JPS61249391A - Production of immobilized microorganism - Google Patents

Production of immobilized microorganism

Info

Publication number
JPS61249391A
JPS61249391A JP9210585A JP9210585A JPS61249391A JP S61249391 A JPS61249391 A JP S61249391A JP 9210585 A JP9210585 A JP 9210585A JP 9210585 A JP9210585 A JP 9210585A JP S61249391 A JPS61249391 A JP S61249391A
Authority
JP
Japan
Prior art keywords
fibroin
immobilized
aqueous solution
cell bodies
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9210585A
Other languages
Japanese (ja)
Other versions
JPH0456592B2 (en
Inventor
Hiroshi Nakayama
博 中山
Shinichi Fukunaga
真一 福永
Hiroshi Jinno
神野 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP9210585A priority Critical patent/JPS61249391A/en
Publication of JPS61249391A publication Critical patent/JPS61249391A/en
Publication of JPH0456592B2 publication Critical patent/JPH0456592B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:An aqueous dispersion of fibroin whose crystal zone is oriented by the shear force and cell bodies of a microorganism is subjected to molding before the dispersion coagulate or precipitation of fibroin whereby the cell bodies are immobilized without injury. CONSTITUTION:A shear stress is allowed act on a fibroin aqueous solution and cell bodies of amicroorganism are admixed to the solution and the dispersion is subjected to molding at the stage where the solution raises a little its viscosity. When it is formed into a membrane, it becomes insoluble in water and the cell bodies are immobilized only with fibroin under mild conditions such as at room temperature and a neutral pH region. Further, the immobilized cell bodies are free from elimination from the membrane with the passage of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固定化微生物の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing immobilized microorganisms.

(従来の技術) 微生物の化合物変換や生産能を利用し、有用な化合物を
生産することが、近年益々盛んになっている。又、これ
を反復使用可能な形とし、且つ生産物と微生物菌体とを
容易に分離するため、微生物を固定化して用いる研究が
活発に行われており、種々の方法が知られている。
(Prior Art) In recent years, the production of useful compounds by utilizing the compound conversion and production abilities of microorganisms has become increasingly popular. Further, in order to make this into a form that can be used repeatedly and to easily separate the product from the microbial cells, research is actively being conducted on the use of immobilized microorganisms, and various methods are known.

従来、微生物の固定化方法としては、微生物が酵素や抗
体といった蛋白質分子に比較し、はるかに大きな形を有
するものである為、アクリルアミドポリマー、ヒドロキ
シエチルメタクリレートポリマー等の合成ポリマーや、
アルギン酸、カラギーナン等の天然ポリマーゲルによる
包括固定化が有利であると謂われている。しかし、ポリ
アクリルアミドゲル等の合成ポリマーを用いる方法の場
合、モノマーの毒性の為、微生物が死滅したり、菌体内
酵素の失活等が起こり易い。又、開始剤や光重合架橋法
で用いる増感剤が菌体に損傷を与えたり、この固定化微
生物を用いて食品や医薬品等の製造を行う場合、生産物
にこれ等が混入する等の問題がある。
Traditionally, methods for immobilizing microorganisms include synthetic polymers such as acrylamide polymers and hydroxyethyl methacrylate polymers, since microorganisms have a much larger shape than protein molecules such as enzymes and antibodies.
Entrapping immobilization using natural polymer gels such as alginic acid and carrageenan is said to be advantageous. However, in the case of methods using synthetic polymers such as polyacrylamide gel, the toxicity of the monomers tends to kill microorganisms and deactivate intracellular enzymes. In addition, initiators and sensitizers used in the photopolymerization crosslinking method may damage the microbial cells, and when these immobilized microorganisms are used to manufacture foods, medicines, etc., products may be contaminated with these. There's a problem.

更に、これ等の架橋性樹脂の多くは、脆く、膜状等に成
型した場合、折れたり、砕けたりする欠陥がある。天然
物ポリマーゲル、即ち、アルギン酸のカルシウムイオン
架橋ゲルや、カラギーナンのカリウムイオンによるゲル
で固定化する方法は、安全な天然物による温和な方法で
あるが、使用条件によって、経時的に架橋が切断され解
膠して菌体等の漏出が起こる問題がある。
Furthermore, many of these crosslinkable resins are brittle and have defects such as bending or shattering when molded into a film or the like. Immobilization using natural product polymer gels, i.e. calcium ion crosslinked gels of alginic acid and potassium ion gels of carrageenan, is a safe and mild method using natural products, but depending on the conditions of use, the crosslinks may break over time. There is a problem in that bacteria cells, etc. leak out due to peptization.

