4 μm and 3
43 μm, and the ellipticity is less than 1%, making it possible to obtain a multi-core multi-mode fiber with extremely good dimensional f/ff.

実施例2 VAD法によりSiO,−PIOIスートを合成し、電
気炉中にて81 F、 ガスで脱水し友後、 Heガス
雰囲気中で透明化して、リン及び弗素を含有し九直径5
0暉のクラッド用石英棒金得た。該石英棒に直径4■の
孔を、同−直径上に5つあけ、その後外周の一部を研削
して孔が並び直径と平行な弦ヲ有する断面のロッドとし
た。次いで該孔内に直径3wmの石英棒金コア用として
挿入した後加熱一体化した。上記コア用石英棒はVAD
法により製造した純シリカス−)!脱水後透明化し延伸
し九ものである。加熱一体化したプリフォームは電気炉
で線引し、外径125μmのファイバを得た。
Example 2 A SiO,-PIOI soot was synthesized by the VAD method, dehydrated in an electric furnace at 81 F gas, and then made transparent in a He gas atmosphere to form a SiO,-PIOI soot containing phosphorus and fluorine.
Obtained quartz rod gold for cladding. Five holes each having a diameter of 4 mm were drilled in the quartz rod, and then a portion of the outer periphery was ground to obtain a rod having a cross section in which the holes were lined up and a chord was parallel to the diameter. Next, a quartz bar with a diameter of 3 wm was inserted into the hole for a gold core, and then heated and integrated. The above quartz rod for core is VAD
Pure silica produced by the method)! After dehydration, it is made transparent and stretched. The heated and integrated preform was drawn in an electric furnace to obtain a fiber with an outer diameter of 125 μm.

得らnたファイバの3つのコア径は、それぞjL 7.
5 pm、 7.5μm、16μmで、楕円率はいずn
も1゜Ots以下であり、寸法精度の良いマルチコア・
シングルモードファイバが得られ次。
The three core diameters of the obtained fibers are jL7.
5 pm, 7.5 μm, 16 μm, the ellipticity is n
is less than 1゜Ots, making it a multi-core with good dimensional accuracy.
Next a single mode fiber is obtained.

実施例3 VAD法、により得られた純シリカスートヲ、電気炉中
にてc c tl IP=  ガスにより脱水した後透
明化し友。得らn九直径60■のクラッド用ガラスの同
−直径上に直径5smの孔t−5つあけ、その後外周の
一部を研削して孔が並ぶ直径と平行な弦を有する外径の
ロッドとし次。次いで、該ロンド上のそれぞれの孔に、
VAD法により製造した直径4■のSing−GeO1
ガラス棒を挿入し友。さらに、誼孔の一端でクラッド用
ガラスとコア用ガラスを加熱融着して孔を塞ぎ、次に真
空ポンプを用いて孔内金真窒に保ちながら、孔のもう一
部の端でり2ツド用ガラスとコア用ガラスを加熱融着し
て孔を塞いだ。このようにして得らnた孔内が真空状態
であるプリフォームを、電気炉を用いて線引きし、外径
150μmの弧と一つの弦により構成される断面形状の
フ 。
Example 3 Pure silica soot obtained by the VAD method was dehydrated with cctl IP= gas in an electric furnace and became transparent. Five holes with a diameter of 5 sm are drilled on the same diameter of the obtained glass for cladding with a diameter of 60 mm, and then a part of the outer periphery is ground to form a rod with an outer diameter that has a chord parallel to the diameter where the holes are lined up. Toshitsugi. Then, in each hole on the rondo,
Sing-GeO1 with a diameter of 4 cm manufactured by VAD method
Insert a glass rod into your friend. Furthermore, the cladding glass and the core glass are heat-sealed at one end of the hole to close the hole, and then a vacuum pump is used to keep the inside of the hole solid, and the other end of the hole is closed. The hole was closed by heat-sealing the tube glass and the core glass. The thus obtained preform, whose holes are in a vacuum state, is drawn using an electric furnace to form a wire having a cross-sectional shape consisting of an arc with an outer diameter of 150 μm and one chord.

