JPS61250038A - Production of conductive composite - Google Patents

Production of conductive composite

Info

Publication number
JPS61250038A
JPS61250038A JP60092913A JP9291385A JPS61250038A JP S61250038 A JPS61250038 A JP S61250038A JP 60092913 A JP60092913 A JP 60092913A JP 9291385 A JP9291385 A JP 9291385A JP S61250038 A JPS61250038 A JP S61250038A
Authority
JP
Japan
Prior art keywords
monomer
electrical conductivity
gas
plastic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60092913A
Other languages
Japanese (ja)
Other versions
JPH0224299B2 (en
Inventor
Mamoru Ito
守 伊藤
Yoshiro Katagawa
片川 芳郎
Hiroyuki Tajima
裕之 田島
Yasumasa Sawachika
澤近 康昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP60092913A priority Critical patent/JPS61250038A/en
Publication of JPS61250038A publication Critical patent/JPS61250038A/en
Publication of JPH0224299B2 publication Critical patent/JPH0224299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To readily obtain the plastic conductive composite of high durability, by ringing a material to be subjected to electrical conductivity treatment into contact with a gaseous phase atmosphere of monomer capable of forming electron conjugated polymer followed by irradiation of active energy rays. CONSTITUTION:A solution prepared by dissolving, in an appropriate solvent, such a monomer having in its molecular structure conjugated double bond capable of inducing polymerization by light energy as five-membered heterocyclic compound (pref. pyrrole, thiophene, furan, indole or a derivative therefrom) is heated to generate a monomer gas, which is then brought into contact with a material to be subjected to electrical conductivity treatment consisting of plastic film, molded product, etc. to infiltrate said monomer gas into the material followed by irradiation of active energy rays, pref. ultraviolet light to polymerize the monomer, thus obtaining the objective composite. Preferably, additional doping is performed either as pretreatment, post-treatment or during the photopolymerization.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばIC包装用資材等に用いられるプラスチ
ック環の導電性複合体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a conductive composite of a plastic ring used, for example, as an IC packaging material.

(従来の技術) プラスチックを基材とし、これに導電性付与処理を施し
て導電性複合体を製造することは従来がら行なわれてお
シ、このような導電性複合体はその有する導電性及びプ
ラスチック素材の特質を生かしてIC包装用資材等の静
電気障害防止用資材として利用されている。
(Prior Art) It has been conventional practice to manufacture conductive composites by using plastic as a base material and subjecting it to conductivity imparting treatment. Such conductive composites have high conductivity and Taking advantage of the characteristics of plastic materials, it is used as a material for preventing static electricity damage, such as in IC packaging materials.

従来の導電性複合体の製造方法として社、金属酸化物を
プラスチックフィルム等に薄く蒸着する方法、金属酸化
物等を含む導電塗料をプラスチックフィルム等へ薄く塗
工する方法、透明被膜を形成する導電亀料をプラスチッ
クフィルム等に塗工する方法、ポリ塩化ビニル等へのビ
ロールの電解酸化重合法等が知られている。
Conventional methods for producing conductive composites include methods for thinly vapor-depositing metal oxides on plastic films, etc., methods for thinly coating conductive paints containing metal oxides on plastic films, etc., and methods for forming transparent films. A method of coating a plastic film or the like with a pigment, a method of electrolytically oxidizing polymerization of virol onto polyvinyl chloride, etc. are known.

(発明が解決しようとする問題点) 。(Problem that the invention seeks to solve).

上記した従来方法のはとんどけプラスチック表面に導電
被膜を形成するものであるため、一般K。
The above-mentioned conventional method forms a conductive film on the surface of plastic, so it is generally classified as K.

導電被膜のプラスチック基材に対する結合安定性が悪く
、外力によシ導電被膜が剥離した夛或いは傷が付いたり
する等の欠点を伴ない、耐久性に優れた導電性複合体を
得ることができなかった。ビロールの電解酸化重合法に
よればプラスチック基材中に導電性のあるポリピロール
を含有形成させることができるが、電解を行なうため製
造コストが高く、シかも複雑な製造装置を必要とし且つ
形状的KHフィルム状、シート状のグラスチック基材の
みにしか適用できない上2寸法的には比較的小寸法のも
のにしか適用できず、成形品の如き複雑な形状のものや
、長尺寸法品、大型製品への適用は困難であるという欠
点があった。
It is not possible to obtain a conductive composite with excellent durability, which has disadvantages such as poor bonding stability of the conductive film to the plastic substrate and the conductive film peeling off or being scratched by external force. There wasn't. According to the electrolytic oxidation polymerization method of pyrrole, conductive polypyrrole can be formed in a plastic base material, but the manufacturing cost is high due to electrolysis, it requires complicated manufacturing equipment, and the shape of KH It can only be applied to film-like and sheet-like glass substrates, and it can only be applied to relatively small-sized items, such as molded products, long-sized products, and large-sized products. The disadvantage is that it is difficult to apply to products.

