JPH03255688A - Excimer laser oscillator with narrowed wavelength band - Google Patents

Excimer laser oscillator with narrowed wavelength band

Info

Publication number
JPH03255688A
JPH03255688A JP5407890A JP5407890A JPH03255688A JP H03255688 A JPH03255688 A JP H03255688A JP 5407890 A JP5407890 A JP 5407890A JP 5407890 A JP5407890 A JP 5407890A JP H03255688 A JPH03255688 A JP H03255688A
Authority
JP
Japan
Prior art keywords
polarizer
laser
resonator
pockels
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5407890A
Other languages
Japanese (ja)
Inventor
Yoshikazu Suzuki
良和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5407890A priority Critical patent/JPH03255688A/en
Publication of JPH03255688A publication Critical patent/JPH03255688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oscillator which is small in optical loss by a method wherein an electro-optical crystal possessed of a Pockels effect, a polarizer, and a wavelength selection are provided inside a resonator. CONSTITUTION:A voltage of lambda/2 is applied onto a Pockels element 8 in an initial phase. Light rays penetrating through a polarizer 6 are rotated in polarizing plane by an angle of 90 deg. through the Pockels element 8 and reflected by a polarizer 7. Therefore, in an initial phase of laser oscillation, laser rays are amplified by a resonator composed of a partial transmission mirror 3 and a second totally reflecting mirror 5. When a voltage applied to the Pockels element 8 is dropped to OV at a rise speed of 2-3ns, light rays penetrating through the polarizer 6 are not rotated in plane of polarization through the Pockels element 8 and penetrate through the polarizer 7. By this setup, laser rays are amplified by a resonator and free from the loss caused by a wavelength selection element provided in an optical path, so that laser rays of high power narrowed in band can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 (J 本発明台エキシマレーザ発振器に関し、特に半導体リソ
グラフィー装置等の光源として利用されているレーザ発
振波長幅を狭帯域化したエキシマレーザ発振器に関する
Detailed Description of the Invention [Industrial Field of Application] (J) The present invention relates to an excimer laser oscillator, and particularly to an excimer laser oscillator whose laser oscillation wavelength width is narrowed, which is used as a light source for semiconductor lithography equipment and the like.

〔従来の技術〕[Conventional technology]

従来、レーザ発振波長を狭帯域化したエキシマレーザ発
振器としては第4図に示す様に、レーザ媒質を封入した
レーザチャンバ1の両側に、光学的に対向配置した一対
の反射鏡で成る共振器の内部にエタロン板10 (第4
図(6))、または回折格子12 (第4図(a)、(
b))プリズム13(第4図(C))等の波長選択素子
を用いることにより、通常数への発振波長幅を有するも
のを、0.O1人程度まで波長幅を狭くすることが可能
となっていた。
Conventionally, an excimer laser oscillator with a narrow band laser oscillation wavelength has a resonator consisting of a pair of reflecting mirrors optically placed on both sides of a laser chamber 1 that encloses a laser medium, as shown in Fig. 4. Etalon plate 10 (fourth
(6)), or the diffraction grating 12 (Fig. 4 (a), (
b)) By using a wavelength selection element such as the prism 13 (FIG. 4(C)), a device having an oscillation wavelength width of a normal number can be set to 0. It was possible to narrow the wavelength width to about 1 person.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のエキシマレーザ発振器では、レーザ発振
器内の全反射鏡4と部分透過鏡3で構成される共振器の
内部に波長選択素子を置くため、光学的損失が大きく、
得られるレーザ発振出力も!パルス当り数IOmJ程度
以下と少ない欠点がある。
In the conventional excimer laser oscillator described above, the wavelength selection element is placed inside the resonator made up of the total reflection mirror 4 and the partial transmission mirror 3 in the laser oscillator, so there is a large optical loss.
As for the laser oscillation output you can get! There is a small drawback that it is less than about several IOmJ per pulse.

本発明の目的は」−記の欠点を改良し、光学的損失が小
さい狭帯域化エキシマレーザ発振器を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above drawbacks and to obtain a narrow band excimer laser oscillator with small optical loss.

