JPH0224299B2 - - Google Patents

Info

Publication number
JPH0224299B2
JPH0224299B2 JP60092913A JP9291385A JPH0224299B2 JP H0224299 B2 JPH0224299 B2 JP H0224299B2 JP 60092913 A JP60092913 A JP 60092913A JP 9291385 A JP9291385 A JP 9291385A JP H0224299 B2 JPH0224299 B2 JP H0224299B2
Authority
JP
Japan
Prior art keywords
monomer
conductive
film
plastic
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60092913A
Other languages
Japanese (ja)
Other versions
JPS61250038A (en
Inventor
Mamoru Ito
Yoshiro Katagawa
Hiroyuki Tajima
Yasumasa Sawachika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP60092913A priority Critical patent/JPS61250038A/en
Publication of JPS61250038A publication Critical patent/JPS61250038A/en
Publication of JPH0224299B2 publication Critical patent/JPH0224299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は䟋えばIC包装甚資材等に甚いられる
プラスチツク補の導電性耇合䜓を補造する方法に
関する。 埓来の技術 プラスチツクを基材ずし、これに導電性付䞎凊
理を斜しお導電性耇合䜓を補造するこずは埓来か
ら行なわれおおり、このような導電性耇合䜓はそ
の有する導電性及びプラスチツク玠材の特質を生
かしおIC包装甚資材等の静電気障害防止甚資材
ずしお利甚されおいる。 埓来の導電性耇合䜓の補造方法ずしおは、金属
酞化物をプラスチツクフむルム等に薄く蒞着する
方法、金属酞化物等を含む導電塗料をプラスチツ
クフむルム等ぞ薄く塗工する方法、透明被膜を圢
成する導電塗料をプラスチツクフむルム等に塗工
する方法、ポリ塩化ビニル等ぞのピロヌルの電解
酞化重合法等が知られおいる。 発明が解決しようずする問題点 䞊蚘した埓来方法のほずんどはプラスチツク衚
面に導電被膜を圢成するものであるため、䞀般
に、導電被膜のプラスチツク基材に察する結合安
定性が悪く、倖力により導電被膜が剥離したり或
いは傷が付いたりする等の欠点を䌎ない、耐久性
に優れた導電性耇合䜓を埗るこずができなか぀
た。ピロヌルの電解酞化重合法によればプラスチ
ツク基材䞭に導電性のあるポリピロヌルを含有圢
成させるこずができるが、電解を行なうため補造
コストが高く、しかも耇雑な補造装眮を必芁ずし
䞔぀圢状的にはフむルム状、シヌト状のプラスチ
ツク基材のみにしか適甚できない䞊、寞法的には
比范的小寞法のものにしか適甚できず、成圢品の
劂き耇雑な圢状のものや、長尺寞法品、倧型補品
ぞの適甚は困難であるずいう欠点があ぀た。 問題点を解決するための手段 本発明の導電性耇合䜓の補造方法は、プラスチ
ツクからなる被導電凊理材を、電子共圹系ポリマ
ヌを圢成し埗るモノマヌの気盞雰囲気に接觊さ
せ、掻性゚ネルギヌ線を照射しお導電性の付䞎さ
れた耇合䜓を埗るこずを特城ずする。 本発明に䜿甚する被導電凊理材の基材暹脂は、
ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ北化
ビニリデン、ポリ゚チレン、ポリブタゞ゚ン、ポ
リスチレン、ポリカヌボネヌト、ナむロン、ポリ
゚ヌテルむミド、ポリ゚ヌテルサルフオン、セロ
フアン、ポリ゚チレンテレフタレヌト等が挙げら
れ、䞀般に、ガスバリダヌ性に劣る材質のものが
本発明においお有益に適甚される。被導電凊理材
は䞊蚘に䟋瀺した暹脂を基材暹脂ずするプラスチ
ツクフむルムでも或いはプラスチツク成圢品射
出成圢品、圧空真空成圢品等でもよく、本発明
はいずれの堎合にも有益に適甚できる。被導電凊
理材の厚みは特に限定されないが、5ÎŒm〜
1000ÎŒmのものが奜たしい。 本発明は被導電凊理材を、電子共圹系ポリマヌ
を圢成し埗るモノマヌの気盞雰囲気に接觊させる
が、ここで電子共圹系ポリマヌを圢成し埗るモノ
マヌずは、分子構造䞭に共圹二重結合を有するも
のであ぀お、光゚ネルギヌにより重合を起こす物
質をいい、代衚的なものずしおは員耇玠環匏化
合物が挙げられる。この員耇玠環匏化合物ずし
お本発明に奜適に甚いられるのは、ピロヌル、チ
オプン、フラン、むンドヌル又はそれらの誘導
䜓、䟋えば−メチルピロヌル、−メチルチオ
プン、−メチルフラン、−メチルむンドヌ
ル等であるが、もずよりこれらの限定されない。 䞊蚘モノマヌは適圓な溶媒によ぀お溶かされ、
このモノマヌ溶液を加熱しおモノマヌガスを発生
させる。たた固䜓そのものからモノマヌガスを発
生させおもよい。䞊蚘溶媒ずしおは䞀般に甚いら
れる有機溶媒であればいかなるものも䜿甚可胜で