又、これ等の方法によって得られるものは、所謂、拡散
律速型の固定化物となる為、これを薄膜として用いる事
が有利であるが、その為に十分な強度を有するとは言い
難い。
Furthermore, since the products obtained by these methods are so-called diffusion-limited immobilized products, it is advantageous to use them as thin films, but it cannot be said that they have sufficient strength for this purpose.

(発明が解決しようとする問題点) 本発明者等は、上述の諸欠点を改良し、効率良く、且つ
安定性に優れると共に、十分な強度を有する微生物の固
定化法に就いて、鋭意研究の結果、本発明を完成したも
のである。
(Problems to be Solved by the Invention) The present inventors have conducted intensive research into a method for immobilizing microorganisms that is efficient, has excellent stability, and has sufficient strength by improving the above-mentioned drawbacks. As a result, the present invention has been completed.

本発明の目的は、微生物菌体に損傷を与えることなく、
高活性を保持したまま或いは死滅することなく固定化す
る事が可能であると共に、経時的な脱落がない安定な微
生物の固定化方法を提供するにある。他の目的は、上記
特長を有し更に、膜強度の物理的性質に優れ、可撓性を
有し、且つ、拡散律速の影響を受けにくい固定化微生物
膜の製造方法を提供するにある。
The purpose of the present invention is to
It is an object of the present invention to provide a stable method for immobilizing microorganisms, which can immobilize microorganisms while maintaining high activity or without dying, and which does not fall off over time. Another object is to provide a method for producing an immobilized microbial membrane that has the above-mentioned features, has excellent physical properties of membrane strength, is flexible, and is less susceptible to diffusion-limiting effects.

(問題点を解決するための手段) 上述の目的は、剪断力を作用し、結晶域を配向せしめた
フィブロインと、微生物菌体とを分散した水溶液を、水
溶液中へのフィブロインの析出、或いは水溶液の凝固が
起こる前に、成型工程に付すことを特徴とする固定化微
生物の製造方法により達成される。
(Means for Solving the Problems) The above purpose is to apply a shearing force to an aqueous solution in which fibroin with oriented crystal regions and microbial cells are dispersed, to precipitate fibroin in the aqueous solution, or to convert the aqueous solution into an aqueous solution. This is achieved by a method for producing immobilized microorganisms, which is characterized by subjecting the immobilized microorganisms to a molding step before coagulation of the microorganisms occurs.

上記本発明方法に於いて微生物とフィブロインを含有す
る水溶液は種々の方法で調製されるが好ましい調製方法
の一例を示すと次の通りである。
In the method of the present invention, the aqueous solution containing microorganisms and fibroin can be prepared by various methods, but one preferred method is as follows.

生糸、まゆ、生糸屑、キキ、ビス、ブーレット等の絹原
料を常法に従い、セリシンを精練除去したものを、フィ
ブロインを溶解し得る例えばアルカリ金属塩又はアルカ
リ土類金属塩の水溶液あるいは銅−エチレンジアミン水
溶液等に溶解せしめ、更にそれを遇析脱塩し、フィブロ
インの濃度を通常1〜20重量%、好ましくは5〜15
重量%に調整し、予めフィブロイン水溶液を調製してお
く。
Silk raw materials such as raw silk, cocoon, raw silk scraps, kiki, bis, boulet, etc. are scoured to remove sericin in accordance with a conventional method, and then mixed with an aqueous solution of an alkali metal salt or alkaline earth metal salt capable of dissolving fibroin, or copper-ethylenediamine. Fibroin is dissolved in an aqueous solution, etc., and then precipitated and desalted to adjust the concentration of fibroin to usually 1 to 20% by weight, preferably 5 to 15% by weight.
A fibroin aqueous solution is prepared in advance by adjusting the weight percentage.

上記のアルカリ金属塩及びアルカリ土類金属塩としては
、LiC1z 、LiBr1 、Na 1g 。
Examples of the above alkali metal salts and alkaline earth metal salts include LiC1z, LiBr1, and Na1g.