アイバーを得た。Got ivar.

得らA7tファイバのそれぞnのコア径は、9.8pm
、1 (L Opm、 1 (L 1 pm、1αOp
m、9.9 pmであり、楕円率はいずnも1.0 T
o以下と、極めて寸法精度の良いマルチコアシングルモ
ードファイバが得られtoま之それぞnのコア間距離は
16.7μmであり、クロストークは測定限界以下であ
つ几。
The core diameter of each n of the obtained A7t fiber is 9.8 pm.
, 1 (L Opm, 1 (L 1 pm, 1αOp
m, 9.9 pm, and the ellipticity is 1.0 T
A multi-core single mode fiber with extremely good dimensional accuracy was obtained, with a distance between each core of 16.7 μm, and crosstalk was below the measurement limit.

(発明の効果) 本発明のマルチコア元ファイバ製造方法は、ファイバの
コア位tn度は開孔時の寸法精度のみによるので、非常
に寸法精度の曳いものが得られるに加え、加熱一体化の
形状変化も小さくコアの非円率を極小にできる。さらに
、クラッドの断面をコアの並ぶ直径と平行な弦を持つよ
うに研削することにより、外部からでもコアの並び軸を
判断できるので、従来法では困難であったマルチコアフ
ァイバの軸合わせが容易になるという利点を有する口
(Effects of the Invention) In the method for manufacturing a multi-core original fiber of the present invention, since the core position tn of the fiber depends only on the dimensional accuracy at the time of opening, it is possible to obtain a drawn product with very high dimensional accuracy, and also to form a heated and integrated fiber. Changes are small and the non-circularity of the core can be minimized. Furthermore, by grinding the cross section of the cladding so that it has a chord parallel to the diameter of the cores, the alignment axis of the cores can be determined from the outside, making it easier to align the axis of multi-core fibers, which was difficult with conventional methods. mouth that has the advantage of becoming

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び申)は本発明の1実施態様における、
クラッドとなるガラスの在方同断面図及び軸方向正面図
である。 第2図は本発明の1実施態様におけるクラッドとコアの
加熱一体化工程を説明する図である。 第3図は本発明の別の実施態様を説明する図である。
Figures 1(a) and 1(a) show an embodiment of the present invention.
FIG. 2 is a cross-sectional view and an axial front view of the glass serving as the cladding. FIG. 2 is a diagram illustrating a process of heating and integrating the cladding and the core in one embodiment of the present invention. FIG. 3 is a diagram illustrating another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)出発石英ガラス棒に、該出発棒の径方向において
中心を通る一直線上にそれぞれの中心が並ぶように複数
個の穴をあけ、該複数個の孔に上記出発棒より屈折率が
高いガラス棒を挿入してコアとし、これを加熱一体化す
る方法であつて、上記石英ガラス棒を上記直線に平行な
弦を有する断面となるよう研削することを特徴とするマ
ルチコア光ファイバの製造方法。
(1) A plurality of holes are drilled in the starting quartz glass rod so that their centers are aligned on a straight line passing through the center in the radial direction of the starting rod, and the holes have a refractive index higher than that of the starting rod. A method for manufacturing a multi-core optical fiber, which is a method of inserting a glass rod to form a core and heating and integrating the core, the method comprising: grinding the quartz glass rod so that it has a cross section having a chord parallel to the straight line. .
JP9219285A 1985-05-01 1985-05-01 Production of multi-core optical fiber Pending JPS61251534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9219285A JPS61251534A (en) 1985-05-01 1985-05-01 Production of multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9219285A JPS61251534A (en) 1985-05-01 1985-05-01 Production of multi-core optical fiber

Publications (1)

Publication Number Publication Date
JPS61251534A true JPS61251534A (en) 1986-11-08

Family

ID=14047572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9219285A Pending JPS61251534A (en) 1985-05-01 1985-05-01 Production of multi-core optical fiber

