JPS6124995B2 - - Google Patents

Info

Publication number
JPS6124995B2
JPS6124995B2 JP55185874A JP18587480A JPS6124995B2 JP S6124995 B2 JPS6124995 B2 JP S6124995B2 JP 55185874 A JP55185874 A JP 55185874A JP 18587480 A JP18587480 A JP 18587480A JP S6124995 B2 JPS6124995 B2 JP S6124995B2
Authority
JP
Japan
Prior art keywords
drive
integrated circuits
heating resistor
arrangement direction
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55185874A
Other languages
Japanese (ja)
Other versions
JPS57107866A (en
Inventor
Tamio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP18587480A priority Critical patent/JPS57107866A/en
Publication of JPS57107866A publication Critical patent/JPS57107866A/en
Publication of JPS6124995B2 publication Critical patent/JPS6124995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Description

【発明の詳細な説明】 この発明は、駆動回路部が複数の集積回路によ
つて構成されるサーマルヘツドの実装構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mounting structure of a thermal head in which a drive circuit section is composed of a plurality of integrated circuits.

フアクシミリ装置の記録部等に使用される感熱
記録用のサーマルヘツドは、従来マトリクス方式
のものが多く用いられていたが、最近では記録速
度の高速化と外部配線数の低減の要求から、発熱
抵抗体に各々個別の駆動素子を対応させて設ける
方式のサーマルヘツドが注目され出している。
Thermal heads for heat-sensitive recording used in the recording section of facsimile machines have traditionally been of the matrix type, but recently, due to the demand for faster recording speeds and a reduction in the number of external wires, heat-generating resistors have been used. A thermal head in which individual driving elements are provided in correspondence with each other on the body is attracting attention.

第1図はこのようなサーマルヘツドの一例を示
す回路図であり、Rは一列に配列された発熱抵抗
体、Qは駆動素子、Eは駆動電源、SRは入力端
子INより直列に入力される画像信号などの記録
信号データを駆動素子Qの各々に分配するための
シフトレジスタであり、シフトレジスタSRの出
力は必要に応じラツチレジスタLRに一旦ラツチ
された後、駆動素子Qに供給される。
Figure 1 is a circuit diagram showing an example of such a thermal head, where R is a heating resistor arranged in a row, Q is a drive element, E is a drive power supply, and SR is input in series from an input terminal IN. This is a shift register for distributing recording signal data such as an image signal to each drive element Q, and the output of the shift register SR is once latched in a latch register LR as required, and then supplied to the drive element Q.

ここで、駆動素子Q、シフトレジスタSRおよ
びラツチレジスタLRは駆動回路部Dを構成する
が、この駆動回路部DはQ,SR,LRを所定数
()個ずつ含むn個の集積回路(LSI)IC1
ICoによつて構成される。第2図はこのサーマル
ヘツドの実装構造の一例を概略的に示したもの
で、Bはセラミツク基板のような絶縁性基板であ
り、発熱抵抗体Rは感熱紙上の記録結果をすぐに
見ることができるように、この基板Bの一端側に
形成されたグレーズ層Gの上に一列に配列され
る。そして、駆動回路部Dに集積回路IC1〜ICo
配設される。
Here, the drive element Q, shift register SR, and latch register LR constitute a drive circuit section D, and this drive circuit section D consists of n integrated circuits (LSIs) each including a predetermined number () of Q, SR, and LR. ) IC 1 ~
Composed by IC o . Fig. 2 schematically shows an example of the mounting structure of this thermal head, where B is an insulating substrate such as a ceramic substrate, and the heating resistor R is used to immediately see the recording results on thermal paper. They are arranged in a line on the glaze layer G formed on one end side of the substrate B so that the glaze layer G is formed on one end side of the substrate B. Then, integrated circuits IC 1 to IC o are arranged in the drive circuit section D.

