JPS61251089A - Discharge excitation type laser device - Google Patents

Discharge excitation type laser device

Info

Publication number
JPS61251089A
JPS61251089A JP9262585A JP9262585A JPS61251089A JP S61251089 A JPS61251089 A JP S61251089A JP 9262585 A JP9262585 A JP 9262585A JP 9262585 A JP9262585 A JP 9262585A JP S61251089 A JPS61251089 A JP S61251089A
Authority
JP
Japan
Prior art keywords
laser beam
laser
polarization
light detector
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9262585A
Other languages
Japanese (ja)
Inventor
Hitoshi Wakata
若田 仁志
Yukio Sato
行雄 佐藤
Takeo Haruta
春田 健雄
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9262585A priority Critical patent/JPS61251089A/en
Publication of JPS61251089A publication Critical patent/JPS61251089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the continuous variation of the output of the laser beam from zero by carrying out laser oscillation under the optimum conditions by providing a polarization control means and a polarization component selection means of the laser beam. CONSTITUTION:The laser beam 7 taken out from a laser oscillator A becomes a linear polarization. As a linear polarization element as a light detector 9 is arranged in the outside of the laser oscillator A, only the polarization component in a direction of the light detector 9 of the laser beam 7 is selected. Then, the pulse output of the laser beam 10 passed the light detector 9 changes continuously from zero by varying an angle theta made by the direction of the light detector 9 with the polarization direction of the laser beam 7. Accordingly, if the laser oscillation is carried out under the conditions for the most stable discharge and the light detector 9 is rotated mechanically, the pulse output of the laser beam 10 can be changed continuously from zero to the maximum value. It is also available to rotate the polarization direction of the laser beam due to Faraday effect by use of a Faraday element and a magnetic field generator before the laser beam reaches the light detector.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ出力を連続的に変えることのできる
放電励起型レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a discharge-excited laser device that can continuously change laser output.

〔従来の技術〕[Conventional technology]

第4図は例えば1984年の第4回応用物理学会の予稿
集第137頁に記載された従来の放電励起型レーザ装置
の構成図である0図において、(1)は第1の主電極、
(2)は第1の主電極(1)に対向して配置された第2
の主電極、(3)は主電極(1) 、 (2)間に高電
圧パルスを印加する高電圧パルス回路、(4)は主電極
(1) 、 (2)間に設けられたレーザ媒質である。
FIG. 4 is a block diagram of a conventional discharge-excited laser device described in, for example, page 137 of the proceedings of the 4th Japan Society of Applied Physics in 1984. In FIG. 0, (1) is the first main electrode;
(2) is a second main electrode placed opposite to the first main electrode (1).
(3) is a high voltage pulse circuit that applies a high voltage pulse between the main electrodes (1) and (2), and (4) is the laser medium provided between the main electrodes (1) and (2). It is.

(5)は全反射鏡、(6)は全反射鏡(5)とともに光
共振器を形成する部分反射鏡で、これらはレーザ発振器
(A)を構成している。(7)はこのレーザ発振器(A
)から取出されたレーザ光線である。
(5) is a total reflection mirror, and (6) is a partial reflection mirror that forms an optical resonator together with the total reflection mirror (5), and these constitute a laser oscillator (A). (7) is this laser oscillator (A
) is a laser beam extracted from

次に動作について説明する。第1の主電極(1)と第2
の主電極(2)が対向して配置されているため、高電圧
パルス回路(3)により、主電極(1)、 (2)間に
高電圧パルスを印加すると、レーザ媒質(4)(本例で
はHe、HCfiおよびXaの高圧の混合気体)中でグ
ロー放電が発生し、レーザ媒質(4)は励起された状態
となる。反射鏡(5) 、 (6)は光共振器を構成し
ており、パルス状のレーザ光線(7)が取り出される。
Next, the operation will be explained. The first main electrode (1) and the second
Since the main electrodes (2) of the main electrodes (2) are arranged facing each other, when a high voltage pulse is applied between the main electrodes (1) and (2) by the high voltage pulse circuit (3), the laser medium (4) (main In the example, a glow discharge occurs in a high-pressure gas mixture of He, HCfi, and Xa), and the laser medium (4) becomes excited. The reflecting mirrors (5) and (6) constitute an optical resonator, from which a pulsed laser beam (7) is extracted.

従来装置において、レーザ光線(7)の1パルス当たり
の出力の制御は高電圧パルス回路(3)に充電する電圧
を変えることにより行っていた。ところが、充電電圧を
変えてゆくと、主電極(1) 、 (2)の電界が変わ
り、グロー放電の立ち上がり速度や持続時間が変わって
しまい、その結果発生するレーザ光線(7)のパルス波
形も変化することが知られている。
In the conventional device, the output per pulse of the laser beam (7) was controlled by changing the voltage charged to the high voltage pulse circuit (3). However, when the charging voltage is changed, the electric field of the main electrodes (1) and (2) changes, the rise speed and duration of the glow discharge change, and the pulse waveform of the resulting laser beam (7) also changes. known to change.

