JPS61248727A - Sheet or film of uniform multi-axially orientated thermoplastic resin - Google Patents

Sheet or film of uniform multi-axially orientated thermoplastic resin

Info

Publication number
JPS61248727A
JPS61248727A JP60088872A JP8887285A JPS61248727A JP S61248727 A JPS61248727 A JP S61248727A JP 60088872 A JP60088872 A JP 60088872A JP 8887285 A JP8887285 A JP 8887285A JP S61248727 A JPS61248727 A JP S61248727A
Authority
JP
Japan
Prior art keywords
sheet
film
thermoplastic resin
oriented
imax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60088872A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
片岡 紘
Takashi Sonomura
隆志 薗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60088872A priority Critical patent/JPS61248727A/en
Publication of JPS61248727A publication Critical patent/JPS61248727A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To permit to form the uniform thin multi-axially orientated sheet by compression forming by a method wherein the sheet or the film of thermoplastic resin, having specified draw ration per unit area as well as thickness and small in a difference between the maximum polarized fluorescent component strength IMAX and the minimum polarized fluorescent component strength IMIN, is employed as the material of the sheet or the film. CONSTITUTION:The orientated sheet of the orientated film of thermoplastic resin, having 2X or more of draw ration per unit area and the thickness of 1mm or less while the difference between the maximum polarized fluorescent component strength IMAX and the minimum polarized fluorescent component strength thereof is in the relation of IMAX-IMIN/IMAX<0.1, is employed for the compression forming. Here, the polarized fluorescent component strength means the same strength in all angular direction, which is measured by a polarized fluorescent light photometer when the axes of deflection of two sheets of polarizing plates, which are put before and after the sheet or the film, are arranged in parallel. The draw ratio per unit area of the sheet should be 2X or more and is preferable to be 3X or more and 20X or less. When it is 2X or more, the effect of orientation is realized generally and when it is 2X or more, the effect is realized well while the forming of uniform multi-axial orientation becomes difficult generally when it is more than 20X. The thickness of the sheet should be 1mm or less and is preferable to be 10Xm-0.5mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、均一に多軸配向された熱可塑性樹脂シートす
るいはフィルム(以後「シートアルいはフィルム」は「
シート」と略称する)であり、光学的性質、熱的性質、
機械的性質が均一であり、精密電子機器部品等に良好に
使用できる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a uniformly multiaxially oriented thermoplastic resin sheet or film (hereinafter referred to as "sheet aluminum or film").
(abbreviated as “sheet”), which has optical properties, thermal properties,
It has uniform mechanical properties and can be used favorably in precision electronic equipment parts.

〔従来の技術及び問題点〕[Conventional technology and problems]

精密電子機器部品、弱電機器部品等に熱可塑性樹脂の2
軸配向シートは広く使用されている。例えばポリエチレ
ンテレフタレート(以後PETと略称)の2軸配向シー
トはフロッピーディスク等に広く使用されている。フロ
ッピーディスク等精密製品は寸法の安定性が厳しく要求
され、温度による寸法の変化も等方的であることが好ま
しい。従来これ等用途にはPET等の2軸配向シートが
使用されてきたが、均一な多軸配向シートが好ましく、
それが要求されている。2軸配向シートの成形法はこれ
まで多くの技術が紹介され、工業的にも使用されている
が多軸配向シートについては良好な成形法がなく、特に
薄肉の均一多軸配向シートは紹介されていない。
Thermoplastic resin for precision electronic equipment parts, light electrical equipment parts, etc.
Axially oriented sheets are widely used. For example, biaxially oriented sheets of polyethylene terephthalate (hereinafter abbreviated as PET) are widely used in floppy disks and the like. Precision products such as floppy disks are strictly required to have dimensional stability, and it is preferable that dimensional changes due to temperature be isotropic. Conventionally, biaxially oriented sheets such as PET have been used for these purposes, but uniform multiaxially oriented sheets are preferable.
That is what is required. Many technologies have been introduced so far for forming biaxially oriented sheets, and they are also used industrially, but there are no good forming methods for multiaxially oriented sheets, especially thin uniform multiaxially oriented sheets. It has not been.

圧縮成形で熱可塑性樹脂の配向成形品を成形する方法に
ついては、USP 3632841等に示されている。
A method of molding an oriented thermoplastic resin article by compression molding is disclosed in USP 3,632,841 and the like.