さて、第1図において集積回路IC1〜ICoとして
は各々、大電流が流れて発熱を伴なうトランジス
タのような駆動素子QとシフトレジスタSR1
SRoおよびラツチレジスタLR1〜LRoからなる高
密度の論理回路とを含むため、例えばI2L技術に
よるLSIが適している。今、仮に発熱抵抗体Rの
低抗値を400Ω、印加電圧(電源Eの電圧)を
20Vとすると、駆動素子Q1個当りの電流は50mA
となる。この場合、集積回路IC1〜ICo1個当りの
シフトレジスタおよびラツチレジスタの個数を32
ビツトとすると、上記電流に耐えるチツプサイズ
は4mm□程度になる。一方、発熱抵抗体Rの配列
密度を8本/mmとすると、32本が占める幅寸法は
4mmになる。従つて、IC1〜ICo1個1個の幅とそ
れに接続される発熱抵抗体Rが占める幅寸法とが
ほぼ等しいことになるため、両者を接続すること
はスペース上極めて困難となる。
Now, in FIG. 1, the integrated circuits IC 1 to IC o each include a drive element Q such as a transistor through which a large current flows and generates heat, and a shift register SR 1 to
Since it includes a high-density logic circuit consisting of SR o and latch registers LR 1 to LR o , an LSI based on I 2 L technology, for example, is suitable. Now, suppose the low resistance value of the heating resistor R is 400Ω, and the applied voltage (voltage of power supply E) is
If the voltage is 20V, the current per drive element Q is 50mA.
becomes. In this case, the number of shift registers and latch registers per integrated circuit IC 1 to IC o is 32.
If it is a bit, the chip size that can withstand the above current is about 4 mm square. On the other hand, if the arrangement density of the heating resistors R is 8 pieces/mm, the width dimension occupied by 32 pieces is 4 mm. Therefore, since the width of each of IC 1 to IC o and the width occupied by the heating resistor R connected thereto are approximately equal, it is extremely difficult to connect the two in terms of space.

この発明は上記のような実情に鑑みてなされた
もので、発熱抵抗体と、少なくとも駆動素子およ
びシフトレジスタを所定数個ずつ含む集積回路と
を集積回路の実装密度を損なうことなく容易に接
続できるサーマルヘツドを提供することを目的と
する。
This invention has been made in view of the above-mentioned circumstances, and it is possible to easily connect a heating resistor to an integrated circuit including at least a predetermined number of drive elements and shift registers without impairing the packaging density of the integrated circuit. The purpose is to provide thermal heads.

この発明は、基板上に一列に配列された複数の
発熱抵抗体と、これらの発熱抵抗体に各々接続さ
れた駆動素子および直列に入力された記録信号デ
ータをこれらの駆動素子に分配するシフトレジス
タを含む駆動回路部からなり、前記駆動回路部が
少なくとも前記駆動素子およびシフトレジスタを
所定数個ずつ含み、且つ少なくとも前記発熱抵抗
体に面した辺および発熱抵抗体の配列方向に直交
する二辺に駆動出力端子を有する複数の集積回路
によつて構成され、さらにこれらの集積回路を前
記発熱抵抗体の配列位置の片側に、隣接するもの
どうしが該配列方向の同一線上に位置しないよう
に前記基板上に配設してなるサーマルヘツドにお
いて、前記集積回路の前記発熱抵抗体の配列方向
に直交する二辺の一方から前記発熱抵抗体に至る
配線の一部と、それに隣接する集積回路の前記発
熱抵抗体の配列方向に直交する二辺の他方から前
記発熱抵抗体に至る配線の一部とを、両者間に絶
縁層を介して重ねたことを特徴とする。
The present invention includes a plurality of heating resistors arranged in a line on a substrate, driving elements connected to each of these heating resistors, and a shift register that distributes recording signal data input in series to these driving elements. The drive circuit section includes at least a predetermined number of the drive elements and shift registers, and at least a side facing the heating resistor and two sides perpendicular to the arrangement direction of the heating resistors. It is composed of a plurality of integrated circuits having drive output terminals, and these integrated circuits are arranged on one side of the arrangement position of the heat generating resistors on the substrate so that adjacent ones are not located on the same line in the arrangement direction. In the thermal head disposed above, a part of the wiring from one of the two sides perpendicular to the arrangement direction of the heat generating resistors of the integrated circuit to the heat generating resistors and the heat generating circuit of the integrated circuit adjacent thereto. A part of the wiring from the other of the two sides perpendicular to the arrangement direction of the resistors to the heating resistor is overlapped with an insulating layer interposed therebetween.

この発明によれば、隣接する集積回路から発熱
抵抗体に至る配線の一部が絶縁層を介して多層化
されていることにより、集積回路を発熱抵抗体の
配列方向において間隔を全くあけることなく、高
密度に配置することができる。
According to this invention, a portion of the wiring from adjacent integrated circuits to the heat generating resistors is multilayered with an insulating layer interposed therebetween, so that the integrated circuits can be connected without leaving any gaps in the arrangement direction of the heat generating resistors. , can be arranged in high density.

