JPS6125140A - Polymer resist sensitive to energy rays - Google Patents

Polymer resist sensitive to energy rays

Info

Publication number
JPS6125140A
JPS6125140A JP14542984A JP14542984A JPS6125140A JP S6125140 A JPS6125140 A JP S6125140A JP 14542984 A JP14542984 A JP 14542984A JP 14542984 A JP14542984 A JP 14542984A JP S6125140 A JPS6125140 A JP S6125140A
Authority
JP
Japan
Prior art keywords
resist
iii
formulas
tables
structural units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14542984A
Other languages
Japanese (ja)
Other versions
JPH0521227B2 (en
Inventor
Yasuo Iida
康夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14542984A priority Critical patent/JPS6125140A/en
Publication of JPS6125140A publication Critical patent/JPS6125140A/en
Publication of JPH0521227B2 publication Critical patent/JPH0521227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To enhance a glass transition point, oxygen plasma resistance, and heat resistance, and to enable this resist to be used for double layer resist process by using a silicone resin type resist specified in structural units. CONSTITUTION:The resist uses a polymer compd. composed of structural units represented by formulae I, II, III, and VI in which X is halogen, -O-CO-CH= CHR, -O-CH2-CH=CHR, or the like; R, R', and R'' are each H or alkyl; n is 1-5; when plural groups of -(CH2X) are combines with the units I, each X is same or different; the total number of the units I, II, and III are >=50, and a rate of ( I +II)/( I +II+III+IV) is <=80%, I /II=10-30%, III/( I +II+III+ IV)=5-10%. Such a resist can be improved in oxygen plasma resistance by the silicone structure, enhanced in glass transition point by the presence of naphthalene rings, and controllex in exposure characteristics by the presence of benzene rings enhanced in sensitivity by chloromethylation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエネルギー感応性高分子材料、詳しくは電子線
、X線、イオンビーム、深紫外光又は紫外光に感応する
高分子材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to energy-sensitive polymeric materials, particularly to polymeric materials sensitive to electron beams, X-rays, ion beams, deep ultraviolet light, or ultraviolet light.

(従来技術とその問題点) 近年、半導体装置の素子特性の向上ならびに高機能化は
きわめて著しいが、その利用分野の拡大とともに、なお
一層の性能向上が要求されている。
(Prior art and its problems) In recent years, improvements in the element characteristics and functionality of semiconductor devices have been extremely remarkable, but as the fields of use thereof have expanded, further improvements in performance have been required.

その実現は、回路上の工夫やチ、プザイズの大型化等で
もある程度可能であるが、最も効果的な方法は素子の微
細化をこある事が知られている。従来このような加工は
紫外光を照射してレジストパターンを形成するフォトリ
ソグラフィーの技術が用いられていたが、加工精度に光
の波長オーダーの限界があるため深紫外線、Xi、s子
線などを用いた微細加工か恵要になってきた。
Although this can be achieved to some extent by devising circuits and increasing the size of chips, it is known that the most effective method is to miniaturize the elements. Conventionally, such processing has used photolithography technology that forms a resist pattern by irradiating ultraviolet light, but since there is a limit to processing accuracy on the order of the wavelength of light, it has been necessary to use deep ultraviolet, Xi, s-sonant, etc. The fine processing used has become important.

これらの新しい露光技術に関する研究の結果、レジスト
の膜厚を薄くシ、かつ均一にした状態で露光しないと、
これらの新技術を用いても散乱現象や現像プロセスのバ
ラツキのため1μm以下の寸法の加工は困難であること
がわかってきた。しかしながら実際にはデバイス製作工
程に応じて基板には順次複雑な段差が形成されていくた
め、十分に解像度が向上するほどに、レジストを薄くす
ることは、レジストの段差部へのまわりつき上手可能で
あった。
As a result of research on these new exposure technologies, we found that unless the resist film is exposed with a thin and uniform thickness,
Even using these new technologies, it has been found that processing of dimensions of 1 μm or less is difficult due to scattering phenomena and variations in the development process. However, in reality, complex steps are gradually formed on the substrate depending on the device manufacturing process, so making the resist thin enough to sufficiently improve resolution will allow the resist to wrap around the steps. Met.

そこで、米国のベル研究所のジエー・エム・モラン氏等
がジャーカレψオブ・バキューム・サイエンス・アンド
・テクノロジー、第16巻、 1620ページからの論
文で述べているような三層構造レジストプロセスが提案
された。
Therefore, a three-layer resist process was proposed by Mr. J.M. Moran et al. of Bell Laboratories in the United States in a paper from Jakare ψ of Vacuum Science and Technology, Vol. 16, page 1620. It was done.