第5図は充電電圧を変えた時のレーザのパルス出力を示
したもので、23〜30kVではパルス出力は連続的に
変化する。しかし、21に%+では放電が不均一となっ
て出力が低下し、またそれ以下ではグロー放電がアーク
放電に移行し発振が停止する。
FIG. 5 shows the pulse output of the laser when the charging voltage is changed, and the pulse output changes continuously between 23 and 30 kV. However, at 21%+, the discharge becomes uneven and the output decreases, and below that, glow discharge shifts to arc discharge and oscillation stops.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の放電励起型レーザ装置は以上のように構成されて
いるので、充電電圧が低い時は、放電の立ち上がり速度
が遅くなってグロー放電を保てなくなり、レーザ発振が
停止する。従って、レーザ出力をゼロから最大出力まで
連続的に変えることが難しいという問題点があった。ま
た充電電圧によりレーザ出力を制御すると、レーザパル
ス波形も変わるという問題点もあった。
Since the conventional discharge-excited laser device is configured as described above, when the charging voltage is low, the rising speed of the discharge becomes slow and the glow discharge cannot be maintained, and the laser oscillation stops. Therefore, there is a problem in that it is difficult to continuously change the laser output from zero to the maximum output. There is also the problem that when the laser output is controlled by the charging voltage, the laser pulse waveform also changes.

この発明は上記のような問題点を解消するためになされ
たもので、1パルス当たりのレーザ出力を連続的に変え
ることのできる放電励起型レーザ装置を得ることを目的
とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a discharge-excited laser device that can continuously change the laser output per pulse.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る放電励起型レーザ装置は、レーザ発振器
と、このレーザ発振器内に設けた発生するレーザ光線の
偏光制御手段と、レーザ発振器外に偏光成分選択手段と
を有するものである。
A discharge-pumped laser device according to the present invention includes a laser oscillator, a polarization control means for a generated laser beam provided inside the laser oscillator, and a polarization component selection means outside the laser oscillator.

〔作 用〕[For production]

この発明における放電励起型レーザ装置は、レーザ発振
器でレーザ光線を発生させる際、偏光制御手段により発
生するレーザ光線を偏光させ、レーザ発振器外に設けた
偏光成分選択手段により特定の偏光成分を選択する。こ
の場合、安定なグロー放電が得られる範囲に充電電圧を
設定し、一方、発生するレーザ光線から特定の偏光成分
を選択することにより1パルス当たりの出力の制御を行
う。
In the discharge pumped laser device of the present invention, when a laser beam is generated by a laser oscillator, the generated laser beam is polarized by a polarization control means, and a specific polarization component is selected by a polarization component selection means provided outside the laser oscillator. . In this case, the charging voltage is set within a range that provides stable glow discharge, and the output per pulse is controlled by selecting a specific polarization component from the generated laser beam.

このためレーザ出力はゼロから滑めらかに変えることが
できる。
Therefore, the laser output can be changed smoothly from zero.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による放電励起型レーザ装置の
構成図であり、図において、(1)〜(7)は第4図と
同一のものである。(8)はレーザ発振器(A)内の反
射鏡(5)、(6)間に設けられた偏光方向制御手段と
しての偏光子、(9)はレーザ発振器(A)外のレーザ
光線(7)の光路に設けられた偏光成分選択手段として
の検光子、(10)は検光子(9)を通過したレーザ光
線である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram of a discharge-excited laser device according to an embodiment of the present invention, and in the figure, (1) to (7) are the same as those in FIG. 4. (8) is a polarizer as a polarization direction control means provided between the reflecting mirrors (5) and (6) in the laser oscillator (A), and (9) is the laser beam (7) outside the laser oscillator (A). A laser beam (10) is a laser beam that has passed through the analyzer (9).