L iNO* 、MgCIt 、MgB r、、Mg(
Now)zZnC12、Zn(NOs)t  等が使用
されるが、溶解性並びにフィブロインの分子量を出来る
限り高く保つためにCaclg又はCa (Now)z
の使用が好ましい。
L iNO* , MgCIt , MgB r, , Mg(
Caclg or Ca(Now)z are used to keep the solubility and molecular weight of fibroin as high as possible.
It is preferable to use

又、該金属塩濃度は5〜80重量%、好ましくは20〜
70重量%、特に好ましくは40〜60重量%である。
Further, the metal salt concentration is 5 to 80% by weight, preferably 20 to 80% by weight.
70% by weight, particularly preferably 40-60% by weight.

又溶解性をより一層ならしめる為に、該水溶液にメチル
アルコール、エチルアルコール、プロピルアルコール等
のアルコール類の添加が好ましい、添加時期は、絹の溶
解の前又は途中が良く、又添加量は該金属塩溶液に対し
、20〜60重量%、好ましくは25〜50重量%であ
る。
In order to further improve the solubility, it is preferable to add alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol to the aqueous solution.The timing of addition is preferably before or during the dissolution of the silk, and the amount of addition is appropriate. The amount is 20 to 60% by weight, preferably 25 to 50% by weight, based on the metal salt solution.

本発明で固定化する微生物菌体は、酵母、細菌、放線菌
等が適宜用いられ例えば、アクロモバクタ−属、フラボ
バクテリウム属、エスシェリシア属、アエロバクタ−属
、ブレビバクテリウム属、ストレプトコツカス属、コリ
ネバクテリウム属、アルスロバクタ−属、セラチア属、
シュードモナス属、アセトバクター属、ストレプトミセ
ス属、サツカロマイセス属、ロドトルラ属に属する細菌
、放線菌、酵母が好ましいものとして挙げられる。これ
等の微生物菌体は、凍結乾燥や有機溶媒処理を行った処
理菌体でもよく、又、培養された生菌体でもよい、生菌
体は、固定化後、培地中で増殖させることも出来る。
The microorganisms to be immobilized in the present invention include yeast, bacteria, actinomycetes, etc., and examples include Achromobacter, Flavobacterium, Escherichia, Aerobacter, Brevibacterium, Streptococcus, Corynebacterium, Arthrobacter, Serratia,
Preferred examples include bacteria belonging to the genus Pseudomonas, Acetobacter, Streptomyces, Satucharomyces, and Rhodotorula, actinomycetes, and yeast. These microbial cells may be treated cells subjected to freeze-drying or organic solvent treatment, or may be cultured live cells. Live cells may be grown in a medium after immobilization. I can do it.

固定化される微生物菌体量は、その目的に応じ適宜決め
ればよいが、余り過大であると、得られた固定化物から
の菌体等の脱落が起こる為、一般にフィブロイン蛋白量
に対し、乾燥重量にして好ましくは50重量%以下、特
に好ましくは30重量%以下である。
The amount of microorganisms to be immobilized can be determined as appropriate depending on the purpose, but if it is too large, bacteria etc. will fall off from the obtained immobilized product. It is preferably 50% by weight or less, particularly preferably 30% by weight or less.

微生物菌体は、そのまま或いは懸濁液として前記フィブ
ロイン水溶液と混合するが、剪断力を作用させることに
より、微生物が損傷を受は易い為、フィブロイン水溶液
に剪断力を作用した後混合する事が好ましい。
The microbial cells are mixed with the fibroin aqueous solution either as they are or as a suspension, but since the microorganisms are easily damaged by applying shearing force, it is preferable to mix them after applying shearing force to the fibroin aqueous solution. .