この方法は、きわめて有効な方法であるがプロセスが複
雑なため、さらに特願昭57−090639号明細書に
示したように二層化の試みがなされた。
Although this method is extremely effective, since the process is complicated, an attempt was made to create two layers as shown in Japanese Patent Application No. 57-090639.

該発明においては、シリコーン樹脂のガラス転移点向上
のためフェニル基の導入が行われているが、150℃以
上のガラス転移点を実現することは困難であり、リフラ
クトリ−メタル等高融点金属のりフトオフ・プロセス等
、一部のプロセスには使いにくい欠点があった。
In this invention, a phenyl group is introduced to improve the glass transition point of the silicone resin, but it is difficult to achieve a glass transition point of 150°C or higher, and high melting point metal pastes such as refractory metals are difficult to achieve.・Some processes had drawbacks that made them difficult to use.

(発明の目的) 本発明は二層レジストプロセスに使用可能なシリコーン
樹脂系レジストで、ガラス転移点が150℃以上う高く
、高温プロセスにも使用可能な高分子レジスト及びプロ
セスを提供することにある。
(Object of the invention) The present invention provides a silicone resin resist that can be used in two-layer resist processes, has a glass transition point higher than 150°C, and provides a polymer resist and process that can also be used in high-temperature processes. .

(発明の概要) 本発明は下記、(I) 、 ([D 、 [)及び(財
)の一般式で表わされる構造単位 (CH2X)n よりなるエネルギー線感応性高分子レジストであって、
式中Xはハロゲン、−U−0−OH=OHR,。
(Summary of the Invention) The present invention is an energy ray-sensitive polymer resist consisting of the following structural units (CH2X)n represented by the following general formulas:
In the formula, X is halogen, -U-0-OH=OHR.

−0−OH,0H=OI(R、−N)1−OH,0H=
O)11−L 。
-0-OH,0H=OI(R,-N)1-OH,0H=
O) 11-L.

であり、1(、、)!、’ 、 R”  は水素又はア
ルキル基であり、nは1〜5の値であり、前記構造単位
α)に士OH,X)が複数個結合している場合にはXは
同−又は異なる置換基であって、前記構造単位(I)。
And 1(,,)! , ', R'' are hydrogen or an alkyl group, n is a value of 1 to 5, and when multiple OH, X) are bonded to the structural unit α), X are the same or different. A substituent, which is the structural unit (I).

■及び[相]の数の和が(資)以上であり、前記構造単
位(I)と■の合計数の全構造単位数に対する割合が(
資)%以下であり、構造単位■に対する(I)の数の割
合は10〜30%であり、構造単位−の全構造単位数に
対する割合は5〜10q6であることを特徴としたエネ
ルギー感応性高分子レジストである、シリコーン樹脂に
フェニル基を導入することで、ガラス転移点が向上する
ことは、既に知られていたが、ナフチル基を導入するこ
とで、より効率よ(ガラス転移点を向上できることを発
見し、二層レジストプロセス等に使用しやすいレジスト
材料を提供できる。
The sum of the numbers of ■ and [phase] is greater than or equal to (capital), and the ratio of the total number of structural units (I) and ■ to the total number of structural units is (
energy sensitivity, characterized in that the ratio of the number of (I) to the structural unit ■ is 10 to 30%, and the ratio of the structural unit - to the total number of structural units is 5 to 10q6. It was already known that introducing phenyl groups into silicone resin, which is a polymeric resist, improves the glass transition point. We can provide resist materials that are easy to use in two-layer resist processes, etc.