次に動作について説明する。対向して置かれた主電極(
1)、 (2)対間に高電圧パルス回路(3)より高電
圧パルスを印加すると、レーザ媒質(4)中にグロー放
電が発生し、レーザ媒質(4)は励起された状態となる
0反射鏡(5) 、 (6)は光共振器を構成しており
、レーザ発振器(A)内に偏光子(8)として、たとえ
ば直線偏光子、回折格子、プリズム、ベンダーミラー等
を置けば、レーザ発振器(A)より取り出されるレーザ
光線(7)は直線偏光となる。レーザ発振器(A)外に
検光子(9)として直線偏光素子を配置すると、レーザ
光線(7)のうち検光子(9)の方向の偏光成分のみが
選択される。このため検光子(9)の方向とレーザ光線
(7)の偏光方向のなす角度をθとすれば、θを変える
ことにより、検光子(9)を通過したレーザ光線(10
)のパルス出力はゼロから連続的に変わる。θに対する
レーザ光線(10)のパルス出力の変化は第2図に示す
通りである。従って、レーザ発振は放電がもっとも安定
な条件で行っておき、かつ検光子(9)を機械的に回転
させると、レーザ光線(10)のパルス出力はゼロから
最大値まで連続的に変えることができる。
Next, the operation will be explained. The main electrodes placed opposite each other (
1), (2) When a high voltage pulse is applied between the pairs from the high voltage pulse circuit (3), a glow discharge is generated in the laser medium (4), and the laser medium (4) becomes excited. The reflecting mirrors (5) and (6) constitute an optical resonator, and if a polarizer (8) such as a linear polarizer, diffraction grating, prism, or bender mirror is placed inside the laser oscillator (A), The laser beam (7) extracted from the laser oscillator (A) becomes linearly polarized light. When a linearly polarizing element is placed as an analyzer (9) outside the laser oscillator (A), only the polarized component of the laser beam (7) in the direction of the analyzer (9) is selected. Therefore, if the angle between the direction of the analyzer (9) and the polarization direction of the laser beam (7) is θ, then by changing θ, the laser beam (10
) pulse output changes continuously from zero. The variation of the pulse output of the laser beam (10) with respect to θ is as shown in FIG. Therefore, if the laser oscillation is performed under conditions where the discharge is most stable and the analyzer (9) is mechanically rotated, the pulse output of the laser beam (10) can be changed continuously from zero to the maximum value. can.

なお、上記実施例ではレーザ光線の偏光選択手段として
検光子(9)を機械的に回転させるようにしたが、レー
ザ発振器(A)におかれた偏光子(8)を制御してレー
ザ光線(7)の偏光方向を回転させてもよい、また第1
図の実施例では、レーザ光線の偏光選択手段として検光
子(9)を機械的に回転させるようにしたが、第3図の
ように、レーザ光線(7)が検光子(9)に達する前に
、ファラデー素子(11)と磁界発生装置(12)を用
いて、ファラデー効果によりレーザ光線(7)の偏光方
向を回転させてもよい、ファラデー効果による回転角度
はヴエルデ定数と磁界の強さに比例するので、ファラデ
ー素子(11)の材料として、たとえば水、ベンゼン等
を用いれば、紫外Jギいてはヴエルデ定数が大きいから
、偏光の回転に大きな効果がある。また第3図の実施例
において、ファラデー効果を利用する代りに電気光学効
果を用いて偏光を楕円偏光に変えても、前記実施例と同
様の効果が得られる。
In the above embodiment, the analyzer (9) was mechanically rotated as means for selecting the polarization of the laser beam, but the polarizer (8) placed in the laser oscillator (A) was controlled to change the polarization of the laser beam ( The polarization direction of 7) may be rotated, or the first polarization direction may be rotated.
In the embodiment shown in the figure, the analyzer (9) is mechanically rotated as a means for selecting the polarization of the laser beam, but as shown in Figure 3, before the laser beam (7) reaches the analyzer (9), Alternatively, the polarization direction of the laser beam (7) may be rotated by the Faraday effect using a Faraday element (11) and a magnetic field generator (12).The rotation angle due to the Faraday effect depends on the Welde constant and the strength of the magnetic field. Therefore, if water, benzene, or the like is used as the material for the Faraday element (11), the Weerde constant is large in the ultraviolet range, so it has a great effect on rotation of polarized light. Furthermore, in the embodiment shown in FIG. 3, even if the polarized light is changed to elliptically polarized light by using the electro-optic effect instead of using the Faraday effect, the same effect as in the previous embodiment can be obtained.