すなわち、圧縮グイ内表面を潤滑剤で被覆し、厚肉の熱
可塑性樹脂素地をガラス転移温度以上溶融点以下で圧縮
ダイ内で圧縮して2軸配向させることが示されている。
That is, it has been shown that the inner surface of a compression goo is coated with a lubricant, and a thick thermoplastic resin base is compressed in a compression die at a temperature above the glass transition temperature and below the melting point to achieve biaxial orientation.

この圧縮成形法では、樹脂素地の厚みにより必要圧縮力
が異り、素地が薄くなると高圧縮力が必要になる。従っ
てこの圧縮成形法では従来薄肉多軸配向シートの成形は
実質上不可能であり、均一な薄肉多軸配向シートは製造
されていない。
In this compression molding method, the required compression force varies depending on the thickness of the resin base, and as the base becomes thinner, a higher compression force is required. Therefore, conventionally, it has been virtually impossible to mold a thin multiaxially oriented sheet using this compression molding method, and a uniform thin multiaxially oriented sheet has not been produced.

〔問題点を解決するための手段及び作用〕本発明者は多
軸配向成形技術について検討を行った結果、圧縮成形に
よる多軸配向成形で成形されたシートは著るしく均一に
多軸配向されていることが解り、本発明に至った。すな
わち本発明は熱可塑性樹脂の配向シートあるいはフィル
ムであり、 (a)  面積比延伸倍率が2倍以上であり、(b) 
 厚みが1m以下であり、 (c)  偏光螢光光度計で測定した全角度方向の螢光
偏光成分強度工(シートあるいはフィルムの前後に置く
2つの偏光板の偏光軸を平行にした時の螢光偏光成分強
度)の最大重MAXと熾小工M□Nの差がことを特徴と
する均一に多軸配向された熱可塑性樹脂シートあるいは
フィルムである。
[Means and effects for solving the problem] As a result of research on multiaxially oriented molding technology, the present inventor found that sheets formed by multiaxially oriented compression molding are extremely uniformly multiaxially oriented. This led to the present invention. That is, the present invention is an oriented sheet or film of thermoplastic resin, which (a) has an area ratio stretching ratio of 2 times or more, and (b)
The thickness is 1 m or less, and (c) fluorescence polarization component intensity in all angular directions measured with a polarization fluorophotometer (fluorescence when the polarization axes of two polarizing plates placed before and after the sheet or film are parallel); This is a uniformly multiaxially oriented thermoplastic resin sheet or film characterized by the difference between the maximum weight (MAX) of the light polarization component intensity (light polarization component intensity) and the thickness (M□N).

本発明に述べる熱可塑性樹脂とは一般に圧縮成形できる
熱可塑性樹脂であり、例えばポリスチレン、スチレン−
アクリロニトリル共重合体、ABS樹脂、ポリ塩化ビニ
ル、ポリメチルメタクリレート、ポリカーボネー)、P
ET等のポリエステル、ナイロン6、ナイロン66、ナ
イロン46等のナイロン、ポリフエニレンエーテル、ポ
リエーテルイミド、ポリオキシメチレン、ポリエチレン
、ポリプロピレン等のポリオレフィン、各種フッ素樹脂
、及びこれ等樹脂のブレンド、共重合体等である。
The thermoplastic resin mentioned in the present invention is generally a thermoplastic resin that can be compression molded, such as polystyrene, styrene, etc.
Acrylonitrile copolymer, ABS resin, polyvinyl chloride, polymethyl methacrylate, polycarbonate), P
Polyesters such as ET, nylons such as nylon 6, nylon 66, and nylon 46, polyolefins such as polyphenylene ether, polyetherimide, polyoxymethylene, polyethylene, and polypropylene, various fluororesins, and blends and copolymers of these resins. Such as merging.

メチルメタクリレート(以後MMAと略称)を主体とし
たアクリル樹脂は良好に使用でき、ポリメチルメタクリ
レート(以後P MMAと略称)、MMAとアルキルア
クリレート共重合体(C!O(MMA−AA))、MM
A−無水マレイン酸−スチレン三元系共重合体((:!
o(MMA−MAJ(−8t) )、MMA−メタアク
リルアミド共重合体(Co (MMA −MAAmid
e ) )、等は良好に使用できる。又、PET、ポリ
ブチレンテレフタレート等のポリエステル、ナイロン6
、ナイロン66、ナイロン46.ナイロン12等も良好
ニ使用できる。
Acrylic resins based on methyl methacrylate (hereinafter abbreviated as MMA) can be used satisfactorily, including polymethyl methacrylate (hereinafter abbreviated as PMMA), MMA and alkyl acrylate copolymer (C!O (MMA-AA)), MM.
A-Maleic anhydride-styrene terpolymer ((:!
o(MMA-MAJ(-8t)), MMA-methacrylamide copolymer (Co(MMA-MAAmid)
e)), etc. can be used successfully. Also, polyester such as PET, polybutylene terephthalate, nylon 6
, nylon 66, nylon 46. Nylon 12 etc. can also be used successfully.