水溶液に流速勾配を与え、フィブロインに剪断力を作用
する手段としては種々の方法が考えられるが、例えば、
ミキサー、ホモミキサー、プロペラ等による攪拌や、細
い管や、スリットの間を通過させること等があるが特に
限定されるものではない。しかし、過度に大きな剪断力
を与えると短時間にフィブロインが析出し、操作性が悪
く、又、非常に小さな剪断力では長い処理時間を必要と
する。水溶液に剪断力を作用した後、長時間放置すると
、ゲル化凝固又はフィブロインの析出が起こり、成形が
困難になったり、不均一になったりする為、それ以前に
水溶液の粘度が多少上昇した段階で成形工程に付するこ
とが肝要である。この様にして調製した剪断力を作用し
結晶を配向せしめたフィブロインと菌体とを熔解した水
溶液は成形工程に付されるが、成形は公知の方法から適
宜選定し菌体の使用目的に応じた形態に成形すればよい
Various methods can be considered for applying a flow velocity gradient to the aqueous solution and applying a shearing force to the fibroin, for example,
Stirring may be performed using a mixer, homomixer, propeller, etc., or passing through a thin pipe or slit, but is not particularly limited. However, if an excessively large shearing force is applied, fibroin will precipitate in a short period of time, resulting in poor operability, and a very small shearing force will require a long processing time. If the aqueous solution is left to stand for a long time after applying a shearing force, gelation and coagulation or fibroin precipitation will occur, making molding difficult or uneven. It is important to subject it to the molding process. The aqueous solution in which the fibroin and bacterial cells prepared in this manner are dissolved by applying shearing force to orient the crystals is subjected to a molding process. It may be molded into a shape.

成形方法の一例として成膜法による場合を示すと、通常
、ガラス板、テフロン板、アクリル板等の上に上記水溶
液を流延し、温度2〜70℃下、好ましくは10〜50
℃下、放置又は通風することにより、乾燥固化し膜状に
成形する。この際、剪断力を作用させたフィブロイン−
菌体温合水溶液をそのまま、或いは必要に応じてこれに
増粘剤を加えて増粘し、各種の形状を有する面上に塗布
、乾燥し、薄膜状に成形することも出来る。
An example of a forming method using a film forming method is to cast the aqueous solution on a glass plate, Teflon plate, acrylic plate, etc. at a temperature of 2 to 70°C, preferably 10 to 50°C.
Dry and solidify by leaving to stand or ventilate at ℃ and form into a film. At this time, the fibroin-
The microbial temperature-heated aqueous solution can be used as it is, or if necessary, it can be thickened by adding a thickener to it, applied to surfaces of various shapes, dried, and formed into a thin film.

本発明に係る固定化微生物は、特に膜状に成形した場合
剪断力を作用させなかったときに得られる膜が殆どの場
合、水中で半溶解し、形を留めないのに対し、完全な水
不溶性膜となる。このことは本発明あ大きな特長の1つ
である。
In particular, when the immobilized microorganism according to the present invention is formed into a film, the film obtained when no shearing force is applied is semi-dissolved in water and does not retain its shape, whereas it is completely dissolved in water. It becomes an insoluble film. This is one of the major features of the present invention.

本発明の固定化微生物の製造法により常温及び中性領域
を含む温和な条件で実質的にフィブロインと酵素のみか
らなる微生物含有成形物を容易に得ることが出来る。
By the method for producing immobilized microorganisms of the present invention, microorganism-containing molded articles consisting essentially of fibroin and enzymes can be easily obtained under mild conditions including room temperature and neutral regions.

その為、固定化による微生物菌体の損傷はなく、生菌体
の場合はその増殖能を保ったまま、又処理菌体中の酵素
活性も殆ど失われることなく固定化される。
Therefore, the microorganism cells are not damaged by immobilization, and in the case of viable cells, they are immobilized while maintaining their growth ability and the enzyme activity in the treated cells is almost not lost.

又一般に包括型の固定化の場合、その基質や培地成分の
透過性が問題となり、拡散律速となるがフィブロイン膜
の場合、この影響を受けにくい薄膜とした場合に於いて
も可撓性で、十分な強度を持つ特長を有する。この意味
から膜厚は50μm以下が好ましく、特に30μm以下
では、低分子基質に対する活性は、元の菌体と殆ど変わ
らない。
In general, in the case of enveloping immobilization, the permeability of the substrate and culture medium components becomes a problem, and diffusion becomes rate-limiting, but in the case of fibroin membranes, even when made into a thin film that is not susceptible to this effect, it is flexible and It has the feature of sufficient strength. In this sense, the film thickness is preferably 50 μm or less, and in particular, if the film thickness is 30 μm or less, the activity toward low-molecular substrates is almost the same as that of the original bacterial cell.