また、集積回路の少なくとも三辺に発熱抵抗体
を通電駆動するための駆動出力端子を配置できる
ため、集積回路上における駆動出力端子の間隔を
広げることが可能となり、それだけ集積回路と基
板上の配線との配線が容易となる。即ち、集積回
路の一辺にのみ駆動端子を配置する構造では、駆
動端子を例えば100μm程度以下というような極
めて小さい間隔で配置する必要があり、実際上ワ
イヤボンデイング等の手段により集積回路上の駆
動端子と基板上の配線とを歩留り良く接続するこ
とは不可能に近くなる。その点、この発明のよう
に駆動端子を集積回路の少なくとも三辺に分散し
て配置すると、単純計算で駆動出力端子間の間隔
は3倍となり、基板上の配線との接続は格段に容
易となる。このように駆動出力端子を集積回路の
少なくとも三辺に配置できるのは、集積回路の発
熱抵抗体の配列方向に直交する二辺の一方から発
熱抵抗体に至る配線の一部を、絶縁層を介して、
隣接する集積回路の発熱抵抗体の配列方向に直交
する二辺の他方から発熱抵抗体に至る配線の一部
と重ねたからにほかならない。
In addition, since the drive output terminals for energizing and driving the heating resistor can be placed on at least three sides of the integrated circuit, it is possible to increase the distance between the drive output terminals on the integrated circuit, which increases the wiring between the integrated circuit and the board. This makes wiring easier. In other words, in a structure in which drive terminals are arranged only on one side of an integrated circuit, it is necessary to arrange the drive terminals at extremely small intervals, for example, about 100 μm or less, and in practice, the drive terminals on the integrated circuit are It becomes nearly impossible to connect the wires and the wiring on the substrate with a high yield. On this point, if the drive terminals are distributed and arranged on at least three sides of the integrated circuit as in the present invention, the distance between the drive output terminals will be tripled by simple calculation, and connection with the wiring on the board will be much easier. Become. The reason why the drive output terminals can be arranged on at least three sides of the integrated circuit is that part of the wiring from one of the two sides perpendicular to the arrangement direction of the heat generating resistors of the integrated circuit to the heat generating resistors is covered with an insulating layer. Through,
This is because it overlaps with a portion of the wiring that extends from the other of the two sides perpendicular to the arrangement direction of the heat generating resistors of the adjacent integrated circuits to the heat generating resistors.

以下図面を参照してこの発明の実施例を説明す
る。第3図は、この発明の一実施例に係るサーマ
ルヘツドの実装構造を示したものである。第3図
において1は第2図のBに相当する基板であり、
図示しないが図中上方に第1図および第2図にお
ける発熱抵抗体Rが図の横方向に一列に配列され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows a mounting structure of a thermal head according to an embodiment of the present invention. In FIG. 3, 1 is a board corresponding to B in FIG. 2,
Although not shown, the heat generating resistors R in FIGS. 1 and 2 are arranged in a row in the lateral direction of the figure at the upper part of the figure.