さらに上記実施例では偏光方向制御手段として直線偏光
させる場合について述べたが、円偏光または楕円偏光さ
せてもよい。
Further, in the above embodiment, the polarization direction control means uses linearly polarized light, but circularly or elliptically polarized light may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれ番f、レーザ光線の偏光
制御手段および偏光成分選択手段を設けたので、レーザ
発振を最適条件で行い、かつレーザ光線のパルス出力を
ゼロから連続的に変えることが可能である。
As described above, since the present invention provides the number f, the polarization control means for the laser beam, and the polarization component selection means, it is possible to perform laser oscillation under optimal conditions and to continuously change the pulse output of the laser beam from zero. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による放電励起型レーザ装
置の構成図、第2図はパルス出力の変化を示す線図、第
3図はこの発明の他の実施例を示す構成図、第4図は従
来の放電励起型レーザ装置の構成図、第5図は従来装置
のパルス出力の変化を示す線図である。 (A)はレーザ発振器、(1) 、 (2)は主電極、
 (5)、(6)は反射鏡、(8)は偏光子、(9)は
検光子である。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of a discharge-excited laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing changes in pulse output, and FIG. 3 is a block diagram showing another embodiment of the present invention. FIG. 4 is a block diagram of a conventional discharge-excited laser device, and FIG. 5 is a diagram showing changes in pulse output of the conventional device. (A) is a laser oscillator, (1) and (2) are main electrodes,
(5) and (6) are reflecting mirrors, (8) is a polarizer, and (9) is an analyzer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ発振器と、このレーザ発振器内に設けられ
たレーザ光線の偏光制御手段と、前記レーザ発振器外に
設けらけたレーザ光線の偏光成分選択手段とを有するこ
とを特徴とする放電励起型レーザ装置。
(1) A discharge-pumped laser comprising a laser oscillator, a laser beam polarization control means provided within the laser oscillator, and a laser beam polarization component selection means provided outside the laser oscillator. Device.
(2)偏光成分選択手段が直線偏光素子を回転させるも
のであることを特徴とする特許請求の範囲第1項記載の
放電励起型レーザ装置。
(2) A discharge-excited laser device according to claim 1, wherein the polarization component selection means rotates a linear polarization element.
(3)偏光成分選択手段がファラデー素子および直線偏
光素子からなることを特徴とする特許請求の範囲第1項
記載の放電励起型レーザ装置。
(3) A discharge-excited laser device according to claim 1, wherein the polarization component selection means comprises a Faraday element and a linear polarization element.
(4)偏光成分選択手段が電気光学素子および直線偏光
素子からなることを特徴とする特許請求の範囲第1項記
載の放電励起型レーザ装置。
(4) The discharge-excited laser device according to claim 1, wherein the polarization component selection means comprises an electro-optical element and a linear polarization element.
JP9262585A 1985-04-29 1985-04-29 Discharge excitation type laser device Pending JPS61251089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262585A JPS61251089A (en) 1985-04-29 1985-04-29 Discharge excitation type laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262585A JPS61251089A (en) 1985-04-29 1985-04-29 Discharge excitation type laser device

Publications (1)

Publication Number Publication Date
JPS61251089A true JPS61251089A (en) 1986-11-08

Family

ID=14059622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262585A Pending JPS61251089A (en) 1985-04-29 1985-04-29 Discharge excitation type laser device

Country Status (1)

Country Link
JP (1) JPS61251089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133907A (en) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp Film deposition device
US20190021345A1 (en) * 2015-09-03 2019-01-24 Haas Food Equipment Gmbh Arrangement for cleaning baking surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133907A (en) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp Film deposition device
US20190021345A1 (en) * 2015-09-03 2019-01-24 Haas Food Equipment Gmbh Arrangement for cleaning baking surfaces

Similar Documents

Publication Publication Date Title
US4441186A (en) Electronically switchable multiwavelength laser system
EP0780936B1 (en) Wavelength selecting method in wavelength tunable laser and wavelength selectable laser oscillator in wavelength tunable laser
US5001716A (en) Tunable electro-optic Q-switch, and lasers using same
JPH01147427A (en) Liquid crystal device and system using the same
US3564450A (en) Electro-optic q-switch using brewstek angle cut pockels cell
Keilmann et al. Optical pumping and tunable laser spectroscopy of the ν2 band of D2O
EP0484815B1 (en) Raman converter with variable wavelength distribution
CA1270293A (en) Modulated laser source for optical storage
JPS61251089A (en) Discharge excitation type laser device
US3435370A (en) High speed laser frequency selector
Galstyan et al. Light-driven molecular motor
JP3127861B2 (en) Optical parametric oscillator
US4326175A (en) Multi-color, multi-pulse laser system
Jones Methods of modulating light at extreme frequencies
GB1601309A (en) Ring laser gyroscope
JP2718722B2 (en) Harmonic generator
JP2636744B2 (en) Laser device
US4735490A (en) Electro-optical light modulator having a reduced piezo-optical effect
JPH0795614B2 (en) Double frequency laser
US3487329A (en) Laser color control
Weil et al. Resonant‐piezoelectro‐optic light modulation
US4056290A (en) Method of changing the frequency of a laser beam
JPH03255688A (en) Excimer laser oscillator with narrowed wavelength band
JPS6148138B2 (en)
JPS6035653B2 (en) light modulator