あり、䟋えば、メタノヌル、゚タノヌル、ブタノ
ヌル等のアルコヌル類、アセトン、メチル゚チル
ケトン、メチルむ゜ブチルケトン等のケトン類、
゚チル゚ヌテル、テトラヒドロフラン等の゚ヌテ
ル類、塩化メチレン、クロロホルム等のハロゲン
化炭化氎玠類、酢酞゚チル、酢酞ブチル等の゚ス
テル類、トル゚ン、ベンれン、キシレン等の芳銙
族炭化氎玠類、ヘキサン等の脂肪族炭化氎玠類、
アセトニトリル、ベンゟニトリル等の含窒玠化合
物等が挙げられる。本発明を実斜するに圓぀お
は、䞊蚘溶媒のうち、被導電凊理材の基材暹脂に
合぀た溶媒を遞択すればよいが、䞊蚘溶媒䞭、䜎
沞点のものの方が補造条件的に有利である。 本発明においお、気䜓状モノマヌを光重合させ
る手段ずしお掻性゚ネルギヌ線の照射を行なう。
掻性゚ネルギヌ線ずしおは玫倖線が奜たしく、照
射時間は被導電凊理材の肉厚、付䞎する電気䌝導
床の倧きさ等によ぀おも異なるが、䞀般的には
〜24時間が奜たしい。照射に圓぀おは、被導電凊
理材に盎接照射しおも或いは透明板、透明容噚等
の透明䜓を介しお照射しおもよい。 被導電凊理材が接觊するモノマヌガスの濃床は
掻性゚ネルギヌ線の照射時間等によ぀お任意に調
敎し埗るが、通垞、1000ppm以䞊の濃床ずなるよ
うにするこずが望たしい。 䞊蚘モノマヌの光重合により被導電凊理材に導
電性が付䞎されるが、より倧きな導電性を付䞎す
るためにドヌピング凊理を行なうこずが奜たし
い。ドヌピング凊理の方法ずしおは、前凊理
ずしおドヌパントを被導電凊理材衚面に塗工しお
おく方法、光重合時に、モノマヌガスず共に
気䜓状ドヌパントを被導電凊理材の暹脂䞭に混圚
させる方法、埌凊理ずしおのドヌピング凊理
の方法、䟋えば光重合埌に、導電性の付䞎された
被導電凊理材をドヌパント溶液䟋えば塩酞氎溶
液に浞挬する方法等がある。 ドヌパントずしおは䞀般に䜿甚できるアクセプ
タヌ性のドヌパントなら党お䜿甚できる。アクセ
プタヌ性のドヌパントずしおは、塩玠、臭玠、ペ
り玠等のハロゲン、五北化リン、五北化砒玠等の
ルむス酞、北化氎玠、塩化氎玠、硫酞等のプロト
ン酞、塩化第二鉄等の遷移金属塩化物、過塩玠酞
銀、北化ホり玠銀等の遷移金属化合物、
−テトラシアノキノゞメタン等の有機化合
物等が挙げられる。 本発明を実斜するに圓぀お、䟋えば第図に瀺
す劂き装眮が甚いられる。この装眮はモノマヌガ
ス接觊槜ずモノマヌガス䟛絊装眮ずドヌパン
ト䟛絊装眮ず掻性゚ネルギヌ線源ずからな
り、モノマヌガス接觊槜は䞊面が開口し、この
開口䞊面にプラスチツクフむルムからなる被導電
凊理材を茉眮するように構成されおいる。モノ
マヌガス䟛絊装眮はモノマヌ溶液槜ず加熱装
眮ずからなり、モノマヌ溶液槜内のモノマヌ
溶液䟋えばピロヌルのアセトニトリル溶液
は加熱されおモノマヌガス䟋えばピロヌルガ
スを発生し、このモノマヌガスは、チツ玠吹蟌
管を通しお䟛絊されるチツ玠ガスによ぀お䟛絊
管を経おモノマヌガス接觊槜内ぞ送り蟌た
れる。 䞀方、ドヌパント䟛絊装眮はドヌパント槜
ず加熱装眮ずからなり、ドヌパント槜
内のドヌパント䟋えばペり玠は加熱され
おドヌパントガス䟋えばペり玠ガスを発生
し、このドヌパントガスは、チツ玠吹蟌管を
通しお䟛絊されるチツ玠ガスによ぀お䟛絊管
を経おモノマヌガス接觊槜内ぞ送り蟌たれる。 このようにしお䞊蚘接觊槜内ぞ送り蟌たれた
モノマヌガス及びドヌパントガスは被導電凊理材
の衚面に接觊し、該凊理材の暹脂䞭に浞透す
る。被導電凊理材の䞊方に蚭眮された掻性゚ネ
ルギヌ線源䟋えば玫倖線ランプより掻性゚
ネルギヌ線䟋えば玫倖線が被導電凊理材に
照射され、これによ぀お、被導電凊理材の暹脂䞭
に浞透したモノマヌは光重合し、電子共圹系ポリ
マヌが生成する䟋えばピロヌルが光重合しおポ
リピロヌルを生成する。この電子共圹系ポリマ
ヌの生成により、被導電凊理材に導電性が付䞎
される。たた被導電凊理材の暹脂䞭にはドヌパン
トが䞍玔物ずしお混圚するためドヌピング効果に
より導電性が向䞊し、より倧きな導電性が埗られ
る。尚、は凝瞮した液化モノマヌ及び液化溶
媒を槜倖に排出するための排出管である。 かくしお被導電凊理材の暹脂䞭に電子共圹系ポ
リマヌが含浞した導電性耇合䜓が埗られるが、被
導電凊理材の基材暹脂ず電子共圹系ポリマヌずは
いわゆるハむブリツド構造ずなるため、䟋えば加
熱しおも電子共圹系ポリマヌが基材暹脂から逃倱
するずいうこずはなく、熱的芁因によ぀お導電性
が䜎䞋若しくは消倱するずいうこずはない。 被導電凊理材がプラスチツク成圢品である堎合
は䞊蚘装眮ずは別な装眮が甚意される。この装眮
においおは特に図瀺しないが、モノマヌガス接觊
槜は密閉状の容噚ずしお構成され、この槜内にプ
ラスチツク成圢品がセツトされる。密閉状の接觊
槜内ぞモノマヌガスを䟛絊する手段は䞊蚘装眮の
堎合ず同䞀の手段でもよいが、槜䞋方にモノマヌ
溶液を入れ、これを加熱しお槜内にモノマヌガス
を発生させおもよい。たたドヌパントは接觊槜䞋
方にモノマヌ溶液ずは非接觊の状態で適圓な容噚
に入れおセツトするようにしおもよい。いずれの
堎合においおもプラスチツク成圢品はモノマヌガ
ス及びドヌパントガスず充分に接觊するように適
圓な手段を甚いお接觊槜内ぞセツトするこずが必
芁である。 䜜甚 本発明においおは電子共圹系ポリマヌを圢成し
埗るモノマヌが被導電凊理材の暹脂䞭に浞透し、
掻性゚ネルギヌ線によ぀お光重合し、䞊蚘暹脂䞭
でポリマヌが圢成されるものである。 モノマヌが暹脂䞭に浞透する以前に光重合を起
こし、このポリマヌが暹脂䞭に浞透するこずはほ