本発明に述べる樹脂には各種充填材、例えばガラス繊維
、カーボン繊維、アスベスト、合成繊維等の短繊維、伸
度の大きい合成繊維の長繊維、マイカ等を配合すること
ができる。
Various fillers such as short fibers such as glass fibers, carbon fibers, asbestos, and synthetic fibers, long fibers of synthetic fibers with high elongation, mica, etc. can be blended with the resin described in the present invention.

ポリアミド樹脂、ポリエステル樹脂等にカーボン繊維、
ケプラー繊維(芳香族ポリアミド)等を配合し、高配向
度に均一多軸配向させたシートは高ヤング率の均質なシ
ートになる。
Carbon fiber, polyamide resin, polyester resin, etc.
A sheet blended with Kepler fibers (aromatic polyamide) and the like and uniformly multiaxially oriented with a high degree of orientation becomes a homogeneous sheet with a high Young's modulus.

本発明のシートの面積比延伸倍率は2倍以上であり、好
ましくは3倍以上20倍以下である。2倍以上で一般に
延伸効果が現れ、3倍以上で効果が良好に現れ、20倍
以上の均一多軸配向は一般に成形が困難になる。本発明
の好ましいシートは高度に多軸配向されたシートであり
、平均オリエンテーションリリースストレス(以後OR
8と略称)が10kg/crIL2以上の多軸配向がか
けられていることが好ましく、更に好ましくは15kg
/c!lL2以上である。OR8はシートの配向度合を
示し、シートを加熱した時の収縮力である。OR8測定
法はASTMD 15041C準じた方法である。
The area ratio stretching ratio of the sheet of the present invention is 2 times or more, preferably 3 times or more and 20 times or less. At 2 times or more, a stretching effect generally appears, at 3 times or more, the effect appears well, and at 20 times or more, uniform multiaxial orientation generally makes molding difficult. Preferred sheets of the present invention are highly polyaxially oriented sheets, with average orientation release stress (hereinafter OR
8) is preferably subjected to multiaxial orientation of 10 kg/crIL2 or more, more preferably 15 kg
/c! It is 1L2 or more. OR8 indicates the degree of orientation of the sheet and is the shrinkage force when the sheet is heated. The OR8 measurement method is a method based on ASTM D 15041C.

本発明シートの厚みは1間以下であり、好ましくは10
μmから0.5uである。本発明では平面状シートの他
に、曲面状シートも含まれるものとする。
The thickness of the sheet of the present invention is 1 mm or less, preferably 10 mm or less.
It is 0.5u from μm. The present invention includes not only flat sheets but also curved sheets.

本発明シートは均一に多軸配向されたシートであり、多
軸配向の均一性は偏光螢光光度計で測定した。偏光螢光
光度計で分子配向を測定する方法については、J、 P
o1y、 Sci、、 c−15,237(1966)
The sheet of the present invention is a uniformly multiaxially oriented sheet, and the uniformity of the multiaxial orientation was measured using a polarized fluorophotometer. For a method to measure molecular orientation with a polarized fluorometer, see J.P.
oly, Sci., c-15, 237 (1966)
.

Jasco Report、旦、  116 (196
9)  。
Jasco Report, Dan, 116 (196
9).

等に示される方法であり、シート中に固定された螢光性
分子が発する螢光の偏光特性の角度分布から、螢光性分
子配向の状態を求める方法である。
This is a method of determining the state of fluorescent molecule orientation from the angular distribution of the polarization characteristics of the fluorescent light emitted by the fluorescent molecules fixed in the sheet.