(実施例) メチルフェニルシリコーンとメチル、ナフチルシリコー
ンとジメチルシリコーンの共重合体で重合度500〜2
500であるシリコーン樹脂のフェニル基をクロルメチ
ルメチルエーテルでクロルメチル化した後、酢酸イソア
ミ)し溶液にしてレジスト液とした。シリコーンの合成
はエチルエーテル中で前記に対応したクロロシラン化合
物を加水分解し水酸化アンモニウムにより重合させてい
る。第1図から第4図は、本発明のレジストを半導体デ
バイス製作の一工程であるゲ、−1配線形成工程に用い
る場合を説明するための図面で、該半導体デバイスの概
略断面を順次示した図である。
(Example) A copolymer of methylphenyl silicone and methyl, and a copolymer of naphthyl silicone and dimethyl silicone with a polymerization degree of 500 to 2.
After the phenyl group of the silicone resin No. 500 was chloromethylated with chloromethyl methyl ether, the resulting solution was made into a solution using chloromethyl methyl ether (isoamide acetate) to prepare a resist solution. Silicone is synthesized by hydrolyzing the corresponding chlorosilane compound in ethyl ether and polymerizing it with ammonium hydroxide. FIGS. 1 to 4 are drawings for explaining the case where the resist of the present invention is used in the Ge-1 wiring formation process, which is one of the steps of manufacturing a semiconductor device, and sequentially shows schematic cross-sections of the semiconductor device. It is a diagram.

11はシリコン基板、12はアイソレージ、ン用シリコ
ン酸化膜、13はゲート酸化膜である。ます、表面平坦
化用の下地有機膜としてノボラック樹脂14を膜厚1〜
5μmとなるように回転塗布する。
11 is a silicon substrate, 12 is an isolation silicon oxide film, and 13 is a gate oxide film. First, apply novolac resin 14 to a film thickness of 1 to 10% as a base organic film for surface flattening.
Spin coating to a thickness of 5 μm.

15が本発明のレジストの一例である前記溶液を膜厚0
.2μm〜1μmとなるように回転塗布したものである
。(第1図) その後、例えば加速電圧20KVの電子Isを照射量約
5×10 クローン/slとなるように選択照射して、
酢酸イソアミルにより現像し、ネガ型/櫂ターンヲ得る
、ライで0. I Torr −0,01Torr  
程度の酸素雰囲気中での反応性スパッタエツチングによ
り、下地有機膜を異方的に加工する。(第2図)フェニ
ル基をクロルメチル化したジメチlし、メチルナフチル
シリコーン膜15の耐酸素プラズマ性はノボラック樹脂
の約10倍ありエツチングのマスクとして充分な耐性を
示すことがわ力じた。その後、高融点金属、例えばモリ
ブデン膜31を真空蒸着法により堆積する。本発明のレ
ジストは耐熱性も高く、高融点金属を蒸着しても変質せ
ず下地有機膜の保護材としても働く。(第3図) ついで加温したアセトン溶液に浸漬すると下地有機膜が
溶解しいわゆる、リフトオフ、プロセスにより所望のゲ
ート配線パターン41を残して、不用部の高融点金属及
びレジストは除去される。
15 is an example of the resist of the present invention.
.. It was spin-coated to a thickness of 2 μm to 1 μm. (Fig. 1) Then, for example, electrons Is with an acceleration voltage of 20 KV are selectively irradiated at a dose of about 5 x 10 clones/sl.
Developed with isoamyl acetate to obtain a negative tone/paddle turn, 0.0. I Torr -0,01 Torr
The underlying organic film is anisotropically processed by reactive sputter etching in a moderate oxygen atmosphere. (FIG. 2) The oxygen plasma resistance of the dimethylnaphthyl silicone film 15, which is obtained by chloromethylating a phenyl group, is about 10 times that of novolak resin, and it has been demonstrated that it exhibits sufficient resistance as an etching mask. Thereafter, a film 31 of a high melting point metal such as molybdenum is deposited by vacuum evaporation. The resist of the present invention has high heat resistance, does not change in quality even when a high melting point metal is vapor deposited, and acts as a protective material for the underlying organic film. (FIG. 3) Then, when it is immersed in a heated acetone solution, the underlying organic film is dissolved, and by a so-called lift-off process, the desired gate wiring pattern 41 is left and the high melting point metal and resist are removed in unnecessary parts.

以上、詳しく述べたように、シリコーン構造で耐識累プ
ラズマ性をよりシ、ナフタレン環によりガラス転移点を
高くし、クロルメチル化で感度を向上したベンゼン環に
より露光特性を調整した高解像度ネガ型レジストが得ら
れたわけであるが、前記、実施例は例示的なものであっ
てナフタレン基によるガラス転移点の向上は各組成割合
について得られるため、耐プラズマ性2g度、解像度の
調整を目的として各構成要素の置換基を変化できること
は明確である。
As described in detail above, this is a high-resolution negative resist with a silicone structure that improves resistance to plasma, a naphthalene ring that raises the glass transition point, and a benzene ring that improves sensitivity through chloromethylation and adjusts exposure characteristics. However, the above examples are illustrative, and the improvement in the glass transition point due to the naphthalene group can be obtained for each composition ratio. It is clear that the substituents of the components can be varied.