ずんど考えられないが、もしそのような珟象が起
こり埗るずすれば、本発明はこのような堎合をも
含むものである。 発明の効果 本発明は被導電凊理材を、電子共圹系ポリマヌ
を圢成し埗るモノマヌの気盞雰囲気に接觊させ、
掻性゚ネルギヌ線を照射しお重合を起こさせ、そ
れにより被導電凊理材に導電性を付䞎するもので
あるから、埓来法に比べお導電性耇合䜓の補造が
容易である。 たた被導電凊理材の基材暹脂ず該暹脂䞭に含浞
した電子共圹系ポリマヌずはいわゆるハむブリツ
ド構造ずなるため本発明により埗られた導電性耇
合䜓を加熱したり薬品に浞挬したりしおも導電性
が䜎䞋若しくは消倱するずいうこずはなく、耐熱
性、耐薬品性に優れ、その䞊、倖力によ぀お導電
性が損われるこずもなく、導電性耇合䜓ずしおの
耐久性に極めお優れおいる。 本発明によればその実斜に甚いる補造装眮は簡
単な構造で枈み、補造コストも安䟡である。しか
も被導電凊理材ずしおは、プラスチツクフむルム
又はシヌトのみならず。プラスチツク成圢品の劂
き耇雑な圢状品やその他、長尺寞法品、倧型補品
にも適甚でき、倚皮類、広範囲の導電性耇合䜓を
補造できる効果がある。 曎に本発明は、被導電凊理材ずしお透明なもの
を甚いた堎合、その透明性を損うこずがなく、埓
぀お、透明性、導電性に優れた耇合䜓を補造する
こずが可胜である。 本発明により補造される導電性耇合䜓はIC包
装甚質材、ICマガゞン等の静電気障害防止甚資
材ずしお有益に利甚される他、他の広範な甚途が
可胜である。 実斜䟋 以䞋、実斜䟋を挙げお本発明を曎に詳现に説明
する。 実斜䟋  䞊面が開口したのガラス容噚に0.05モル濃
床のピロヌルのメタノヌル溶液50mlを入れ、この
溶液に、䞊面が開口し䞔぀䞊蚘ピロヌル溶液が入
り蟌たないだけの高さを備えた小型ガラス容噚を
浞し、該小型容噚内に0.5のペり玠を入れた。
ガラス容噚の䞊面開口郚に厚さ20ÎŒmのポリ
塩化ビニリデンフむルムを茉眮し、ガラス容
噚内を40℃に加熱しながら䞊蚘フむルムにその䞊
方より波長254nm付近の玫倖線を10時間照射し、
耐色の透明性のあるフむルムを埗た。 このフむルムをメタノヌルで掗浄し、100℃で
時間也燥を行な぀た埌、電気䌝導床を枬定した
ずころ所望の導電性を有するこずが認められた。
たた党光線透過率を枬定した結果、所望の透明性
を有するこずが認められた。これらの結果を第
衚に瀺す。 実斜䟋  第図に瀺す装眮を甚い、モノマヌガス接觊槜
の䞊面開口郚に厚さ30ÎŒmのナむロン−フむ
ルムを茉眮し、モノマヌ溶液槜内ぞの0.5モル
濃床のピロヌルのアセトニトリル溶液を入れ、こ
のモノマヌ溶液槜を40℃に加熱しおピロヌルガス
を䞊蚘接觊槜内ぞ䟛絊した。たたドヌパント槜
内にペり玠を入れ、30℃に加熱しおペり玠ガ
スを䞊蚘接觊槜内ぞ䟛絊した。ナむロン−フ
むルム䞊方より波長254nm付近の玫倖線を16.5時
間照射しお淡黄色の透明性のあるフむルムを埗
た。このフむルムに実斜䟋ず同様の埌凊理を斜
した埌、電気䌝導床及び党光線透過率を枬定した
ずころ、所望の導電性及び透明性を有するこずが
認められた。結果を第衚に瀺す。 実斜䟋  0.01モル濃床の塩化第二鉄メタノヌル溶液に24
時間浞挬させた厚さ300ÎŒmの軟質ポリ塩化ビニル
フむルムを実斜䟋におけるず同様のピロヌル溶
液を入れたガラス容噚の䞊面開口郚に茉眮し、ド
ヌパントずしおペり玠を甚いない点を陀いお実斜
䟋ず同様の条件で加熱し䞔぀玫倖線照射を行な
い、耐色の透明性のあるフむルムを埗た。 このフむルムをメタノヌルで掗浄し、宀枩で也
燥させた埌、電気䌝導及び党光線透過率を枬定し
たずころ、所望の導電性及び透明性を有するこず
が認められた。結果を第衚に瀺す。 実斜䟋  玫倖線を透過する完党密閉したの容噚内に
0.5モル濃床のピロヌルのアセトニトリル溶液50
mlず、別の小型ガラス容噚にず぀た0.5のペり
玠を入れ、曎に䞊蚘密閉容噚内䞊方にピロヌル溶
液に接觊しないようにIC自動装着甚の硬質ポリ
塩化ビニル成圢品厚さ500ÎŒmをセツトし、䞊
蚘密閉容噚内を40℃に加熱するず共に、波長
254nm付近の玫倖線を密閉容噚倖郚より16.5時間
照射しお耐色の透明性のある成圢品を埗た。 この成圢品をメタノヌルで掗浄し、宀枩で也燥
させた埌、電気䌝導床及び党光線透過率を枬定し
たずころ、所望の導電性及び透明性を有するこず
が認められた。結果を第衚に瀺す。 実斜䟋  実斜䟋ず同様の容噚内に、0.05モル濃床
のチオプンのアセトニトリル溶液50mlず、別の
小型ガラス容噚にず぀た0.5のペり玠を入れ、
容噚の䞊面開口郚に厚さ20ÎŒmのポリ塩化ビ
ニリデンフむルムを茉眮し、容噚内を40℃に
加熱しながら波長254nm付近の玫倖線を10時間照
射し、茶耐色の透明性のあるフむルムを埗た。 このフむルムをメタノヌルで掗浄し、100℃で
時間也燥させた埌、電気䌝導床及び党光線透過
率を枬定したずころ、所望の導電性及び透明性を
有するこずが認められた。結果を第衚に瀺す。