(問題点を解決するための手段) 本発明の導電性複合体の製造方法は、グラスチックから
なる被導電処理材を、電子共役系ポリマーを形成し得る
七ツマ−の気相雰囲気に接触させ。
(Means for Solving the Problems) The method for producing a conductive composite of the present invention involves contacting a conductive treated material made of glass with a 7-mer gas phase atmosphere capable of forming an electronically conjugated polymer. .

活性エネルギー線を照射して導電性の付与された複合体
を得ることを特徴とする。
The method is characterized by obtaining a conductive composite by irradiating it with active energy rays.

本発明に使用する被導電処理材の基材樹脂は。The base resin of the electrically conductive treated material used in the present invention is as follows.

ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ沸化ビニリ
デン、ポリエチレン、ポリブタジェン、ポリスチレン、
ポリカーボネート、ナイロン、ポリエーテルイミド、ポ
リエーテルサルフオン、セロファン、ポリエチレンテレ
フタレート等が挙げられ、一般に、ガスバリヤ−性に劣
る材質のものが本発明において有益に適用される。被導
電処理材は上記に例示した樹脂を基材樹脂とするプラス
チックフィルムでも或いはプラスチック成形品(射出成
形品、圧空真空成形品等)でもよく9本発明はいずれの
場合にも有益に適用できる。被導電処理材の厚みは特に
限定されないが、5μWL〜1000μ罷のものが好ま
しい。
Polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polybutadiene, polystyrene,
Examples include polycarbonate, nylon, polyetherimide, polyether sulfone, cellophane, polyethylene terephthalate, etc., and in general, materials with poor gas barrier properties are advantageously applied in the present invention. The material to be electrically conductively treated may be a plastic film using the above-mentioned resin as a base resin or a plastic molded product (injection molded product, pressure-pressure vacuum molded product, etc.).9 The present invention can be advantageously applied to either case. Although the thickness of the material to be electrically conductively treated is not particularly limited, it is preferably 5 μWL to 1000 μWL.

本発明は被導電処理材を、電子共役系ポリマーを形成し
得るモノマーの気相雰囲気に接触させるが、ここで電子
共役系ポリマーを形成し得る七ツマ−とは2分子構造中
に共役二重結合を有するものであって、光エネルギーに
よシ重合を起こす物質をいい2代表的なものとしては5
員複素環式化合物が挙げられる。この5員複素環式化合
物として本発明に好適に用いられるのは、ピロール、チ
オフェン、75ン、インドール又はそれらの誘導体9例
えば3−メチルピロール、3−)fルチオ7エン、3−
メチルフラン、3−メチルインドール等であるが、もと
よりこれらに限定されない。
In the present invention, the material to be electrically conductively treated is brought into contact with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer. It refers to a substance that has bonds and undergoes polymerization when exposed to light energy.2 Representative examples include 5.
Examples include membered heterocyclic compounds. The 5-membered heterocyclic compounds preferably used in the present invention are pyrrole, thiophene, 75ene, indole, or derivatives thereof 9 For example, 3-methylpyrrole, 3-)f-ruthio7ene, 3-
Examples include methylfuran, 3-methylindole, etc., but are not limited to these.

上記モノマーは適当な溶媒によって溶かされ。The above monomers are dissolved in a suitable solvent.

このモノマー溶液を加熱して七ツマーガスを発生させる
。また固体そのものからモノマーガスを発生させてもよ
い。上記溶媒としては一般に用いられる有機溶媒であれ
ばいかなるものも使用可能であり1例えば、メタノール
、エタノール、ブタノール等のアルコール類、アセトン
、メチルエチルケトン、メチルイソブチルケトン等のケ
トン類。
This monomer solution is heated to generate 7-mer gas. Alternatively, the monomer gas may be generated from the solid itself. As the above-mentioned solvent, any commonly used organic solvent can be used. For example, alcohols such as methanol, ethanol, and butanol, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone.

エチルエーテル、テトラヒドロフラン等のエーテル1)
.塩化メチレン、クロロホルム等ノハロケン化炭化水素
類、酢酸エチル、酢酸ブチル等のエステル類、トルエン
、ベンゼン、キシレン等の芳香族炭化水素類、ヘキサン
等の脂肪族炭化水素類。
Ethers such as ethyl ether and tetrahydrofuran 1)
.. Nohalohydrocarbons such as methylene chloride and chloroform, esters such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as toluene, benzene and xylene, and aliphatic hydrocarbons such as hexane.

アセトニトリル、ベンゾニトリル等の含窒素化合物等が
挙げられる。本発明を実施するに当っては。
Examples include nitrogen-containing compounds such as acetonitrile and benzonitrile. In implementing the present invention.

上記溶媒のうち、被導電処理材の基材樹脂に合った溶媒
を選択すればよいが、上記溶媒中、低沸点のものの方が
製造条件的に有利である。
Among the above-mentioned solvents, a solvent suitable for the base resin of the material to be electrically conductively treated may be selected, but among the above-mentioned solvents, those with a low boiling point are more advantageous in terms of manufacturing conditions.