、本発明において構造単位(I)、叩1 (n) l動
の数の和を50以上とするのは、基板への塗布において
均一な膜を形成させるためである。
In the present invention, the sum of the numbers of structural units (I) and 1 (n) l movements is set to 50 or more in order to form a uniform film when applied to a substrate.

構造単位(ト)の割合を5〜10%にするのは、数十%
望では多いほどガラス転位温度が高くなるが、多すぎる
と感度が低下するためである。
Setting the proportion of structural units (T) to 5 to 10% is several tens of percent.
Desirably, the higher the number, the higher the glass transition temperature; however, if the number is too large, the sensitivity decreases.

構造単位■に対するσノの割合を10〜3096にする
のは、下限は感度を確保したいため、上限は分散を小さ
くしたいからである。
The reason why the ratio of σ to the structural unit (■) is set to 10 to 3096 is that the lower limit wants to ensure sensitivity, and the upper limit wants to reduce dispersion.

構造単位の、@、[Dだけだと基板への接着性。Structural unit @, [D only has adhesion to the substrate.

塗布性が悪くなるので全構造単位に対する(I)十■の
割合を最大(資)%、側を最大10%におさえ、残りを
構造率位動としている。
Since coating properties deteriorate, the ratio of (I) to the total structural units is limited to a maximum of 10%, and the remainder is determined as a structural ratio.

またXとしてハロゲン、−0−0−OH=OHR。Further, as X, halogen, -0-0-OH=OHR.

^ 一〇−OH,OH,=OHR,−NH−OH20H=O
HRを用いたときは電子線、X線、イオンビーム、深菫
た、構造単位(財)の置換基を選択することにより、電
子線以外のエネルギー線、例えばXIw、遠紫外線、紫
外線に用いるのに通した改良が可能なことも明確である
^ 10-OH,OH,=OHR,-NH-OH20H=O
When HR is used, it can be used for electron beams, It is also clear that improvements can be made through

(発明の効果) 本発明の高ガラス転移点、高耐酸素プラズマ性レジスト
の開発−こより、二層レジストプロセス等がきわめて簡
便になり、超LSI製造に不可欠なサブミクロン露光が
現実のものとなった。
(Effects of the Invention) Development of the high glass transition point, high oxygen plasma resistance resist of the present invention - As a result, the two-layer resist process, etc. has become extremely simple, and submicron exposure, which is essential for VLSI manufacturing, has become a reality. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の高ガラス転移点、耐プラズ
マ性エネルギー線感応性高分子レジストの有効性を説明
するための半導体デバイス製造の主要工程における該デ
バイスの概略断面を順次示T図である。 図中の番号は以下のものを示す。 11:半導体基板 12:累子分離用酸化膜13ニゲー
If化膜 J4:平坦化用下地有機膜15:本発明の高
ガラス転移点・耐プラズマ性レジスト膜  3I:高融
点金属 41:リフトオフプロセスによりパターン化したゲート
配線金属膜 深1図 第2図 第3図
FIGS. 1 to 4 sequentially show schematic cross-sections of a semiconductor device during the main steps of manufacturing the device in order to explain the effectiveness of the high glass transition point, plasma-resistant, energy-ray-sensitive polymer resist of the present invention. It is a diagram. The numbers in the figure indicate the following. 11: Semiconductor substrate 12: Oxide film for separator isolation 13 Niga If film J4: Base organic film for planarization 15: High glass transition point/plasma resistant resist film of the present invention 3I: High melting point metal 41: By lift-off process Patterned gate wiring metal film depth 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 下記( I )、(II)、(III)及び(IV)の一般式で表
わされる構造単位 ( I )▲数式、化学式、表等があります▼ (II)▲数式、化学式、表等があります▼ (III)▲数式、化学式、表等があります▼ (IV)▲数式、化学式、表等があります▼ よりなるエネルギー線感応性高分子レジストであって、
式中Xはハロゲン、▲数式、化学式、表等があります▼
、 −O−CH_2CH=CHR、−NH−CH_2CH=
CHR、▲数式、化学式、表等があります▼または▲数
式、化学式、表等があります▼ であり、R、R′、R″は水素又はアルキル基であり、
nは1〜5の値であり、前記構造単位( I )に▲数式
、化学式、表等があります▼が複数個結合している場合
にはXは 同一又は異なる置換基であって、前記構造単位( I )
、(II)及び(III)の数の和が50以上であり、前記
構造単位( I )と(II)の合計数の全構造単位数に対
する割合が80%以下であり、構造単位(II)に対する
( I )の数の割合は10〜30%であり、構造単位(
III)の全構造単位数に対する割合は5〜10%である
ことを特徴としたエネルギー感応性高分子レジスト。
[Claims] Structural units represented by the following general formulas (I), (II), (III), and (IV) (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ Numerical formulas, chemical formulas , tables, etc. ▼ (III) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (IV) ▲ There are mathematical formulas, chemical formulas, tables, etc.
In the formula, X is halogen, ▲There are mathematical formulas, chemical formulas, tables, etc.▼
, -O-CH_2CH=CHR, -NH-CH_2CH=
CHR, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and R, R', R'' are hydrogen or alkyl groups,
n is a value of 1 to 5, and when the structural unit (I) has multiple ▲ mathematical formulas, chemical formulas, tables, etc. ▼ bonded, X is the same or different substituent, and Unit (I)
, (II) and (III) is 50 or more, the ratio of the total number of structural units (I) and (II) to the total number of structural units is 80% or less, and the structural unit (II) The ratio of the number of (I) to the structural unit (I) is 10 to 30%, and the structural unit (
An energy-sensitive polymer resist characterized in that the ratio of III) to the total number of structural units is 5 to 10%.
JP14542984A 1984-07-13 1984-07-13 Polymer resist sensitive to energy rays Granted JPS6125140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14542984A JPS6125140A (en) 1984-07-13 1984-07-13 Polymer resist sensitive to energy rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14542984A JPS6125140A (en) 1984-07-13 1984-07-13 Polymer resist sensitive to energy rays