Country Status (1)

Country Link
JP (1) JPS61251534A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701571A1 (en) * 1993-02-15 1994-08-19 Le Noane Georges Multicore optical guides of great precision and small dimensions and method of manufacturing these guides.
CN103698842A (en) * 2013-12-18 2014-04-02 江苏大学 Optical fiber mode add-drop multiplexer
WO2014129553A1 (en) * 2013-02-20 2014-08-28 住友電気工業株式会社 Method for manufacturing base material
JP2015151328A (en) * 2014-02-19 2015-08-24 住友電気工業株式会社 Method of manufacturing multicore optical fiber preform
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber
JP2017510539A (en) * 2014-04-08 2017-04-13 コーニング インコーポレイテッド Soot base material and glass optical fiber manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701571A1 (en) * 1993-02-15 1994-08-19 Le Noane Georges Multicore optical guides of great precision and small dimensions and method of manufacturing these guides.
WO2014129553A1 (en) * 2013-02-20 2014-08-28 住友電気工業株式会社 Method for manufacturing base material
JP2014159348A (en) * 2013-02-20 2014-09-04 Sumitomo Electric Ind Ltd Method of producing multicore optical fiber base material
CN105073663A (en) * 2013-02-20 2015-11-18 住友电气工业株式会社 Method for manufacturing base material
EP2960218A4 (en) * 2013-02-20 2016-11-02 Sumitomo Electric Industries Method for manufacturing base material
US9604868B2 (en) 2013-02-20 2017-03-28 Sumitomo Electric Industries, Ltd. Preform manufacturing method
CN103698842A (en) * 2013-12-18 2014-04-02 江苏大学 Optical fiber mode add-drop multiplexer
JP2015151279A (en) * 2014-02-12 2015-08-24 住友電気工業株式会社 Method for manufacturing multicore optical fiber
JP2015151328A (en) * 2014-02-19 2015-08-24 住友電気工業株式会社 Method of manufacturing multicore optical fiber preform
JP2017510539A (en) * 2014-04-08 2017-04-13 コーニング インコーポレイテッド Soot base material and glass optical fiber manufacturing method
JP2020100563A (en) * 2014-04-08 2020-07-02 コーニング インコーポレイテッド Method of manufacturing soot preforms and glass optical fibers

Similar Documents

Publication Publication Date Title
US4799949A (en) Method of making low loss fiber optic coupler
US4773924A (en) Fiber optic coupler and method
CA1314162C (en) Method of making fiber coupler having integral precision connection wells
CA1274983A (en) Method and apparatus for drawing fiber optic coupler
EP0193921B1 (en) Method for producing multi-core optical fiber
WO2000057220A1 (en) Thermally expanded multiple core fiber
US5944867A (en) Method of manufacturing a multi-core optical fiber
US4229197A (en) Method for making multiple optical core fiber
US6738549B2 (en) Polarization maintaining optical fiber and production method for polarization maintaining optical fiber preform
JPH0447285B2 (en)
CN111552025A (en) Multi-core fiber Fan-in/out device with concave triple-clad transition fiber
JPS61251534A (en) Production of multi-core optical fiber
JP2001511538A (en) Multi-core glass optical fiber and method of manufacturing such fiber
JPS5992940A (en) Production of optical fiber having pore
JPH02160635A (en) Production of glass matrix for optical fiber
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
US4743086A (en) Coupling device for forming optically efficient end-to-end optical fiber connections
JPS6168336A (en) Production of parent material for single polarization optical fiber
JPH0130768B2 (en)
JPS59456B2 (en) Manufacturing method of optical glass fiber
JPH0221563B2 (en)
JPS597305A (en) Production of constant polarization fiber
JPS61168549A (en) Production of optical fiber keeping plane of polarization
JPS6167005A (en) Manufacture of base material for singly polarizing optical fiber
KR20010073357A (en) Graded-index plastic optical fiber preform