本発明において、気体状モノマーを光重合させる手段と
して活性エネルギー線の照射を行なう。
In the present invention, irradiation with active energy rays is used as a means for photopolymerizing the gaseous monomer.

活性エネルギー線としては紫外線が好ましく、照射時間
は被導電処理材の肉厚、付与する電気伝導度の大きさ等
によっても異なるが、一般的には2〜24時間が好まし
い。照射に当っては、被導電処理材に直接照射しても或
いは透明板、透明容器等の透明体を介して照射してもよ
い。
Ultraviolet rays are preferred as the active energy rays, and the irradiation time varies depending on the thickness of the material to be electrically conductively treated, the degree of electrical conductivity to be imparted, etc., but is generally preferably 2 to 24 hours. When irradiating, the material to be electrically conductively treated may be irradiated directly or may be irradiated through a transparent body such as a transparent plate or a transparent container.

被導電処理材が接触するモノマーガスの濃度は活性エネ
ルギー線の照射時間等によって任意に調整し得るが1通
常、1000F以上の濃度となるようKすることが望ま
しい。
The concentration of the monomer gas with which the material to be electrically conductive is in contact can be arbitrarily adjusted by adjusting the irradiation time of active energy rays, etc., but it is usually desirable to set the concentration to 1000 F or more.

上記モノマーの光重合によシ被導電処理材に導電性が付
与されるが、より大きな導電性を付与するためにドーピ
ング処理を行なうことが好ましい。
Photopolymerization of the monomers imparts electrical conductivity to the material to be electrically conductively treated, but it is preferable to carry out doping treatment in order to impart greater electrical conductivity.

ドーピング処理の方法としては、1)前処理としてドー
パントを被導電処理材表面に塗工しておく方法、2)光
重合時に、モノマーガスと共に気体状ド−バントを被導
電処理材の樹脂中に混在させる方法、3)後処理として
のドーピング処理の方法9例えば光重合後に、導電性の
付与された被導電処理材をドーパント溶液(例えば塩酸
水溶液)に浸漬する方法等がある。
Doping treatment methods include 1) applying a dopant to the surface of the material to be electrically conductively treated as a pretreatment, and 2) adding a gaseous dopant together with monomer gas into the resin of the material to be electrically conductively treated during photopolymerization. 3) Method 9 of doping treatment as post-treatment For example, after photopolymerization, there are methods of immersing a material to be conductively treated to which conductivity has been imparted in a dopant solution (for example, an aqueous hydrochloric acid solution).

ドーパントとしては一般に使用できるアクセプター性の
ドーパントなら全て使用できる。アクセプター性のドー
パントとしては、塩素、臭素、ヨウ素等のハロゲン、五
沸化リン、五沸化砒素等のルイス酸、沸化水素、塩化水
素、硫酸等のプロトン酸、塩化第二鉄等の遷移金属塩化
物、過塩素酸銀、沸化ホウ素銀等の遷移金属化合物、 
 7.7.8.8−テトラシアノキノジメタン等の有機
化合物等が挙げられる。
As the dopant, any commonly used acceptor dopant can be used. Acceptor dopants include halogens such as chlorine, bromine, and iodine, Lewis acids such as phosphorus pentafluoride and arsenic pentafluoride, protonic acids such as hydrogen fluoride, hydrogen chloride, and sulfuric acid, and transitions such as ferric chloride. Transition metal compounds such as metal chlorides, silver perchlorate, silver boron fluoride,
Examples include organic compounds such as 7.7.8.8-tetracyanoquinodimethane.

本発明を実施するに当って1例えば第1図に示す如き装
置が用いられる。この装置はモノマーガス接触槽1とモ
ノマーガス供給装置2とドーパント供給装置3と活性エ
ネルギー線源4とからなり。
In carrying out the present invention, an apparatus such as that shown in FIG. 1, for example, is used. This device consists of a monomer gas contact tank 1, a monomer gas supply device 2, a dopant supply device 3, and an active energy ray source 4.

モノマーガス接触槽1は上面が開口し、この開口上面に
プラスチックフィルムからなる被導電処理材5を載置す
るように構成されている。モノマーガス供給装置2はモ
ノマー溶液槽6と加熱装置7とからなり、七ツマー溶液
槽6内のモノマー溶液(例えばビロールのアセトニトリ
ル溶液)8は加熱されてモノマーガス(例えばピロール
ガス)を発生し、このモノマーガスは、チッ素吹込管9
を通して供給されるチッ素ガスによって供給管10を経
てモノマーガス接触槽1内へ送り込まれる。
The monomer gas contact tank 1 has an open upper surface, and is configured such that a conductive treatment target material 5 made of a plastic film is placed on the upper surface of the opening. The monomer gas supply device 2 consists of a monomer solution tank 6 and a heating device 7, and the monomer solution (for example, an acetonitrile solution of pyrrole) 8 in the monomer solution tank 6 is heated to generate a monomer gas (for example, pyrrole gas), This monomer gas is supplied to the nitrogen blowing pipe 9
The nitrogen gas supplied through the monomer gas contact tank 1 is fed into the monomer gas contact tank 1 via the supply pipe 10.