(Industrial Field of Application) The present invention relates to a method for producing a conductive composite made of plastic used, for example, as an IC packaging material. (Prior Art) It has been conventionally known to manufacture conductive composites by using plastic as a base material and subjecting it to conductivity imparting treatment. Taking advantage of the material's characteristics, it is used as a material to prevent static electricity damage, such as in IC packaging materials. Conventional methods for producing conductive composites include a method in which a metal oxide is thinly vapor-deposited onto a plastic film, a method in which a conductive paint containing a metal oxide, etc. is thinly applied to a plastic film, etc., and a method in which a conductive film is formed to form a transparent film. A method of applying a paint to a plastic film, etc., a method of electrolytically oxidizing polymerization of pyrrole to polyvinyl chloride, etc. are known. (Problems to be Solved by the Invention) Most of the above-mentioned conventional methods form a conductive film on the plastic surface, so the bonding stability of the conductive film to the plastic substrate is generally poor, and the conductive film may be damaged by external force. It was not possible to obtain a conductive composite with excellent durability due to drawbacks such as peeling or scratching. According to the electrolytic oxidation polymerization method of pyrrole, conductive polypyrrole can be formed in a plastic base material, but the manufacturing cost is high due to electrolysis, and it requires complicated manufacturing equipment and has a small shape. It can only be applied to plastic substrates in the form of films or sheets, and it can also only be applied to relatively small dimensions, such as those with complex shapes such as molded products, long dimensions, and large products. The disadvantage was that it was difficult to apply. (Means for Solving the Problems) The method for producing a conductive composite of the present invention involves contacting a conductive material made of plastic with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer, and generating active energy. The method is characterized by obtaining a conductive composite by irradiating it with radiation. The base resin of the conductive treated material used in the present invention is:
Examples include polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polybutadiene, polystyrene, polycarbonate, nylon, polyetherimide, polyether sulfon, cellophane, polyethylene terephthalate, etc. Generally, materials with poor gas barrier properties are advantageously applied in the present invention. The material to be electrically conductively treated may be a plastic film using the above-mentioned resin as a base resin or a plastic molded product (injection molded product, pressure-pressure vacuum molded product, etc.), and the present invention can be advantageously applied to either case. The thickness of the material to be conductively treated is not particularly limited, but is 5 ÎŒm or more.
Preferably, the thickness is 1000 ÎŒm. In the present invention, the material to be electrically conductively treated is brought into contact with a gas phase atmosphere of a monomer that can form an electronically conjugated polymer. It refers to a substance that has the following properties and undergoes polymerization when exposed to light energy, and representative examples thereof include five-membered heterocyclic compounds. The 5-membered heterocyclic compound preferably used in the present invention is pyrrole, thiophene, furan, indole or derivatives thereof, such as 3-methylpyrrole, 3-methylthiophene, 3-methylfuran, 3-methylindole. etc., but are not limited to these. The above monomers are dissolved in a suitable solvent,
This monomer solution is heated to generate monomer gas. Alternatively, the monomer gas may be generated from the solid itself. As the above-mentioned solvent, any commonly used organic solvent can be used, such as alcohols such as methanol, ethanol, and butanol, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone,
Ethers such as ethyl ether and tetrahydrofuran, halogenated hydrocarbons such as methylene chloride and chloroform, esters such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as toluene, benzene and xylene, and aliphatic carbons such as hexane. hydrogen,
Examples include nitrogen-containing compounds such as acetonitrile and benzonitrile. In carrying out the present invention, a solvent suitable for the base resin of the material to be electrically conductively treated may be selected from among the above-mentioned solvents, but among the above-mentioned solvents, those with low boiling points are more advantageous in terms of manufacturing conditions. be. In the present invention, irradiation with active energy rays is used as a means for photopolymerizing the gaseous monomer.