生菌体を固定化し、増殖させて用いる場合、固定化物の
内部では殆ど増殖が見られないことから、菌体含量によ
っても異なるが、300μm以下程度の膜厚とするのが
効率的である。
When living cells are immobilized and grown, almost no growth is observed inside the immobilized material, so it is efficient to have a film thickness of about 300 μm or less, although it varies depending on the cell content.

更に、静止菌体の場合、固定化物からの菌体脱落は見ら
れず、安定な活性を示す。
Furthermore, in the case of stationary bacterial cells, no bacterial detachment from the immobilized material was observed, indicating stable activity.

(発明の効果 ) 本発明の方法により実質的に無害なフィブロインのみに
よる微生物菌体の固定化物が得られる為、これを食品や
医薬品等の製造に用うる事が出来る。
(Effects of the Invention) Since the method of the present invention yields a substantially harmless immobilized product of microbial cells made only of fibroin, this can be used in the production of foods, medicines, and the like.

又、センサー等にも有効に利用する事が可能である。Furthermore, it can be effectively used for sensors, etc.

以下、実施例にて本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 プーレッ) 1 kgをマルセル石けん1重量%水溶液
301中に浸漬し、98℃で1時間攪拌混合し、実質的
にセリシンを完全に除き、充分に乾燥後、70℃で乾燥
した。次いで65重量%の塩化カルシウム水溶液4kg
とエチルアルコール1.6 kgの入ったニーグー中に
前記精練ずみの生糸0.8 kgを投入し、75〜80
℃で45分間攪拌溶解した。得られた粘稠な溶解液に8
0℃の温水3.2 kgを加え希釈し、再生セルロース
系中空繊維を用いた透析装置により透析脱塩してフィブ
ロイン水溶液を得た。該フィブロイン水溶液のフィブロ
イン濃度は5.5重量%であった。
Example 1 Poulet) 1 kg was immersed in Marcel soap 1% by weight aqueous solution 301, stirred and mixed at 98°C for 1 hour to substantially completely remove sericin, thoroughly dried, and then dried at 70°C. Then 4 kg of 65% by weight calcium chloride aqueous solution
0.8 kg of the scoured raw silk was put into a Nigu containing 1.6 kg of ethyl alcohol and 75-80 kg of raw silk was added.
The mixture was stirred and dissolved at ℃ for 45 minutes. 8 to the resulting viscous solution.
The mixture was diluted with 3.2 kg of 0°C warm water and desalted by dialysis using a dialysis device using regenerated cellulose hollow fibers to obtain an aqueous fibroin solution. The fibroin concentration of the fibroin aqueous solution was 5.5% by weight.

このフィブロイン水溶液を濃縮し、10.0重量%とじ
、この200gをホモミキサー(特殊機化工業社製 T
ype4c)により4.00Orpmで撹拌した後、菌
体内にアルカリフォスファターゼを有するエスシエリシ
ア・コリの凍結乾燥菌体(シグマ社製)200agを混
合し、5分間放置してからアクリル板上に流延し、室温
(20℃)で20時間乾燥成膜した。
This fibroin aqueous solution was concentrated to 10.0% by weight, and 200 g of this was mixed with a homomixer (Tokushu Kika Kogyo Co., Ltd.).
ype4c) at 4.00 Orpm, 200 ag of freeze-dried S. coli cells (manufactured by Sigma) containing alkaline phosphatase in the cells were mixed, left to stand for 5 minutes, and then cast onto an acrylic plate. A dry film was formed at room temperature (20° C.) for 20 hours.

得られた固定化菌体膜を、菌体中のアルカリフォスファ
ターゼ活性を指標として評価した。
The obtained immobilized bacterial cell membrane was evaluated using alkaline phosphatase activity in the bacterial cells as an index.

活性測定法を以下に示す。The activity measurement method is shown below.

酵素活性測定法 エスシェリシア・コリ菌体含有1)1(10a+wx2
0vw)をP H8,5−緩衝液2 lll1lに浸漬
し、これに、0.01M−p−ニトロフェニルフォスフ
ェート溶液3 mlを基質として加え、30℃で10分
間振盪、反応させた後、サンプリングし、これを等量の
0.5N−水酸化ナトリウム水溶液に・加えて混合し、
直ちに410nmの吸収を測定し、生成p−二トロフェ
ノールを定量する。繰り返し測定を行う場合は、反応後
の膜を取り出し、3回、緩衝液中に浸漬、洗浄した後、
次の測定に供した。
Enzyme activity measurement method Escherichia coli bacterial cell content 1) 1 (10a+wx2
0vw) was immersed in 2 lll 1 liter of PH8,5-buffer solution, 3 ml of 0.01M p-nitrophenyl phosphate solution was added as a substrate, and after shaking and reacting at 30°C for 10 minutes, sampling was performed. Add this to an equal amount of 0.5N aqueous sodium hydroxide solution and mix.
Absorption at 410 nm is immediately measured to quantify the p-nitrophenol produced. When performing repeated measurements, take out the membrane after the reaction, immerse it in buffer solution three times, wash it, and then
It was used for the next measurement.