一方、ドーパント供給装置3はドーパント槽1)と加熱
装置12とからなり、ドーパント槽1)内のドーパント
(例えばヨウ素)13は加熱されてドーパントガス(例
えばヨウ素ガス)を発生し、このドーパントガスは、チ
ッ素吹込管14を通して供給されるチッ素ガスによって
供給管15を経てモノマーガス接触槽1内へ送り込まれ
る。
On the other hand, the dopant supply device 3 consists of a dopant tank 1) and a heating device 12, and the dopant (for example, iodine) 13 in the dopant tank 1) is heated to generate a dopant gas (for example, iodine gas). , the nitrogen gas supplied through the nitrogen blowing pipe 14 is sent into the monomer gas contact tank 1 via the supply pipe 15.

このようKして上記接触槽1内へ送り込まれたモノマー
ガス及びドーパントガスは被導電処理材5の表面に接触
し、該処理材5の樹脂中に浸透する。被導電処理材5の
上方に設置された活性エネルギー線源(例えば紫外線ラ
ンプ)4より活性エネルギー線(例えば紫外線)が被導
電処理材5に照射され、これによって、被導電処理材の
樹脂中に浸透した七ツマ−は光重合し、電子共役系ポリ
マーが生成する(例えばピロールが光重合してポリピロ
ールを生成する)。この電子共役系ポリマーの生成によ
り、被導電処理材5に導電性が付4される。また被導電
処理材の樹脂中にはドーパントが不純物として混在する
ためドーピング効果によ勺導電性が向上し、よシ大きな
導電性が得られる。尚、16は凝縮した液化上ツマ−及
び液化溶媒を槽外に排出するための排出管である。
The monomer gas and dopant gas thus fed into the contact tank 1 come into contact with the surface of the material 5 to be electrically conductively treated and penetrate into the resin of the material 5 to be treated. Active energy rays (for example, ultraviolet light) are irradiated onto the conductive material 5 from an active energy ray source (for example, an ultraviolet lamp) 4 installed above the conductive material 5, thereby causing the resin of the conductive material to be heated. The penetrating hexamer is photopolymerized to produce an electronically conjugated polymer (for example, pyrrole is photopolymerized to produce polypyrrole). The generation of this electronically conjugated polymer imparts electrical conductivity to the material 5 to be electrically conductively treated. Further, since dopants are mixed as impurities in the resin of the material to be electrically conductively treated, the electrical conductivity is improved due to the doping effect, and even higher electrical conductivity can be obtained. Note that 16 is a discharge pipe for discharging the condensed liquefied top and liquefied solvent to the outside of the tank.

かくして被導電処理材の樹脂中に電子共役系ポリマーが
含浸した導電性複合体が得られるが、被導電処理材の基
材樹脂と電子共役系ポリマーとはいわゆるハイブリッド
構造をとるため1例えば加熱しても電子共役系ポリマー
が基材樹脂から逃失するということはなく、熱的要因に
よって導電性が低下若しくは消失するということはない
In this way, a conductive composite in which the electronically conjugated polymer is impregnated into the resin of the material to be electrically conductively treated is obtained. However, since the base resin of the material to be electrically conductively treated and the electronically conjugated polymer have a so-called hybrid structure, for example, heating is required. However, the electronically conjugated polymer will not escape from the base resin, and the conductivity will not decrease or disappear due to thermal factors.

被導電処理材がプラスチック成形品である場合は上記装
置とは別な装置が用意される。この装置においては特に
図示しないが、モノマーガス接触槽は密閉状の容器とし
て構成され、この槽内にプラスチック成形品がセットさ
れる。密閉状の接触槽内ヘモツマ−ガスを供給する手段
は上記装置の場合と同一の手段でもよいが、ia下方に
モノマー溶液を入れ、これを加熱して槽内に七ツマーガ
スを発生させてもよい。またドーパントは接触槽下方に
モノマー溶液とは非接触の状態で適当な容器に入れてセ
ットするようにしてもよい。いずれの場合においてもプ
ラスチック成形品はモノマーガス及びドーパントガスと
充分圧接触するように適当な手段を用いて接触槽内ヘセ
ットすることが必要である。
If the material to be electrically conductively treated is a plastic molded product, a separate device from the above device is prepared. In this apparatus, although not particularly shown, the monomer gas contact tank is configured as a closed container, and a plastic molded product is set in this tank. The means for supplying hemotsmer gas in the closed contact tank may be the same as in the case of the above device, but it is also possible to put a monomer solution below the ia and heat it to generate hemotomer gas in the tank. . Alternatively, the dopant may be placed in a suitable container below the contact tank without contacting the monomer solution. In either case, it is necessary to set the plastic molded article in a contact tank using appropriate means so as to bring it into sufficient pressure contact with the monomer gas and dopant gas.