この方法の重要な特長は、螢光性分子が光の吸収時と螢
光の発光時に示す二重の光学的異方性を応用しているこ
とで、いわゆる配向度として平均化した形でのみ記述さ
れてきた分子配向が、配向形式を含めて、配向の状態を
示す配向パターンとして直接測定される。測定法はJa
sco Report・i・116 (1969)  
に準じて行い、装置は次の物から成る。
An important feature of this method is that it takes advantage of the double optical anisotropy exhibited by fluorescent molecules when absorbing light and when emitting fluorescent light. The molecular orientation that has been described, including the type of orientation, is directly measured as an orientation pattern that indicates the state of orientation. The measurement method is Ja
sco Report・i・116 (1969)
The equipment consists of the following:

光  源 シートの前後に置く2つの偏光板(PtsPs)の偏光
軸を平行にした時の螢光偏光成分強度Iを、シート(サ
ンプル)を360°回転させて測定し、その全角度方向
最大IMAXと最小IMINの差が小さい程、均一に多
軸配向されていることを示しており、本発明では、(I
MAX−IM工N)/”MAXが0.1以下であり好ま
しくは0,05以下、更に好ましくは0.02以下の均
一に多軸配向されているシートである。螢光偏光成分強
度Iを円形パターンに示すと、180°の差を有する各
角度の工は原理的には互に等しくなり、’maxと■。
The fluorescence polarization component intensity I when the polarization axes of two polarizing plates (PtsPs) placed before and after the light source sheet are parallel is measured by rotating the sheet (sample) 360 degrees, and the maximum IMAX in all angular directions is measured. The smaller the difference between the minimum IMIN and the minimum IMIN, the more uniform the multiaxial orientation is.
MAX-IM Engineering)/"MAX is 0.1 or less, preferably 0.05 or less, more preferably 0.02 or less, and is a uniformly multiaxially oriented sheet. Fluorescent polarization component intensity I is When shown in a circular pattern, the angles with a difference of 180° are in principle equal to each other, 'max and ■.

、。の比も円形パターンの直径を比較すれば求められる
。本発明の”MAX  ’エエN )/ ”MAXの値
も、円形パターンの直径を測定して求めた。
,. The ratio can also be found by comparing the diameters of the circular patterns. The value of "MAX'EEN)/"MAX of the present invention was also determined by measuring the diameter of the circular pattern.

均一に多軸配向した薄肉シートを成形する方法について
検討した結果、圧縮成形が好ましいことを発見し、更に
本発明シートを良好に成形できる圧縮成形技術を開発し
た。本発明シートを良好忙成形できる圧縮成形法を次に
記す。
As a result of studying methods for molding thin sheets with uniform multiaxial orientation, we discovered that compression molding is preferable, and further developed a compression molding technique that can satisfactorily mold the sheets of the present invention. A compression molding method that can successfully mold the sheet of the present invention will be described below.

熱可塑性樹脂素地を圧縮ダイ内で圧縮して配向成形品を
成形する方法に於て、 1、ダイ内に2層以上の熱可塑性樹脂素地を互に非接着
状態にして重ねて置き、 2、ダイ内表面と該樹脂素地表面の界面を潤滑状態にし
、 3、該樹脂素地のガラス転移温度以上、溶融点以下で圧
縮して樹脂素地を配向させ、 4、冷却後ダイ内より取り出し、各素地より成形された
配向成形品を互に剥離して2個以上の成形品を得る ことを特徴とする多軸配向成形品の圧縮成形法である。
In the method of compressing a thermoplastic resin base material in a compression die to form an oriented molded product, 1. Two or more layers of thermoplastic resin base materials are placed one on top of the other in a non-adhered state in the die; 2. The interface between the inner surface of the die and the surface of the resin base is brought into a lubricated state; 3. The resin base is compressed at a temperature above the glass transition temperature and below the melting point of the resin base to orient the resin base; 4) After cooling, the resin base is taken out from inside the die and each base is This is a compression molding method for multiaxially oriented molded products, which is characterized in that two or more molded products are obtained by peeling the oriented molded products that have been molded from each other.

ここで述べる2層以上の熱可塑性樹脂素地を互に非接着
状態にして重ねて置くとは、重ね合せて圧縮成形後、各
素地から成形された配向成形品が互に容易に剥離できる
程度の非接着状態に置くことである。
Laying two or more layers of thermoplastic resin substrates in a non-adhered state as described here means that after stacking and compression molding, the oriented molded products formed from each substrate can be easily separated from each other. It is to leave it in a non-adhesive state.