Publications (2)

Publication Number Publication Date
JPS6125140A true JPS6125140A (en) 1986-02-04
JPH0521227B2 JPH0521227B2 (en) 1993-03-23

Family

ID=15385037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14542984A Granted JPS6125140A (en) 1984-07-13 1984-07-13 Polymer resist sensitive to energy rays

Country Status (1)

Country Link
JP (1) JPS6125140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195908A (en) * 2007-02-16 2008-08-28 Toray Fine Chemicals Co Ltd Silicone copolymer having condensed polycyclic hydrocarbon group, and method for producing the same
JP2008203364A (en) * 2007-02-16 2008-09-04 Tokyo Ohka Kogyo Co Ltd Composition for resist underlayer film formation and resist underlayer film using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195908A (en) * 2007-02-16 2008-08-28 Toray Fine Chemicals Co Ltd Silicone copolymer having condensed polycyclic hydrocarbon group, and method for producing the same
JP2008203364A (en) * 2007-02-16 2008-09-04 Tokyo Ohka Kogyo Co Ltd Composition for resist underlayer film formation and resist underlayer film using the same

Also Published As

Publication number Publication date
JPH0521227B2 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
JPS60229026A (en) Manufacture of electronic device
CA1166061A (en) Method of forming a negative resist pattern by exposing to crosslink a copolymer containing halomethyl or acrylymethyl substituted styrene units
EP0005551A2 (en) Article comprising a substrate and an overlying layer of electron beam radiation-sensitive material and process for fabrication thereof
JPS6048022B2 (en) electronic sensitive resist
JPS5949536A (en) Formation of micropattern
JPS5835527B2 (en) electrofunctional resin
JPS58207041A (en) Radiosensitive polymer resist
JPS6125140A (en) Polymer resist sensitive to energy rays
JP2867479B2 (en) Method of forming resist pattern
JP2901044B2 (en) Pattern formation method by three-layer resist method
US4556619A (en) Negative-type acetalized polyvinyl alcohol resist sensitive to ionizing radiation
JPS60220340A (en) Photosensitive resin composition and formation of pattern
JPS5828571B2 (en) Resist formation method for microfabrication
US4367281A (en) Fine fabrication process using radiation sensitive resist
JPS6376438A (en) Pattern formation
JPH0542810B2 (en)
TW457400B (en) Modified positive electron-beam resists
JPS63181428A (en) Formation of resist pattern
JPS59121042A (en) Negative type resist composition
EP0007976A1 (en) Lithographic resist and device processing utilizing same
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JP2618978B2 (en) Resist material and pattern forming method using the resist material
JPS61295548A (en) Negative type resist composition
JPS6219053B2 (en)
JPS61151530A (en) Electron beam resist material composition