〔課顕を解決するための手段〕[Means for resolving issues]

本発明のエキシマレーザ発振器は、共振器内部にレーザ
光の偏向方向を電気的に制御するためポッケルス効果を
有するK D” P等の電気光学結晶と、ポラライザー
、およびレーザ発振の発振波長幅を狭くするため、エタ
ロン板1回折格子またはプリズム等の波長選択素子を有
し、電気光学結晶をレーザ発振光と同期して駆動するた
めの駆動回路を有している。
The excimer laser oscillator of the present invention includes an electro-optic crystal such as KD"P having a Pockels effect in order to electrically control the deflection direction of the laser beam inside the resonator, a polarizer, and a narrow oscillation wavelength width of the laser oscillation. To do this, it has a wavelength selection element such as an etalon plate diffraction grating or a prism, and a drive circuit for driving the electro-optic crystal in synchronization with the laser oscillation light.

本発明は、共振器内にポポッケルス効果を有することに
より、波長選択素子を含む共振器と、含まない共振器構
成を時間的に切り換え、易果的に1台の発振器により大
きなレーザ光出力が得られる。
By having a Popockels effect in the resonator, the present invention can temporally switch between a resonator configuration that includes a wavelength selection element and a resonator configuration that does not include a wavelength selection element, thereby easily achieving a large laser light output with a single oscillator. It will be done.

〔実施例〕 第1図は本発明の一実施例の構成図である。〔Example〕 FIG. 1 is a block diagram of an embodiment of the present invention.

第1図においてlは、レーザ媒質となるガスを封入した
チャンバで、内部に配置した電極間の放電によりレーザ
媒質を励起する。2はレーザチャンバ内の電極に電圧を
印加して放電を起させるためのレーザ電源である。レー
ザ発振を得るための共振器は、3の部分透過鏡と、4の
第1の全反射鏡。
In FIG. 1, l denotes a chamber filled with a gas serving as a laser medium, and the laser medium is excited by electric discharge between electrodes arranged inside. Reference numeral 2 denotes a laser power source for applying voltage to the electrodes in the laser chamber to cause discharge. The resonator for obtaining laser oscillation consists of 3 partially transmitting mirrors and 4 first total reflecting mirrors.

または5の第2の全反射鏡とで構成される。6および7
はレーザ光の偏向方向を決めるポラライザーで、8はポ
ポッケルス効果、9はポポッケルス効果用の駆動回路で
ある。10および11は、レーザ発振波長幅を狭帯域化
するためのエタロン板である。ここでは、波長幅をより
狭くするため、2種の厚みを有するエタロン板が使用さ
れている。
or 5 second total reflection mirrors. 6 and 7
8 is a polarizer that determines the deflection direction of the laser beam, 8 is a Popockels effect, and 9 is a drive circuit for the Popockels effect. 10 and 11 are etalon plates for narrowing the laser oscillation wavelength width. Here, in order to further narrow the wavelength width, etalon plates having two types of thickness are used.

第3図は、本発明の動作特性を示す図である。FIG. 3 is a diagram showing the operating characteristics of the present invention.

第3図(a)は、レーザ媒質への励起電流を示し、第3
図ら〕はポポッケルス効果8を動作させない場合のレー
ザ発振の状態を示す。第3図(C)は、ポポッケルス効
果8に印加される電圧の動作タイミングを示し、第3図
(d)はポポッケルス効果8が動作した場合のレーザ発
振光の強度を示している。
FIG. 3(a) shows the excitation current to the laser medium, and the third
Figures 1 and 2 show the state of laser oscillation when the Popockels effect 8 is not operated. FIG. 3(C) shows the operation timing of the voltage applied to the Popockels effect 8, and FIG. 3(d) shows the intensity of the laser oscillation light when the Popockels effect 8 is activated.

第1図において、レーデ発振の初期状態では、ポポッケ
ルス効果8にλ/2電圧が印加されている。
In FIG. 1, in the initial state of Rade oscillation, a λ/2 voltage is applied to the Popockels effect 8.

λ/2電圧はポッケルス結晶にKD’Pを用い、発振波
長248nmのKrFエキシマレーザの場合で約1.5
 K Vである。このため、ポラライザー6を通過した
光はポポッケルス効果8により偏光面が90°回転し、
ポラライザー7では反射される。
The λ/2 voltage is approximately 1.5 in the case of a KrF excimer laser with an oscillation wavelength of 248 nm using KD'P as the Pockels crystal.
KV. Therefore, the plane of polarization of the light passing through the polarizer 6 is rotated by 90 degrees due to the Popockels effect 8,
It is reflected by the polarizer 7.