11,21…は第1図のシフトレジスタR、ラ
ツチレジスタLRおよび駆動素子Qが例えば32個
ずつ配設された集積回路であり、それぞれ第1図
のIC1,IC2,…に相当する。これらの集積回路の
うち、奇数番目の集積回路11は基板1上の図中
下方に配設され、偶数番目の集積回路21は図中
上方に配設されている。すなわち、奇数番目と偶
数番目の集積回路11,21は、それぞれ発熱抵
抗体Rの配列方向の異なる線上に配設されてい
る。12,22は集積回路11,21に設けられ
た駆動出力端子(第1図の駆動素子Qのコレクタ
に相当する)であり、それぞれワイヤ13,23
によりボンデイングパツド14,24に接続さ
れ、パツド14,24にはさらに発熱抵抗体Rに
到る配線15,25がそれぞれ接続されている。
この場合、配線15と25とは途中で配線15の
うち集積回路11の発熱抵抗体Rの配列方向に直
交する二辺の一方から発熱抵抗体Rに至る部分
と、配線25のうちの集積回路11の発熱抵抗体
Rの配列方向に直交する二辺の他方から発熱抵抗
体Rに至る部分とが絶縁層2を介して重なつてい
る。なお配線15,25は例えば薄膜導体によつ
て形成される。また集積回路11,21の端子1
6,26は入力端子、クロツク端子、制御端子等
であり、これらへの配線は図示を省略してある。
Reference numerals 11, 21, . . . are integrated circuits each having, for example, 32 shift registers R, latch registers LR, and drive elements Q shown in FIG. 1, and correspond to IC 1 , IC 2 , . . . in FIG. 1, respectively. Among these integrated circuits, the odd-numbered integrated circuits 11 are arranged at the bottom in the figure on the substrate 1, and the even-numbered integrated circuits 21 are arranged at the top in the figure. That is, the odd-numbered and even-numbered integrated circuits 11 and 21 are arranged on different lines in the arrangement direction of the heating resistors R, respectively. 12 and 22 are drive output terminals provided in the integrated circuits 11 and 21 (corresponding to the collector of the drive element Q in FIG. 1), and are connected to wires 13 and 23, respectively.
The pads 14 and 24 are connected to the bonding pads 14 and 24, respectively, and the pads 14 and 24 are further connected to wires 15 and 25 that reach the heating resistor R, respectively.
In this case, the wirings 15 and 25 are a portion of the wiring 15 that extends from one of the two sides perpendicular to the arrangement direction of the heating resistors R of the integrated circuit 11 to the heating resistor R, and a portion of the wiring 25 that connects the integrated circuit. The portions extending from the other of the two sides perpendicular to the arrangement direction of the eleven heat generating resistors R to the heat generating resistors R overlap with each other with the insulating layer 2 interposed therebetween. Note that the wirings 15 and 25 are formed of, for example, a thin film conductor. Also, the terminals 1 of the integrated circuits 11 and 21
6 and 26 are input terminals, clock terminals, control terminals, etc., and wiring to these terminals is omitted from illustration.

上記の如き構成であれば、集積回路11,21
の基板1上における実装密度を実質的に下げるこ
となく配線15,25を容易に形成することが可
能である。
With the above configuration, the integrated circuits 11 and 21
It is possible to easily form the wirings 15 and 25 without substantially lowering the packaging density on the substrate 1.

今、集積回路11,21の駆動出力端子12,
22の配置を考えると、そのピツチは160μ程度
であるから32個を4mm以内に配置することは物理
的に不可能であり例えば図の上側の1辺Bに並べ
ることはできない。従つて端子12,22は図の
ようにA,B,Cの3辺に並べる必要がある。ま
た、集積回路11,21内部でのパターン配置か
ら考えても、駆動素子Qを分散させる必要がある
から、端子12,22は3辺にほぼ均等に分散配
置することが望ましい。この場合、A辺とC辺上
の端子12,22からの配線15,25は、直角
方向に曲げなければならないので、配線15,2
5の部分は集積回路11,21の占有スペースの
横側にスペースを必要とする。このため、集積回
路11,21の占有スペースの合計の寸法は明ら
かに4mmを越え、従つて集積回路11,21を横
一列に配置したのでは、配線15,25を形成で
きない。しかし第3図のように集積回路15,2
5の位置を発熱抵抗体Rの配列方向と直交する方
向にずらせれば、集積回路11,21の横側のス
ペースを利用して、ここに配線15,25を拡げ
て形成することができる。特に、図の如く配線1
5の全て平行化された部分と配線25の横方向へ
拡がつた部分とを絶縁体層2を介して重ねるよう
にすると、集積回路11と21とを発熱抵抗体R
の配列方向にはほとんど間隔をあけることなく高
密度に配置することが可能となり、基板1の小形
化を図ることができる。しかも、集積回路11,
21においては三辺に駆動端子12,22が分散
して設けられているため、それらの端子間間隔を
大きくとることができ、それだけ端子12,22
と配線15,25とのワイヤボンデイング等によ
る接続が容易となる。
Now, the drive output terminals 12 of the integrated circuits 11 and 21,
Considering the arrangement of 22, the pitch is about 160μ, so it is physically impossible to arrange 32 within 4 mm, and for example, they cannot be arranged on one side B at the top of the figure. Therefore, the terminals 12 and 22 must be arranged on three sides A, B, and C as shown in the figure. Furthermore, considering the pattern arrangement inside the integrated circuits 11 and 21, it is necessary to distribute the drive elements Q, so it is desirable that the terminals 12 and 22 be distributed almost equally on three sides. In this case, the wires 15, 25 from the terminals 12, 22 on sides A and C must be bent at right angles, so the wires 15, 25
The portion 5 requires space on the side of the space occupied by the integrated circuits 11 and 21. For this reason, the total dimension of the space occupied by the integrated circuits 11 and 21 clearly exceeds 4 mm, and therefore, wirings 15 and 25 cannot be formed by arranging the integrated circuits 11 and 21 in a horizontal row. However, as shown in FIG.
By shifting the position of 5 in a direction perpendicular to the arrangement direction of the heating resistors R, the wirings 15 and 25 can be expanded and formed there by utilizing the space on the side of the integrated circuits 11 and 21. In particular, as shown in the diagram, wiring 1
5 and the horizontally expanding portion of the wiring 25 are overlapped with the insulating layer 2 interposed therebetween, the integrated circuits 11 and 21 are connected to the heating resistor R.
It is possible to arrange the substrates 1 at a high density with almost no spacing in the arrangement direction, and the size of the substrate 1 can be reduced. Moreover, the integrated circuit 11,
21, the drive terminals 12, 22 are provided dispersedly on three sides, so the distance between the terminals can be increased, and the terminals 12, 22
Connection between the wires 15 and 25 by wire bonding or the like becomes easy.