Ultraviolet rays are preferred as the active energy rays, and the irradiation time varies depending on the thickness of the material to be electrically conductive treated, the level of electrical conductivity to be imparted, etc., but generally 2
~24 hours is preferred. When irradiating, the material to be electrically conductively treated may be irradiated directly or may be irradiated through a transparent body such as a transparent plate or a transparent container. The concentration of the monomer gas with which the material to be electrically conductively treated comes into contact can be arbitrarily adjusted by adjusting the irradiation time of the active energy rays, etc., but it is usually desirable to set the concentration to 1000 ppm or more. Photopolymerization of the above monomer imparts electrical conductivity to the material to be electrically conductively treated, and it is preferable to perform doping treatment to impart greater electrical conductivity. Doping treatment methods include 1) a method in which a dopant is coated on the surface of the material to be electrically conductively treated as a pretreatment, and 2) a method in which a gaseous dopant is mixed in the resin of the material to be electrically conductively treated together with monomer gas during photopolymerization. 3) A doping treatment method as a post-treatment, for example, a method of immersing a material to be electrically conductive to which conductivity has been imparted in a dopant solution (for example, an aqueous hydrochloric acid solution) after photopolymerization. As the dopant, any commonly used acceptor dopant can be used. Acceptor dopants include halogens such as chlorine, bromine, and iodine, Lewis acids such as phosphorous pentafluoride and arsenic pentafluoride, protonic acids such as hydrogen fluoride, hydrogen chloride, and sulfuric acid, and transitions such as ferric chloride. Transition metal compounds such as metal chlorides, silver perchlorate, silver boron fluoride, etc., 7,7,
Examples include organic compounds such as 8,8-tetracyanoquinodimethane. In carrying out the present invention, for example, an apparatus as shown in FIG. 1 is used. This device consists of a monomer gas contact tank 1, a monomer gas supply device 2, a dopant supply device 3, and an active energy ray source 4. It is configured to place the processing material 5 thereon. The monomer gas supply device 2 consists of a monomer solution tank 6 and a heating device 7, and the monomer solution (for example, an acetonitrile solution of pyrrole) 8 in the monomer solution tank 6 is
is heated to generate monomer gas (for example, pyrrole gas), which is fed into the monomer gas contact tank 1 through the supply pipe 10 by the nitrogen gas supplied through the nitrogen blowing pipe 9. On the other hand, the dopant supply device 3 is connected to the dopant tank 1.
1 and a heating device 12, the dopant tank 11
The dopant (e.g., iodine) 13 in the interior is heated to generate a dopant gas (e.g., iodine gas), which is passed through the supply pipe 15 by the nitrogen gas supplied through the nitrogen insufflation pipe 14.
The monomer gas is fed into the monomer gas contact tank 1 through the following steps. The monomer gas and dopant gas thus sent into the contact tank 1 come into contact with the surface of the material 5 to be electrically conductively treated and penetrate into the resin of the material 5 to be treated. The material to be electrically conductive 5 is irradiated with active energy rays (for example, ultraviolet light) from an active energy ray source (for example, an ultraviolet lamp) 4 installed above the material to be electrically conductive. The monomer that has penetrated into it is photopolymerized to produce an electronically conjugated polymer (for example, pyrrole is photopolymerized to produce polypyrrole). The generation of this electronically conjugated polymer imparts electrical conductivity to the material 5 to be electrically conductively treated. In addition, since dopants are present as impurities in the resin of the material to be electrically conductively treated, the doping effect improves the electrical conductivity, resulting in greater electrical conductivity. Note that 16 is a discharge pipe for discharging the condensed liquefied monomer and liquefied solvent to the outside of the tank. In this way, a conductive composite in which the electronically conjugated polymer is impregnated into the resin of the material to be electrically conductively treated is obtained, but since the base resin of the material to be electrically conductively treated and the electronically conjugated polymer have a so-called hybrid structure, it is necessary to heat the material, for example. However, the electronically conjugated polymer will not escape from the base resin, and the conductivity will not decrease or disappear due to thermal factors. If the material to be electrically conductively treated is a plastic molded article, a separate device from the above-mentioned device is prepared. Although not particularly shown in this apparatus, the monomer gas contact tank is constructed as a closed container, and a plastic molded article is set in this tank. The means for supplying monomer gas into the closed contact tank may be the same as in the case of the above device, but it is also possible to put a monomer solution at the bottom of the tank and heat it to generate monomer gas in the tank. . Alternatively, the dopant may be placed in a suitable container below the contact tank without contacting the monomer solution. In either case, it is necessary to set the plastic molded article into the contact tank using suitable means so as to bring it into sufficient contact with the monomer gas and the dopant gas. (Function) In the present invention, a monomer capable of forming an electronically conjugated polymer permeates into the resin of the material to be electrically conductively treated,
It is photopolymerized by active energy rays to form a polymer in the resin. Although it is highly unlikely that photopolymerization occurs before the monomer penetrates into the resin and the polymer penetrates into the resin, if such a phenomenon were to occur, the present invention It also includes. (Effects of the Invention) The present invention brings a material to be electrically conductively treated into contact with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer,
Since this method involves irradiating active energy rays to cause polymerization, thereby imparting conductivity to the material to be treated, it is easier to produce a conductive composite than conventional methods. Furthermore, since the base resin of the material to be conductively treated and the electronically conjugated polymer impregnated into the resin have a so-called hybrid structure, the conductive composite obtained by the present invention cannot be heated or immersed in chemicals. Conductivity does not decrease or disappear, it has excellent heat resistance and chemical resistance, and in addition, conductivity is not impaired by external force and has extremely high durability as a conductive composite. . According to the present invention, the manufacturing apparatus used for carrying out the invention has a simple structure and the manufacturing cost is low. Moreover, the material to be treated for electrical conductivity is not limited to plastic films or sheets. It can be applied to complex-shaped products such as plastic molded products, long-sized products, and large-sized products, and is effective in producing a wide variety of conductive composites of various types. Furthermore, in the present invention, when a transparent material is used as the material to be electrically conductively treated, its transparency is not impaired, and therefore, it is possible to produce a composite with excellent transparency and electrical conductivity. The conductive composite produced according to the present invention can be usefully used as a material for IC packaging, a material for preventing static electricity damage in IC magazines, etc., and can be used in a wide range of other applications. (Example) Hereinafter, the present invention will be explained in more detail by giving examples. Example 1 50 ml of a methanol solution of pyrrole at a concentration of 0.05 molar is placed in a glass container 1 with an open top, and a small glass container with an open top and high enough to prevent the pyrrole solution from entering is placed in this solution. 0.5 g of iodine was placed in the small container.