従って、レーザ発振の初期では部分透過ミラー3と、第
2の全反射ミラー5による共振器により、レーザ光が増
幅される。この共振器では、波長選択素子であるエタロ
ン板10.11により狭帯域化されたレーザ光となって
いる。次に放電励起開始後5〜10n5の遅延をかJで
、ポ・ケルス素子に印加されている電圧を2〜3nsの
立ち下り速度でOVにすると(第3図(C))、ポララ
イザー6を通過した光はポポッケルス効果8での偏光面
の回転作用がなくなり、ポラライザー7を透過する。
Therefore, at the beginning of laser oscillation, the laser beam is amplified by the resonator formed by the partially transmitting mirror 3 and the second total reflecting mirror 5. In this resonator, the laser beam is narrow-banded by etalon plates 10 and 11, which are wavelength selection elements. Next, with a delay of 5 to 10n5 after the start of discharge excitation, the voltage applied to the Po-Kels element is brought to OV with a falling rate of 2 to 3 ns (Fig. 3 (C)), and the polarizer 6 is activated. The passed light is no longer rotated in the plane of polarization by the Popockels effect 8, and is transmitted through the polarizer 7.

これにより、レーザ光は部分透過ミラー3と、全反射鏡
4で構成される共振器により増幅され、光路中の波長選
択素子による損失がなくなる。また初期状態で発振した
狭帯域のレーザ光を増幅することになるため、狭帯域化
された、しかも大きなレーザ光出力が得られることにな
る(第3図(d))。
Thereby, the laser beam is amplified by the resonator constituted by the partially transmitting mirror 3 and the totally reflecting mirror 4, and loss caused by the wavelength selection element in the optical path is eliminated. Furthermore, since the narrow band laser light oscillated in the initial state is amplified, a narrow band and large laser light output can be obtained (FIG. 3(d)).

第2図は本発明の実施例2の構成図である。本実施例で
は第1図における第2の全反射鏡5およびエタロン板1
0.11のかわりに、回折格子12を使用している。こ
の他は第1図と同じである。この場合、回折格子が全反
射鏡と波長選択素子の機能を持つため、光学部品が減る
利点がある。
FIG. 2 is a configuration diagram of a second embodiment of the present invention. In this embodiment, the second total reflection mirror 5 and etalon plate 1 in FIG.
A diffraction grating 12 is used instead of 0.11. Other details are the same as in FIG. In this case, since the diffraction grating functions as a total reflection mirror and a wavelength selection element, there is an advantage that the number of optical components is reduced.

〔発明の効果〕 以上説明したように本発明は、エキシマレーザ発振器内
にポポッケルス効果を置くことにより、波長選択素子に
よる光学損失を最小に抑え、大きなレーザ出力が得られ
る効果がある。
[Effects of the Invention] As described above, the present invention has the effect of minimizing the optical loss due to the wavelength selection element and obtaining a large laser output by placing the Popockels effect in the excimer laser oscillator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成図、第2図は第2
の実施例の構成図、第3図は本発明の動作を示すグラフ
、第4図は従来の技術を示す構成図である。 ■・・・・・・レーザチャンバ、2・・・・・・レーザ
電源、3・・・・・・部分透過鏡、4・・・・・・全反
射鏡、5・・・・・・全反射鏡、6・・・・・・ポララ
イザー 7・・・・・・ポラライザー、8・・・・・・
ポポッケルス効果、9・・・・・・ポポッケルス効果駆
動1.10・・・・・・エタロンLll・・・・・・エ
タロン板。
FIG. 1 is a configuration diagram of the first embodiment of the present invention, and FIG. 2 is a diagram of the second embodiment.
FIG. 3 is a graph showing the operation of the present invention, and FIG. 4 is a block diagram showing the conventional technique. ■... Laser chamber, 2... Laser power supply, 3... Partially transmitting mirror, 4... Totally reflecting mirror, 5... Fully reflecting mirror. Reflector, 6...Polarizer 7...Polarizer, 8...
Popockels effect, 9... Popockels effect drive 1.10... Etalon Lll... Etalon plate.