(作 用) 本発明においては電子共役系ポリマーを形成し得るモノ
マーが被導電処理材の樹脂中に浸透し。
(Function) In the present invention, a monomer capable of forming an electronically conjugated polymer permeates into the resin of the material to be electrically conductively treated.

活性エネルギー線によって光重合し、上記樹脂中でポリ
マーが形成されるものである。
It is photopolymerized by active energy rays to form a polymer in the resin.

モノマーが樹脂中に浸透する以前に光重合金起こし、こ
のポリマーが樹脂中に浸透することははとんど考えられ
ないが、もしそのような現象が起こり得るとすれば2本
発明はこのような場合をも含むものである。
It is highly unlikely that photopolymerization occurs before the monomer penetrates into the resin, and the polymer penetrates into the resin, but if such a phenomenon were to occur, the present invention would This also includes cases where

(発明の効果) 本発明は被導電処理材を、電子共役系ポリマーを形成し
得るモノマーの気相雰囲気に接触させ。
(Effects of the Invention) According to the present invention, a material to be electrically conductively treated is brought into contact with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer.

活性エネルギー線を照射して重合を起こさせ、それKよ
り被導電処理材に導電性を付与するものであるから、従
来法に比べて導電性複合体の製造が容易である。
Since polymerization is caused by irradiation with active energy rays, and K imparts conductivity to the material to be treated, it is easier to produce a conductive composite compared to conventional methods.

また被導電処理材の基材樹脂と該樹脂中に含浸した電子
共役系ポリマーとはいわゆるハイブリッド構造をとるた
め本発明によ〕得られた導電性複合体を加熱したシ薬品
に浸漬したシしても導電性が低下若しくは消失するとい
うことはなく、耐熱性、耐薬品性に優れ、その上、外力
によって導電性が損われることもなく、導電性複合体と
しての耐久性に極めて優れている。
Furthermore, since the base resin of the material to be conductively treated and the electronically conjugated polymer impregnated in the resin have a so-called hybrid structure, the conductive composite obtained according to the present invention is immersed in a heated chemical. The conductivity does not decrease or disappear even when exposed to heat, and it has excellent heat resistance and chemical resistance.Furthermore, the conductivity is not impaired by external force, and it has extremely high durability as a conductive composite. .

本発明によればその実施に用いる製造装置は簡単な構造
で済み、製造コストも安価である。しかも被導電処理材
としては、プラスチックフィルム又はシートのみならず
、プラスチック成形品の如き複雑な形状品やその他、長
尺寸法品、大屋製品にも適用でき、多種類、広範囲の導
電性複合体を製造できる効果がある。
According to the present invention, the manufacturing apparatus used for carrying out the invention has a simple structure and the manufacturing cost is low. Furthermore, the material to be conductively treated can be applied not only to plastic films or sheets, but also to complex-shaped products such as plastic molded products, long-sized products, and Oya products, and can handle a wide variety of conductive composites of various types. It has the effect of being manufacturable.

更に本発明は、被導電処理材として透明なものを用い九
場合、その透明性を損うことがなく、従って、透明性、
導電性に優れた複合体を製造することが可能である。
Furthermore, in the present invention, when a transparent material is used as the material to be electrically conductively treated, its transparency is not impaired;
It is possible to produce composites with excellent conductivity.

本発明によシ製造される導電性複合体はIC包装用資、
材、ICマガジン等の静電気障害防止用資材として有益
に利用される他、他の広範な用途が可能である。
The conductive composite produced according to the present invention can be used for IC packaging,
In addition to being useful as a material for preventing static electricity damage in materials such as IC magazines and IC magazines, it can also be used in a wide range of other applications.

(実施例) 以下、実施例を挙げて本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 上面が開口した1)のガラス容器K O,05モル濃度
のビロールのメタノール溶液5’Oa/を入れ。
Example 1 A methanol solution of virol with a molar concentration of 5'Oa/k was placed in the glass container K of 1) with an open top.

この溶液に、上面が開口し且つ上記ピロール溶液が入り
込まないだけの高さを備えた小型ガラス容器を浸し、該
小屋ガラス容器内に0.5.9のヨウ素を入れた。1m
’ガラス容器の上面開口部に厚さ20μmのポリ塩化と
ニリデンフィルムを載置し。
A small glass container with an open top and a height sufficient to prevent the pyrrole solution from entering was immersed in this solution, and 0.5.9 iodine was placed in the glass container. 1m
'A 20 μm thick polychloride and nylidene film was placed on the top opening of the glass container.

1)ガラス容器内を40’CK加熱しながら上記フィル
ムにその上方より波長254 nm付近の紫外線を10
時間照射し、褐色の透明性のあるフィルムを得た。
1) While heating the inside of the glass container for 40'CK, the above film is exposed to ultraviolet rays with a wavelength of around 254 nm for 10 minutes from above.
After irradiation for several hours, a brown transparent film was obtained.