A polyvinylidene chloride film with a thickness of 20 Όm is placed on the top opening of a glass container, and while heating the inside of the glass container to 40°C, the film is irradiated with ultraviolet rays with a wavelength of around 254 nm from above for 10 hours.
A brown transparent film was obtained. After washing this film with methanol and drying it at 100° C. for 1 hour, its electrical conductivity was measured and it was found to have the desired electrical conductivity.
Furthermore, as a result of measuring the total light transmittance, it was found that the film had desired transparency. These results are the first
Shown in the table. Example 2 Using the apparatus shown in FIG. 1, a nylon-6 film with a thickness of 30 Όm was placed on the upper opening of the monomer gas contact tank 1, and an acetonitrile solution of pyrrole at a concentration of 0.5 molar was poured into the monomer solution tank 6. The monomer solution tank was heated to 40°C, and pyrrole gas was supplied into the contact tank 1. Further, iodine was put into the dopant tank 11, heated to 30° C., and iodine gas was supplied into the contact tank 1. A pale yellow transparent film was obtained by irradiating the nylon-6 film with ultraviolet light having a wavelength of around 254 nm for 16.5 hours from above. After this film was subjected to the same post-treatment as in Example 1, its electrical conductivity and total light transmittance were measured, and it was found that it had desired electrical conductivity and transparency. The results are shown in Table 1. Example 3 24 in a 0.01 molar ferric chloride methanol solution
A 300 ÎŒm thick soft polyvinyl chloride film soaked for an hour was placed on the top opening of a glass container containing a pyrrole solution similar to that in Example 1, except that iodine was not used as a dopant. A transparent brown film was obtained by heating and irradiating with ultraviolet rays under the same conditions as above. After washing this film with methanol and drying it at room temperature, electrical conductivity and total light transmittance were measured, and it was found to have desired electrical conductivity and transparency. The results are shown in Table 1. Example 4 In a completely sealed container that transmits ultraviolet rays
0.5 molar solution of pyrrole in acetonitrile 50
ml and 0.5 g of iodine in another small glass container, and then set a hard polyvinyl chloride molded product (thickness 500 ÎŒm) for automatic IC mounting above the sealed container to prevent it from coming into contact with the pyrrole solution. The inside of the sealed container is heated to 40℃, and the wavelength is
A brown transparent molded product was obtained by irradiating ultraviolet light around 254 nm from the outside of the sealed container for 16.5 hours. After washing this molded article with methanol and drying it at room temperature, its electrical conductivity and total light transmittance were measured, and it was found that it had desired electrical conductivity and transparency. The results are shown in Table 1. Example 5 In a container similar to Example 1, 50 ml of a 0.05 molar solution of thiophene in acetonitrile and 0.5 g of iodine in another small glass container were added.
A polyvinylidene chloride film with a thickness of 20 Όm was placed on the top opening of one container, and ultraviolet rays with a wavelength of around 254 nm were irradiated for 10 hours while heating the inside of the container to 40°C to obtain a brown transparent film. Ta. After washing this film with methanol and drying it at 100° C. for 1 hour, its electrical conductivity and total light transmittance were measured, and it was found to have desired electrical conductivity and transparency. The results are shown in Table 1.

【衚】 ※  高抵抗蚈を甚いお枬定した。
※  分光光床蚈(光源タングステンラ
ンプ)を甚いお枬定した。
[Table] *1: Measured using a high resistance meter.
*2... Measured using a spectrophotometer (light source: tungsten lamp).

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の実斜に甚いる補造装眮の䞀䟋
を瀺す略図である。   モノマヌガス接觊槜、  モノマヌガ
ス䟛絊装眮、  ドヌパント䟛絊装眮、  
掻性゚ネルギヌ線源、  被導電凊理材。
FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus used for carrying out the present invention. 1... Monomer gas contact tank, 2... Monomer gas supply device, 3... Dopant supply device, 4...
Active energy ray source, 5... Material to be electrically conductive treated.