また、上記実施例では絶縁層2が帯状に形成さ
れているため、配線25の絶縁層2上の部分と、
絶縁層2上になく基板1上に直接形成された部分
とがヴイアホールやヴイアフイルなしでスムーズ
に接続される利点がある。
Further, in the above embodiment, since the insulating layer 2 is formed in a band shape, the portion of the wiring 25 on the insulating layer 2,
There is an advantage that a portion formed not on the insulating layer 2 but directly on the substrate 1 can be smoothly connected without a via hole or via film.

さらに、この絶縁層2は図のように集積回路2
1の下側ではくり抜かれて、集積回路の配設位置
には存在しないため、大電流が流れる駆動素子Q
を内蔵していることによる集積回路の発熱を速や
かに基板1側に放散させることができる。
Furthermore, this insulating layer 2 is connected to the integrated circuit 2 as shown in the figure.
Since the lower side of 1 is hollowed out and does not exist at the location where the integrated circuit is installed, the drive element Q through which a large current flows.
The heat generated by the integrated circuit due to the built-in integrated circuit can be quickly dissipated to the substrate 1 side.

なお、上記実施例では集積回路を2列に振りわ
けて配設したが、3列以上に振りわけて配設して
もよいことは勿論である。
In the above embodiment, the integrated circuits are arranged in two rows, but it goes without saying that they may be arranged in three or more rows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のサーマルヘツド
の回路図、第2図はその全体的な実装構造を概略
的に示す平面図、第3図はその要部の実装構造を
詳細に示す平面図である。 R…発熱抵抗体、Q…駆動素子、SR(SR1
SRo)…シフトレジスタ、LR(LR1〜LRo)…ラ
ツチレジスタ、IC1〜ICo…集積回路、D…駆動回
路部、1…基板、2…絶縁層、11,21…集積
回路、12,22…駆動出力端子、13,23…
ワイヤ、14,24…ボンデイングパツド、1
5,25…配線。
Fig. 1 is a circuit diagram of a thermal head according to an embodiment of the present invention, Fig. 2 is a plan view schematically showing its overall mounting structure, and Fig. 3 is a plan view showing the main part of the mounting structure in detail. It is a diagram. R...Heating resistor, Q...Drive element, SR (SR 1 ~
SR o )...shift register, LR (LR 1 to LR o )... latch register, IC 1 to IC o ... integrated circuit, D... drive circuit section, 1... substrate, 2... insulating layer, 11, 21... integrated circuit, 12, 22... Drive output terminal, 13, 23...
Wire, 14, 24...Bonding pad, 1
5, 25...Wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に一列に配列された複数の発熱抵抗体
と、これらの発熱抵抗体に各々接続された駆動素
子および直列に入力された記録信号データをこれ
らの駆動素子に分配するシフトレジスタを含む駆
動回路部とからなり、前記駆動回路部が少なくと
も前記駆動素子およびシフトレジスタを所定数個
ずつ含み、且つ少なくとも前記発熱抵抗体に面し
た辺および発熱抵抗体の配列方向に直交する二辺
に駆動出力端子を有する複数の集積回路によつて
構成され、さらにこれらの集積回路を前記発熱抵
抗体の配列位置の片側に、隣接するものどうしが
該配列方向の同一線上に位置しないように前記基
板上に配設してなるサーマルヘツドにおいて、前
記集積回路の前記発熱抵抗体の配列方向に直交す
る二辺の一方から前記発熱抵抗体に至る配線の一
部と、それに隣接する集積回路の前記発熱抵抗体
の配列方向に直交する二辺の他方から前記発熱抵
抗体に至る配線の一部とを、両者間に絶縁層を介
して重ねたことを特徴とするサーマルヘツド。
1. A drive including a plurality of heat generating resistors arranged in a line on a substrate, drive elements connected to each of these heat generating resistors, and a shift register that distributes recording signal data input in series to these drive elements. the drive circuit section includes at least a predetermined number of the drive elements and shift registers, and has a drive output on at least the side facing the heating resistor and the two sides perpendicular to the arrangement direction of the heating resistors. It is composed of a plurality of integrated circuits having terminals, and