このフィルムをメタノールで洗浄し、100℃で1時間
乾燥を行なった後、電気伝導度を測定したところ所望の
導電性を有することが認められた。
After washing this film with methanol and drying it at 100° C. for 1 hour, its electrical conductivity was measured, and it was found that it had the desired electrical conductivity.

また全光線透過率を測定した結果、所望の透明性を有す
ることが認められた。これらの結果を第1表に示す。
Furthermore, as a result of measuring the total light transmittance, it was found that the film had desired transparency. These results are shown in Table 1.

実施例2 第1図に示す装置を用い、モノマーガス接触槽1の上面
開口部に厚さ30μ属のナイロン−6フイルムヲ、を置
り、モノマー溶um s 内へ0.5モル濃度のビロー
ルのアセトニトリル溶液を入れ、このモノマー溶液槽を
40℃に加熱してピロールガスを上記接触槽1内へ供給
した。またドーパント槽1)内にヨウ素を入れ、30℃
に加熱してヨウ素ガスを上記接触槽1内へ供給した。ナ
イロン−6フイルム上方より波長254 nm付近の紫
外線を16.5時間照射して淡黄色の透明性のあるフィ
ルムを得た。このフィルムに実施例1と同様の後処理を
施し死後、電気伝導度及び全光線透過率を測定したとこ
ろ、所望の導電性及び透明性を有することが認められた
。結果を第1表に示す。
Example 2 Using the apparatus shown in FIG. 1, a nylon-6 film with a thickness of 30μ was placed in the upper opening of the monomer gas contact tank 1, and 0.5 molar concentration of virol was introduced into the monomer solution. An acetonitrile solution was added, the monomer solution tank was heated to 40° C., and pyrrole gas was supplied into the contact tank 1. Also, put iodine in the dopant tank 1) and
iodine gas was supplied into the contact tank 1. Ultraviolet light having a wavelength of around 254 nm was irradiated from above the nylon-6 film for 16.5 hours to obtain a pale yellow transparent film. This film was subjected to the same post-treatment as in Example 1, and its electrical conductivity and total light transmittance were measured after death, and it was found to have desired electrical conductivity and transparency. The results are shown in Table 1.

実施例3 0、O1)モル濃の塩化第二鉄メタノール溶液に24時
間浸漬させ九厚さ300μmの軟質ポリ塩化ビニルフィ
ルムを実施例IKおけると同様のピロール溶液を入れた
ガラス容器の上面開口部に載置し、ドーパントとしてヨ
ウ素を用いない点を除いて実施例1と同様の条件で加熱
し且つ紫外線照射を行ない、褐色の透明性のあるフィル
ムを得た。
Example 3 0, O1) A soft polyvinyl chloride film with a thickness of 300 μm was immersed for 24 hours in a molar concentration of ferric chloride methanol solution and placed in the top opening of a glass container containing the same pyrrole solution as in Example IK. A brown transparent film was obtained by heating and irradiating with ultraviolet rays under the same conditions as in Example 1 except that iodine was not used as a dopant.

このフィルムをメタノールで洗浄し、室温で乾燥させた
後、電気伝導度及び全光線透過率を測定したところ、所
望の導電性及び透明性を有することが認められた。結果
を第1表に示す。
After washing this film with methanol and drying it at room temperature, its electrical conductivity and total light transmittance were measured, and it was found to have desired electrical conductivity and transparency. The results are shown in Table 1.

実施例4 紫外線を透過する完全密閉した1)の容器内に0、5モ
ル濃度のビロールのアセトニトリル溶液50rnlと、
別の小型ガラス容器にとった0、 5.9のヨウ素を入
れ、更に上記密閉容器内上方にビロール溶液に接触しな
いようにIC自動装着用の硬質ポリ塩化ビニル成形品(
厚さ500μm)をセットし、上記密閉容器内を40℃
に加熱すると共に、波長254 nm付近の紫外線を密
閉容器外部より16.5時間照射して褐色の透明性のあ
る成形品を得た。
Example 4 In a completely sealed container of 1) that transmits ultraviolet rays, 50 rnl of an acetonitrile solution of virol with a concentration of 0.5 molar,
Place the 0.5.9% iodine in another small glass container, and place a hard polyvinyl chloride molded product for automatic IC mounting (
500 μm thick) and heated the inside of the above airtight container to 40°C.
At the same time, ultraviolet rays with a wavelength of around 254 nm were irradiated from the outside of the sealed container for 16.5 hours to obtain a brown transparent molded product.

この成形品をメタノールで洗浄し、室温で乾燥させた後
、電気伝導度及び全光線透過率を測定したところ、所望
の導電性及び透明性を有することが認められた。結果を
第1表に示す。
After washing this molded article with methanol and drying it at room temperature, its electrical conductivity and total light transmittance were measured, and it was found that it had desired electrical conductivity and transparency. The results are shown in Table 1.