Claims (1)

【特許請求の範囲】[Claims] 半透明鏡(以下部分反射鏡と記す)と反射鏡(以下全反
射鏡と記す)を光学的に対向配置して成る共振器内に、
希ガスとハロゲンガスで成るレーザ媒質を封入したレー
ザチャンバを備えたエキシマレーザ発振器において、少
なくとも前記共振器内のレーザチャンバと全反射鏡の間
に2つのポラライザーを備え、前記ポラライザーの間に
ポッケルス効果を有する電気光学結晶で成るポッケルス
素子を備え、前記ポラライザーのうちの一方のポラライ
ザーで反射した光が進行する光軸上に波長選択素子と全
反射鏡を備えたことを特徴とした波長狭帯域化エキシマ
レーザ発振器。
Inside a resonator, a semi-transparent mirror (hereinafter referred to as a partial reflecting mirror) and a reflecting mirror (hereinafter referred to as a total reflecting mirror) are arranged optically opposite each other.
In an excimer laser oscillator equipped with a laser chamber containing a laser medium made of rare gas and halogen gas, at least two polarizers are provided between the laser chamber in the resonator and the total reflection mirror, and the Pockels effect is prevented between the polarizers. A wavelength narrowing device characterized by comprising a Pockels element made of an electro-optic crystal having a wavelength selection element and a total reflection mirror on an optical axis along which light reflected by one of the polarizers travels. Excimer laser oscillator.
JP5407890A 1990-03-05 1990-03-05 Excimer laser oscillator with narrowed wavelength band Pending JPH03255688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5407890A JPH03255688A (en) 1990-03-05 1990-03-05 Excimer laser oscillator with narrowed wavelength band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5407890A JPH03255688A (en) 1990-03-05 1990-03-05 Excimer laser oscillator with narrowed wavelength band

Publications (1)

Publication Number Publication Date
JPH03255688A true JPH03255688A (en) 1991-11-14

Family

ID=12960578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5407890A Pending JPH03255688A (en) 1990-03-05 1990-03-05 Excimer laser oscillator with narrowed wavelength band

Country Status (1)

Country Link
JP (1) JPH03255688A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500482A (en) * 2012-12-20 2016-01-12 アカデミー オブ オプト−エレクトロニクス,チャイニーズ アカデミー オブ サイエンシズ Excimer laser composite cavity
CN114414482A (en) * 2022-01-11 2022-04-29 中国科学院南海海洋研究所 Multispectral seawater wide-angle body light source for scattering function measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500482A (en) * 2012-12-20 2016-01-12 アカデミー オブ オプト−エレクトロニクス,チャイニーズ アカデミー オブ サイエンシズ Excimer laser composite cavity
EP2937954B1 (en) * 2012-12-20 2020-07-22 Rainbow Source Laser Excimer laser combination cavity
CN114414482A (en) * 2022-01-11 2022-04-29 中国科学院南海海洋研究所 Multispectral seawater wide-angle body light source for scattering function measurement
CN114414482B (en) * 2022-01-11 2023-10-20 中国科学院南海海洋研究所 Multispectral light source for measuring wide-angle sea water body scattering function

Similar Documents

Publication Publication Date Title
US5838709A (en) Ultraviolet laser source
US4276518A (en) Optical oscillator
US4375684A (en) Laser mode locking, Q-switching and dumping system
US4233569A (en) High power laser with tuning and line narrowing capability
US5317577A (en) Optical wavelength shifter using nonlinear refractive medium disposed interiorly of laser resonator
JP3683360B2 (en) Polarization control element and solid-state laser
JPH06130328A (en) Polarization control element and solid laser device
JPH0437181A (en) Narrowed excimer laser apparatus
JPH03255688A (en) Excimer laser oscillator with narrowed wavelength band
US4326175A (en) Multi-color, multi-pulse laser system
JPH1197782A (en) Solid laser device
JPH10270781A (en) Method and device for generating laser light
JP3127861B2 (en) Optical parametric oscillator
JP2001085774A (en) Variable wavelength laser and laser oscillation wavelength switching method
JP2817709B2 (en) Laser device
JPH10247755A (en) Laser beam regenerating amplifier
JPH0795614B2 (en) Double frequency laser
JP2518179B2 (en) Laser light source
RU2754395C1 (en) Method for generating terahertz radiation pulses and apparatus for implementation thereof
JPH118430A (en) Laser device and projection aligner and pulse laser oscillation method
JP2606101B2 (en) SHG solid-state laser light source
JPS61166086A (en) Laser apparatus
JP3570656B2 (en) Continuous wavelength variable laser device
JP2744734B2 (en) Frequency sweep laser
JP3260915B2 (en) Short pulse laser light source