又、活性収率は次式により算出した。In addition, the activity yield was calculated using the following formula.

得られた固定化菌体膜の膜性質と撹拌効果の関係を第1
表に示す、又攪拌を30秒行った場合、得た膜について
、膜厚と活性の関係を第2表、繰第1表 第2表 第3表 これ等の結果より攪拌による不溶化効果が明瞭に認めら
れ、又、固定化物からの微生物菌体の脱落はない、更に
30μm以下の薄膜で、殆ど拡散抵抗の影響はないにも
拘らず、十分使用に耐える強度を有する。
First, the relationship between the film properties of the obtained immobilized bacterial cell membrane and the stirring effect.
Table 2 shows the relationship between film thickness and activity for the films obtained when stirring is performed for 30 seconds, as shown in Table 1, Table 2, Table 3. These results clearly demonstrate the insolubilization effect of stirring. Furthermore, there is no dropout of microbial cells from the immobilized material, and the film is thin enough to withstand use, with a thickness of 30 μm or less and hardly affected by diffusion resistance.

実施例2 0ドトルラ・グルチニスI F O0559をモルト・
エキス 1%、酵母エキス 0.1%、L−フェニルア
ラニン 0.1%、ポリペプトン 1%を含む滅菌培地
ll中で、30℃、48時間振盪培養した後、遠心分離
集菌した。
Example 2 Malting O. glutinis I F O0559
After culturing with shaking at 30° C. for 48 hours in 1 liter of a sterile medium containing 1% extract, 0.1% yeast extract, 0.1% L-phenylalanine, and 1% polypeptone, the cells were collected by centrifugation.

得られた菌体を0.05M−1−リス塩酸緩衝液/トル
エン(1容15容)中に加え、50℃で5分間振盪し、
処理菌体を再び集菌し、同緩衝液で3度洗浄した。
The obtained bacterial cells were added to 0.05M-1-Lis-HCl buffer/toluene (1 volume, 15 volumes), and shaken at 50°C for 5 minutes.
The treated bacterial cells were collected again and washed three times with the same buffer.

一方、実施例1と同様にして得たフィブロイン水溶液を
濃縮し濃度を9.5%とし、この200gを径3cmの
通常の攪拌羽根により回転数を変えそ45分間攪拌した
後、この10gに得ら′れた菌体1.8g(乾燥重量3
30■)を混合し、よく分散させた後アクリル板上に流
延し、18℃相対湿度60%で24時間乾燥成膜した。
On the other hand, the fibroin aqueous solution obtained in the same manner as in Example 1 was concentrated to a concentration of 9.5%, and 200 g of this was stirred for 45 minutes using a regular stirring blade with a diameter of 3 cm at varying rotation speeds. 1.8 g of bacterial cells (dry weight 3
30■) were mixed and well dispersed, then cast onto an acrylic plate and dried to form a film at 18° C. and 60% relative humidity for 24 hours.

攪拌回転数と、膜の性質、の関係を第4表に示す。Table 4 shows the relationship between the stirring rotation speed and the properties of the film.

第4表 上記の方法で200Orpmで撹拌して得た膜厚50I
l−の固定化膜片(10關×201)3枚を桂皮酸50
mM濃度のアンモニア−塩酸緩衝液(6,5M、PHI
O)3mj+に浸漬し、30℃で20時間振盪したとこ
ろ、桂皮酸の65%がL−フェニルアラニンに転換した
。但し、反応は、サンプリング液を100倍希釈し、2
90nmの吸光度で桂皮酸の減少により追跡し、等速電
気泳動法によりL−フェニルアラニンの同定を行った。
Table 4 Film thickness 50I obtained by stirring at 200 rpm using the above method
3 immobilized membrane pieces (10 x 201) of cinnamic acid 50
mM concentration of ammonia-hydrochloric acid buffer (6.5M, PHI
When the sample was immersed in O) 3mj+ and shaken at 30°C for 20 hours, 65% of cinnamic acid was converted to L-phenylalanine. However, for the reaction, dilute the sampling solution 100 times,
The decrease in cinnamic acid was followed by absorbance at 90 nm, and L-phenylalanine was identified by isotachophoresis.