実施例5 実施例1と同様のIII容器内に、O,OSモル濃度の
チオフェンのアセトニトリル溶液50 #tl と。
Example 5 In a III vessel similar to Example 1, 50 #tl of a molarity thiophene solution in O,OS in acetonitrile.

別の小型ガラス容器にとった0、 5 、pのヨウ素を
入れ、1)容器の上面開口部に厚さ20μ扉のポリ塩化
ビニリデンフィルムを載置し、1)容器内を40℃に加
熱しながら波長254 nm付近の紫外線を10時間照
射し、茶褐色の透明性のあるフィルムを得た。
Place the 0, 5, and p iodine in another small glass container, 1) place a 20 μ thick polyvinylidene chloride film on the top opening of the container, and 1) heat the inside of the container to 40°C. The film was then irradiated with ultraviolet light having a wavelength of around 254 nm for 10 hours to obtain a brown transparent film.

このフィルムをメタノールで洗浄し、100℃で1時間
乾燥させた後、電気伝導度及び全光線透過率を測定した
ところ、所望の導電性及び透明性を有することが認めら
れた。結果を第1表に示す。
After washing this film with methanol and drying it at 100° C. for 1 hour, its electrical conductivity and total light transmittance were measured, and it was found that it had desired electrical conductivity and transparency. The results are shown in Table 1.

第  1  表 ※1−−高抵抗計を用いて測定した。Table 1 *1--Measured using a high resistance meter.

※2−−−分光光度計(光源:タングステンランプ)を
用いて測定した。
*2 --- Measured using a spectrophotometer (light source: tungsten lamp).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる製造装置の一伊を示す略
図である。 1 =−−−−モノマーガス接触槽  2・−一−−−
モノマーガス供給装置  3−−−ドーノ(ント供給装
置4・−−−−−−一活性エネルギー線源  5−・−
被導電処理材 特許出願人 ア キ し ス 株 式 会 社代  理
  人  弁理士  細  井      勇第1図 □ 手続(甫正書(自発) 昭和61年5月19日 昭和60年特許願第92913号 2、発明の名称 導電性複合体の製造方法 3、補正をする者 事件との関係 特許出願人 住所 東京都新宿区大京町22番地の5名称(007)
  アキレス株式会社 代表者 殴 岡 政 雄 4、代理人 〒101 住所 東京都千代田区神田佐久間町2−75、補正命令
の日付 自発補正 6、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 別紙の通り 1、明細書の発明の詳細な説明の欄 (1)明細書第3頁最終行〜第4頁第1行の「ポリ沸化
ビニリデン]を「ポリ弗化ビニリデン」と補正する。 (21同第7頁第9行〜12行の「五沸化リン、五沸化
砒素等のルイス酸、沸化水素、塩化水素。 硫酸等のプロトン酸、塩化第二鉄等の遷移金属塩化物、
過塩素酸銀、沸化ホウ素銀等の遷移金属化合物」を以下
の通り補正する。 「丘部化リン、丘部化砒素等のルイス酸、弗化水素、塩
化水素、硫酸等のプロトン酸、塩化第二鉄等の遷移金属
塩化物、過塩素酸銀、弗化ホウ素銀等の遷移金属化合物
」 以   上
FIG. 1 is a schematic diagram showing a manufacturing apparatus used for carrying out the present invention. 1 =----monomer gas contact tank 2・-1---
Monomer gas supply device 3 --- Dono(tont supply device 4. --- Active energy ray source 5 ---
Patent applicant for electrically conductive treated materials: Isamu Hosoi, agent, patent attorney, Axis Co., Ltd. Figure 1 □ Procedure (Hoshosho (self-proposal) May 19, 1985 Patent Application No. 92913, 1985) 2. Name of the invention Method for manufacturing a conductive composite 3. Relationship with the case of the person making the amendment Patent applicant address 5 name (007), 22 Daikyo-cho, Shinjuku-ku, Tokyo
Achilles Co., Ltd. Representative Masao Oka 4, Agent 101 Address 2-75 Kanda Sakuma-cho, Chiyoda-ku, Tokyo, Date of amendment order Voluntary amendment 6, Column 7 for detailed explanation of the invention in the specification subject to amendment, Details of the amendment As shown in Attachment 1, Detailed explanation of the invention in the specification (1) "Polyvinylidene fluoride" in the last line of page 3 to the first line of page 4 of the specification is changed to "polyvinylidene fluoride." to correct. (21, page 7, lines 9 to 12, "Lewis acids such as phosphorus pentafluoride and arsenic pentafluoride, hydrogen fluoride, and hydrogen chloride. Protonic acids such as sulfuric acid, transition metal chlorides such as ferric chloride, etc.") thing,
"Transition metal compounds such as silver perchlorate and silver boron fluoride" will be corrected as follows. "Lewis acids such as phosphorus chloride and arsenic oxide; protic acids such as hydrogen fluoride, hydrogen chloride, and sulfuric acid; transition metal chlorides such as ferric chloride; silver perchlorate, silver boron fluoride, etc.""Transition metal compounds"