these integrated circuits are arranged on one side of the arrangement position of the heating resistors on the substrate so that adjacent integrated circuits are not located on the same line in the arrangement direction. In the thermal head, a part of the wiring from one of the two sides perpendicular to the arrangement direction of the heating resistors of the integrated circuit to the heating resistor, and the heating resistor of the integrated circuit adjacent thereto. A thermal head characterized in that a part of the wiring from the other of the two sides perpendicular to the arrangement direction of the heating resistor to the heating resistor is overlapped with an insulating layer interposed therebetween.
JP18587480A 1980-12-26 1980-12-26 Thermal head Granted JPS57107866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18587480A JPS57107866A (en) 1980-12-26 1980-12-26 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18587480A JPS57107866A (en) 1980-12-26 1980-12-26 Thermal head

Publications (2)

Publication Number Publication Date
JPS57107866A JPS57107866A (en) 1982-07-05
JPS6124995B2 true JPS6124995B2 (en) 1986-06-13

Family

ID=16178383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18587480A Granted JPS57107866A (en) 1980-12-26 1980-12-26 Thermal head

Country Status (1)

Country Link
JP (1) JPS57107866A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829683A (en) * 1981-08-13 1983-02-21 Rohm Co Ltd Thermal printer head
JPS6031977A (en) * 1983-07-30 1985-02-18 Konishiroku Photo Ind Co Ltd Thermal recording head
JPH0737148B2 (en) * 1986-02-19 1995-04-26 株式会社日立製作所 Thermal recording head
JP5239290B2 (en) * 2007-10-24 2013-07-17 セイコーエプソン株式会社 Thermal head driver, thermal head, electronic equipment and printing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123250A (en) * 1980-12-25 1981-09-28 Daifuku Machinery Works Pallet in synthetic resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123250A (en) * 1980-12-25 1981-09-28 Daifuku Machinery Works Pallet in synthetic resin

Also Published As

Publication number Publication date
JPS57107866A (en) 1982-07-05

Similar Documents

Publication Publication Date Title
EP0079063B1 (en) Thermal printing head
EP0226433B1 (en) High density printed wiring board
US5095407A (en) Double-sided memory board
JPS6218094A (en) Wiring of electrode pattern
JPS6124995B2 (en)
US5097271A (en) High resolution thermal printing device
JP2685037B2 (en) Ceramic case
JPS6018359A (en) Thermal recording apparatus
US5179396A (en) Light emitting diode print head
JP3289820B2 (en) Thermal head
JPS6222794B2 (en)
JPS59227471A (en) Thermal recording head
JPS62211157A (en) Densely packed ic-mounted type thermal head
JP3405725B2 (en) Thermal head
JP3534842B2 (en) Semiconductor element
JP3434959B2 (en) Head drive IC
JP2930225B2 (en) Integrated circuit elements
JPS5845974A (en) Thermal head
JP3111293B2 (en) Thermal print head
JPS625339B2 (en)
JP2976357B2 (en) Semiconductor integrated circuit device
JPH0679895A (en) Thermal head
JP2559945B2 (en) Bare chip for dot data output
JP2001191572A (en) Thermal head
JP4688281B2 (en) Thermal head