実施例3 サツカロミセス・セレビシェI F O−0234をモ
ルトエキス 063%、酵母エキス 0.3%、ペプト
ン 0.5%、グルコース 1% を含むPH5,0の
滅菌培地500 cc中で30℃、1日振盪培養した後
、遠心分離で集菌し、滅菌生理食塩水で3回洗浄した。
Example 3 Satucharomyces cerevisiae IFO-0234 was grown at 30°C for 1 day in 500 cc of a sterile medium with a pH of 5.0 containing 063% malt extract, 0.3% yeast extract, 0.5% peptone, and 1% glucose. After shaking culture, bacteria were collected by centrifugation and washed three times with sterile physiological saline.

実施例1と同様に、濃度15.0重量%のフィブロイン
水溶液、150gをホモミキサーを用いて2500rp
m’で時間を変えて攪拌した後、この12、5 gに上
記で得た湿潤菌体3g(乾燥重量0.75g)を混合し
、アクリル板上に流延した。
In the same manner as in Example 1, 150 g of a fibroin aqueous solution with a concentration of 15.0% by weight was mixed at 2500 rpm using a homomixer.
After stirring with m' for different times, 3 g of the wet bacterial cells obtained above (dry weight 0.75 g) was mixed with 12.5 g of the mixture and cast on an acrylic plate.

22℃で20時間乾燥成膜した。A dry film was formed at 22° C. for 20 hours.

膜厚120μとした時、ホモミキサー攪拌時間が30秒
、60秒の場合1!、共に水不溶性の固定化膜を得るこ
とが出来が、撹拌しない場合は、水中で崩壊した。又、
150秒攪拌すると、析出が起こり、成膜不能であった
When the film thickness is 120μ and the homomixer stirring time is 30 seconds or 60 seconds, it is 1! In both cases, a water-insoluble immobilized membrane could be obtained, but if not stirred, it collapsed in water. or,
After stirring for 150 seconds, precipitation occurred, making it impossible to form a film.

攪拌時間を60秒として得た固定化膜(l cs X2
cm)5枚を滅菌した10%グルコース水溶液10m1
lに入れ、30℃で1日静置し、生成エタノール量をガ
スクロマトグラフィー測定した結果、水溶液中に4.3
重量%のエタノールが認められた。
Immobilized membrane obtained with stirring time of 60 seconds (l cs
cm) 10ml of 10% glucose aqueous solution with 5 sterilized sheets
As a result of measuring the amount of ethanol produced by gas chromatography, it was found that 4.3
Weight percent ethanol was observed.

実施例4 実施例3で得たサツカロミセス・セレビシェ固定化膜を
酵母エキス 0.15%、NH,ci  O,25%、
HK t P O40,55%、Mg5Oa・7HtO
O,025%、Ca C1z  O,OO1%、クエン
酸0.3%、NaC10,25%、グルコース 10%
を含むP H5,0の滅菌培地中に浸漬し、30℃で1
日振盪した。
Example 4 The Saccharomyces cerevisiae immobilized membrane obtained in Example 3 was treated with yeast extract 0.15%, NH, ciO, 25%,
HK t P O40,55%, Mg5Oa・7HtO
O,025%, Ca C1z O,OO1%, citric acid 0.3%, NaC10,25%, glucose 10%
immersed in a sterile medium of pH 5.0 containing
Shake for days.

この固定化膜(I C1)X2 cta ) 5枚を 
NaC10,9%を含む10%グルコース水溶液10m
lに入れ、30℃で1日静置し、生成エタノール量を測
定した。
Five of these immobilized membranes (I C1)
10ml of 10% glucose aqueous solution containing 10.9% NaC
1 and left at 30° C. for one day, and the amount of ethanol produced was measured.