Claims (3)

【特許請求の範囲】[Claims] (1)プラスチックからなる被導電処理材を、電子共役
系ポリマーを形成し得るモノマーの気相雰囲気に接触さ
せ、活性エネルギー線を照射して導電性の付与された複
合体を得ることを特徴とする導電性複合体の製造方法。
(1) A conductive material made of plastic is brought into contact with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer, and is irradiated with active energy rays to obtain a composite material imparted with conductivity. A method for producing a conductive composite.
(2)被導電処理材がプラスチックフィルム又はプラス
チック成形品である特許請求の範囲第1項記載の導電性
複合体の製造方法。
(2) The method for producing a conductive composite according to claim 1, wherein the material to be conductively treated is a plastic film or a plastic molded product.
(3)電子共役系ポリマーを形成し得るモノマーがピロ
ール、チオフェン、フラン、インドール、それらの誘導
体のなかから選ばれた1種である特許請求の範囲第1項
記載の導電性複合体の製造方法。
(3) The method for producing a conductive composite according to claim 1, wherein the monomer capable of forming an electronically conjugated polymer is one selected from pyrrole, thiophene, furan, indole, and derivatives thereof. .
JP60092913A 1985-04-30 1985-04-30 Production of conductive composite Granted JPS61250038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092913A JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092913A JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1307129A Division JPH07103297B2 (en) 1989-11-27 1989-11-27 Conductive composite

Publications (2)

Publication Number Publication Date
JPS61250038A true JPS61250038A (en) 1986-11-07
JPH0224299B2 JPH0224299B2 (en) 1990-05-29

Family

ID=14067722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092913A Granted JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Country Status (1)

Country Link
JP (1) JPS61250038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209132A (en) * 1986-03-11 1987-09-14 Kanebo Ltd Pyrrole/iodine complex plasma polymerized film and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209132A (en) * 1986-03-11 1987-09-14 Kanebo Ltd Pyrrole/iodine complex plasma polymerized film and its production

Also Published As

Publication number Publication date
JPH0224299B2 (en) 1990-05-29

Similar Documents

Publication Publication Date Title
Camaioni et al. The effect of a mild thermal treatment on the performance of poly (3‐alkylthiophene)/Fullerene Solar Cells
Chen et al. Highly thermal stable and efficient organic photovoltaic cells with crosslinked networks appending open‐cage fullerenes as additives
Wang et al. Construction of redispersible polypyrrole core–shell nanoparticles for application in polymer electronics
Chaudhary et al. Electron beam induced modifications of polyaniline silver nano-composite films: Electrical conductivity and H2S gas sensing studies
Banerjee et al. A short overview on the synthesis, properties and major applications of poly (p-phenylene vinylene)
Goktas et al. Water‐Assisted Vapor Deposition of PEDOT Thin Film
Petit et al. Properties of iodine complexes of monosubstituted polyacetylenes
Fong et al. Visible light-mediated photoclick functionalization of a conjugated polymer backbone
Li et al. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride–ethyl ether as the electrolyte
Fan et al. Improved performance of cyanine solar cells with polyaniline anodes
Opoku et al. Structurally‐tuned benzo [1, 2‐b: 4, 5: b'] dithiophene‐based polymer as a dopant‐free hole transport material for perovskite solar cells
Atienzar et al. Hybrid polymer–metal oxide solar cells by in situ chemical polymerization
Jin et al. Chemically Recyclable Conjugated Polymer and One‐Shot Preparation of Thermally Stable and Efficient Bulk‐Heterojunction from Recycled Monomer
Rojas‐Montoya et al. Photoluminescent grafted polymers: synthesis and properties of a polyethylene matrix covalently linked with porphyrin units
JPS61250038A (en) Production of conductive composite
Dubitsky et al. Polypyrrole-poly (vinyl chloride) and polypyrrole-cellulose acetate conducting composite films by opposite-diffusion polymerization
JP6725122B2 (en) Method for improving conductivity of graphene sheet and electrode structure using graphene sheet with improved conductivity
Braun et al. Synthesis and Thin Film Phase Behaviour of Functional Rod‐Coil Block Copolymers Based on Poly (para‐phenylenevinylene) and Poly (lactic acid)
Sariciftci From Organic Electronics to Bio-organic Electronics.
Rafiqul Bari et al. High‐refractive‐index and high‐barrier‐capable epoxy‐phenoxy‐based barrier film for organic electronics
Gal et al. Synthesis and Characterization of a Water‐S oluble Conjugated Polymer from the Uncatalyzed Polymerization of Ethynylpyridine
JP2525735B2 (en) Pyrrole / iodine complex plasma polymerized film and method for producing the same
Lopez et al. Gamma‐Irradiation to Modify Properties in Polypyrroles Synthesized by Plasmas
JPH02187423A (en) Electrically conductive composite material
JPS62131421A (en) Manufacture of conductive complex laminated unit