樹脂素地と非接着性の樹脂フィルムあるいはシートを各
素地の界面に置く方法は特に良好に使用で艙る。この場
合、非接着性の樹脂フィルムあるいはシートは、成形時
に於て、樹脂素地と粘度が近いことが好ましく、粘度が
1/30〜30倍の範囲にあることが特に好ましい。樹
脂素地と非接着性樹脂フィルムあるいはシートの粘度差
が小さ℃・と、圧縮成形で樹脂素地が延伸される時に、
該接着性樹脂フィルムあるいはシートも一緒に安定に延
伸され、均一な配向成形品が得られる。最も好ましい非
接着性樹脂フィルムあるいはシートは、成形時に樹脂素
地の粘度の1〜20倍であり、且つ平滑表面を有するフ
ィルムあるいはシートである。樹脂素地より粘度が大き
く、且つ平滑表面を有するフィルムあるいはシートを用
いると、該フィルムあるいはシートの表面が成形品表面
に転写され、平滑表面の成形品が得られる。
A method in which a resin base and a non-adhesive resin film or sheet are placed at the interface of each base can be used particularly well. In this case, the non-adhesive resin film or sheet preferably has a viscosity close to that of the resin base during molding, and particularly preferably has a viscosity in the range of 1/30 to 30 times. When the viscosity difference between the resin base and the non-adhesive resin film or sheet is small °C, when the resin base is stretched during compression molding,
The adhesive resin film or sheet is also stably stretched, resulting in a uniformly oriented molded product. The most preferable non-adhesive resin film or sheet is one that has a viscosity of 1 to 20 times the viscosity of the resin base upon molding and has a smooth surface. When a film or sheet having a higher viscosity than the resin base and a smooth surface is used, the surface of the film or sheet is transferred to the surface of the molded product, resulting in a molded product with a smooth surface.

熱可塑性樹脂素地が溶融点以下で互に非接着性であれば
、該素地をそのまま重ね合せて圧縮成形し、成形後各層
を剥離して配向成形品が得られる。
If the thermoplastic resin substrates are non-adhesive to each other at temperatures below their melting point, the substrates are piled up as they are and compression molded, and after molding, each layer is peeled off to obtain an oriented molded product.

ポリテトラフルオロエチレン等はこの方法で良好に成形
できる。
Polytetrafluoroethylene and the like can be well molded by this method.

ダイ内表面と樹脂素地表面の界面を潤滑状態にするには
、ダイ内表面に潤滑剤を塗布するか、あるいは及びダイ
内表面と素地の界面に潤滑剤を練込んだシートを存在さ
せることにより潤滑状態にすることができる。
In order to make the interface between the inner surface of the die and the surface of the resin substrate lubricated, apply a lubricant to the inner surface of the die, or provide a sheet containing a lubricant at the interface between the inner surface of the die and the substrate. It can be kept in a lubricated state.

樹脂素地のガラス転移温度以上、溶融点以下で圧縮して
配向させるには、重ね合せた素地がダイ内で圧縮力によ
り均一にプラグフローすることにより達成できる。ダイ
内表面と樹脂素地表面の界面を良い潤滑状態にすること
により均一なプラグフロー成形ができる。
Orientation by compression at a temperature above the glass transition temperature and below the melting point of the resin base material can be achieved by uniformly plug-flowing the stacked base materials within the die due to compressive force. Uniform plug flow molding is possible by keeping the interface between the die inner surface and the resin base surface well lubricated.

延伸倍率は必要に応じて選択できるが、好ましくは面積
比で2〜20倍である。
Although the stretching ratio can be selected as necessary, it is preferably 2 to 20 times in terms of area ratio.

〔図面による説明〕[Explanation with drawings]

本発明を図面により説明する。 The present invention will be explained with reference to the drawings.

第1図は圧縮成形により多軸配向シートを成形する経過
を示す。
FIG. 1 shows the process of forming a multiaxially oriented sheet by compression molding.

第2図はCo(MMA−AA)を第1図の方法で多軸配
向シートにした時の多軸配向シート厚みに必要圧縮力の
関係を示す。
FIG. 2 shows the relationship between the thickness of the multiaxially oriented sheet and the required compression force when Co(MMA-AA) is made into a multiaxially oriented sheet by the method shown in FIG.

第3図は圧縮成形法により多軸配向シートを成形する経
過を示す。
FIG. 3 shows the process of molding a multiaxially oriented sheet by compression molding.

第4図は4層の樹脂素地を互に非接着状態にして重ねて
置く各種方法を示す。
FIG. 4 shows various methods of placing four layers of resin substrates on top of each other in a non-adhered state.