膜を滅菌水で洗浄した後、新たなグルコース水溶液10
mj!に入れる方法で繰り返し実験を行った。結果を第
5表に示す、菌体の脱落は認められなかった。
After washing the membrane with sterile water, add fresh glucose aqueous solution 10
mj! Repeated experiments were conducted using the method. The results are shown in Table 5, and no bacterial cells were observed to fall off.

第5表Table 5

Claims (5)

【特許請求の範囲】[Claims] (1)剪断力を作用し結晶域を配向せしめたフィブロイ
ンと、微生物菌体とを分散した水溶液を、水溶液中への
フィブロインの析出或いは水溶液の凝固が起こる前に、
成形工程に付すことを特徴とする固定化微生物の製造法
(1) An aqueous solution in which fibroin whose crystalline regions have been oriented by applying shear force and microbial cells is dispersed, before precipitation of fibroin in the aqueous solution or coagulation of the aqueous solution occurs.
A method for producing immobilized microorganisms, which comprises subjecting them to a molding process.
(2)微生物菌体が生菌体である特許請求の範囲第(1
)項に記載の固定化微生物の製造方法。
(2) Claim No. 1 in which the microbial cells are viable cells
) The method for producing an immobilized microorganism as described in item 1.
(3)成型工程がフィルム成形である特許請求の範囲第
(1)項に記載の固定化微生物の製造方法。
(3) The method for producing an immobilized microorganism according to claim (1), wherein the molding step is film molding.
(4)フィルムが膜厚300μm以下のものである特許
請求の範囲第(3)項に記載の固定化微生物の製造方法
(4) The method for producing immobilized microorganisms according to claim (3), wherein the film has a thickness of 300 μm or less.
(5)フィルムが膜厚50μm以下のものである特許請
求の範囲第(3)項に記載の固定化微生物の製造方法。
(5) The method for producing immobilized microorganisms according to claim (3), wherein the film has a thickness of 50 μm or less.
JP9210585A 1985-04-27 1985-04-27 Production of immobilized microorganism Granted JPS61249391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9210585A JPS61249391A (en) 1985-04-27 1985-04-27 Production of immobilized microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9210585A JPS61249391A (en) 1985-04-27 1985-04-27 Production of immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS61249391A true JPS61249391A (en) 1986-11-06
JPH0456592B2 JPH0456592B2 (en) 1992-09-08

Family

ID=14045157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9210585A Granted JPS61249391A (en) 1985-04-27 1985-04-27 Production of immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS61249391A (en)

Also Published As

Publication number Publication date
JPH0456592B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
GB2176795A (en) Polysaccharide compositions, preparation and uses
DE69133258T2 (en) USE OF CROSS-LINKED CRYSTALS AS A NEW METHOD FOR IMMOBILIZING ENZYMES
DE2407961C3 (en) Enzymatically active membrane, process for their production and their use
KR910002854B1 (en) A method for the immobilization of biocatalysts
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
DE2219063B2 (en) Process for the production of an enzymatically active membrane, membrane produced by this process and its use for enzyme-catalyzed substrate conversions
US4760024A (en) Immobilization of enzymes
JPS58162293A (en) Preparation of immobilized microorganism
JPS61249391A (en) Production of immobilized microorganism
JPH0835155A (en) Material for reinforcing microorganism-immobilizing carrier
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
CN1128764A (en) Regenerated silk protein and complex material thereof for fixation of enzyme and bio-active substance
JPS58155092A (en) Cell catalyst and production thereof
JPS61249392A (en) Immobilization of cell bodies of microorganism
JPH074244B2 (en) Microorganism-immobilized carrier and method for producing the same
Quirós et al. The evolution of the structure of calcium alginate beads and cell leakage during protease production
JPH01247089A (en) Preparation of carrier supporting immobilized microorganism
SU1634715A1 (en) Method for producing immobilized cells exhibiting glucosoisomerase activity
Karube et al. Bacteriolysis by immobilized enzymes
JPS5876089A (en) Immobilization of enzyme or microorganism
JPH0466094A (en) Enzymatic decomposition of starch-containing material and production of oligosaccharide
JPH06508529A (en) Method for producing D-amino acid or D-amino acid derivative
SU1495378A1 (en) Method of producing preparation for analysis of monoamines based on immobilized monoaminokinase
KR0126427B1 (en) Preparation method of hyaluronic acid
JPS60227680A (en) Production of immobilized enzyme