Claims (1)

【特蚱請求の範囲】  プラスチツクからなる被導電凊理材を、電子
共圹系ポリマヌを圢成し埗るモノマヌの気盞雰囲
気に接觊させ、掻性゚ネルギヌ線を照射しお導電
性の付䞎された耇合䜓を埗るこずを特城ずする導
電性耇合䜓の補造方法。  被導電凊理材がプラスチツクフむルム又はプ
ラスチツク成圢品である特蚱請求の範囲第項蚘
茉の導電性耇合䜓の補造方法。  電子共圹系ポリマヌを圢成し埗るモノマヌが
ピロヌル、チオプン、フラン、むンドヌル、そ
れらの誘導䜓のなかから遞ばれた皮である特蚱
請求の範囲第項蚘茉の導電性耇合䜓の補造方
法。
[Claims] 1. A conductive material made of plastic is brought into contact with a gas phase atmosphere of a monomer capable of forming an electronically conjugated polymer, and is irradiated with active energy rays to obtain a composite material imparted with conductivity. A method for producing a conductive composite, characterized by: 2. The method for producing a conductive composite according to claim 1, wherein the material to be conductively treated is a plastic film or a plastic molded article. 3. The method for producing a conductive composite according to claim 1, wherein the monomer capable of forming an electronically conjugated polymer is one selected from pyrrole, thiophene, furan, indole, and derivatives thereof.
JP60092913A 1985-04-30 1985-04-30 Production of conductive composite Granted JPS61250038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092913A JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092913A JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1307129A Division JPH07103297B2 (en) 1989-11-27 1989-11-27 Conductive composite

Publications (2)

Publication Number Publication Date
JPS61250038A JPS61250038A (en) 1986-11-07
JPH0224299B2 true JPH0224299B2 (en) 1990-05-29

Family

ID=14067722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092913A Granted JPS61250038A (en) 1985-04-30 1985-04-30 Production of conductive composite

Country Status (1)

Country Link
JP (1) JPS61250038A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525735B2 (en) * 1986-03-11 1996-08-21 鐘玡株匏䌚瀟 Pyrrole / iodine complex plasma polymerized film and method for producing the same

Also Published As

Publication number Publication date
JPS61250038A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
Chen et al. n‐Type rigid semiconducting polymers bearing oligo (ethylene glycol) side chains for high‐performance organic electrochemical transistors
Jo et al. Improving performance and stability of flexible planar‐heterojunction perovskite solar cells using polymeric hole‐transport material
Chaudhary et al. Electron beam induced modifications of polyaniline silver nano-composite films: Electrical conductivity and H2S gas sensing studies
Petit et al. Properties of iodine complexes of monosubstituted polyacetylenes
Li et al. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride–ethyl ether as the electrolyte
Fan et al. Improved performance of cyanine solar cells with polyaniline anodes
Choi et al. Self‐Healable Capacitive Photodetectors with Stretchability Based on Composite of ZnS: Cu Particles and Reversibly Crosslinkable Silicone Elastomer
Jin et al. Chemically Recyclable Conjugated Polymer and One‐Shot Preparation of Thermally Stable and Efficient Bulk‐Heterojunction from Recycled Monomer
JPH0224299B2 (en)
JP6725122B2 (en) Method for improving conductivity of graphene sheet and electrode structure using graphene sheet with improved conductivity
US4720393A (en) Method of manufacturing a layer with electrical conductivity
Sato et al. Conductive Polymer Nanosheets Generated from the Crystal Surface of an Organic Oxidant
Li et al. Highly efficient and stable perovskite solar cells based on E‐beam evaporated SnO2 and rational interface defects passivation
Gal et al. Synthesis and Characterization of a Water‐S oluble Conjugated Polymer from the Uncatalyzed Polymerization of Ethynylpyridine
JPH02187423A (en) Electrically conductive composite material
Pacheco et al. Understanding the Performance of a Nanocomposite Based on a Conjugated Azo‐Polymer and Reduced Graphene Oxide with Photoelectrically Switchable Properties by Analyzing the Potential Profile during Photocurrent Generation
JP2525735B2 (en) Pyrrole / iodine complex plasma polymerized film and method for producing the same
JPS62143943A (en) Production of electrically conductive composite material
Lopez et al. Gamma‐Irradiation to Modify Properties in Polypyrroles Synthesized by Plasmas
JP4302822B2 (en) Carbon-based composite structure and manufacturing method thereof
JPS62131421A (en) Manufacture of conductive complex laminated unit
JPS62140313A (en) Manufacture of conductive composite laminate
JPH06507672A (en) Method for manufacturing thin, micropore-free conductive polymer membrane
Wei et al. In situ polymerizations of thiophene on TiO2 films using the semiconductors as initiators
Joy et al. Conducting polymers: An introduction