第1図に於て、圧縮ダイ1の内表面2に潤滑剤を塗布し
、熱可塑性樹脂の板状素地3を置き(1−1)、該素地
3のガラス転移温度以上、溶融点以下に加熱した後圧縮
して素地3をプラグフローさせて多軸配向させ(1−2
)、そのまま冷却して多軸配向シート4を得る。多軸配
向シート4を成形するに必要な圧縮力は、樹脂の種類、
延伸温度、延伸倍率、多軸配向シートの厚み等により異
る。
In Fig. 1, a lubricant is applied to the inner surface 2 of the compression die 1, a plate-shaped base material 3 of thermoplastic resin is placed (1-1), and the temperature is lower than the glass transition temperature and below the melting point of the base material 3. After heating, the substrate 3 is compressed to cause plug flow and multiaxial orientation (1-2
) and then cooled as is to obtain a multiaxially oriented sheet 4. The compressive force required to mold the multiaxially oriented sheet 4 depends on the type of resin,
It varies depending on the stretching temperature, stretching ratio, thickness of the multiaxially oriented sheet, etc.

第2図は、第1図に示した方法でメチルアクリレート5
重量%のCo(MMA−AA )’を140℃で面積比
で5倍に延伸した場合の多軸配向シート厚さと必要圧縮
力の関係を示したものである。多軸配向シート厚さが薄
くなる程、高圧縮力が必要になり、安定にプラグフロー
成形できなくなる。又、圧縮成形装置は圧縮力に比例し
てその製作費は大きくなり、従って薄肉シート程、その
成形費も高くなる。
Figure 2 shows how methyl acrylate 5 was prepared by the method shown in Figure 1.
This figure shows the relationship between the thickness of a multiaxially oriented sheet and the necessary compressive force when Co(MMA-AA)' of % by weight is stretched to 5 times the area ratio at 140°C. As the thickness of the multiaxially oriented sheet becomes thinner, a higher compressive force is required, making it difficult to stably perform plug flow molding. Furthermore, the manufacturing cost of a compression molding device increases in proportion to the compression force, and therefore, the thinner the sheet, the higher the molding cost.

従って、第1図に示した圧縮成形法では1fi厚以下の
均一配向シートの成形は困難であった。
Therefore, it is difficult to mold a uniformly oriented sheet having a thickness of 1 fi or less using the compression molding method shown in FIG.

第3図は本発明のシートを良好に成形する方法を説明す
るものである。圧縮ダイ5の内表面6に潤滑剤を塗布し
た後、4枚の熱可塑性樹脂素地7の各界面と両表面に該
素地と非接着性のフィルム8を置き、圧縮ダイ内に置<
 (3−1)。素地7のガラス転移温度以上、溶融点以
下に加熱した後、圧縮して素地7をプラグフローさせて
4枚の多軸配向シート9を成形しく3−2)、そのまま
冷却して4枚の多軸配向シート9を圧縮ダイ5より取り
出しく3−3)、次いで各多軸配向シートを剥離して更
に非接着性のフィルムを配向シートから剥離して、薄肉
の多軸配向シート10を得る(3−4)。
FIG. 3 illustrates a method for successfully forming the sheet of the present invention. After applying a lubricant to the inner surface 6 of the compression die 5, a non-adhesive film 8 was placed on each interface and both surfaces of the four thermoplastic resin substrates 7, and placed in the compression die.
(3-1). After heating the substrate 7 to a temperature above the glass transition temperature and below the melting point, the substrate 7 is compressed and caused to plug flow to form four multiaxially oriented sheets 3-2), and then cooled as it is to form four multiaxially oriented sheets 9. Take out the axially oriented sheet 9 from the compression die 5 (3-3), then peel off each multiaxially oriented sheet and further peel off the non-adhesive film from the oriented sheet to obtain a thin multiaxially oriented sheet 10 ( 3-4).

第4図は2層以上の熱可塑性樹脂素地を互に非接着状態
に重ね合せて置く各種方法を示すものである。(4−1
)は樹脂素地11をそのまま重ね合せた場合、あるいは
樹脂素地11の各界面12に潤滑剤あるいは離型剤を塗
布する方法、(4−2)は樹脂素地11の各界面及び表
面に非接着性樹脂フィルム13を置く方法、(4−3)
は樹脂素地11の各界面に非接着性樹脂フィルム13を
置き、重ね合せた素地全体を非接着性樹脂フィルム14
で真空包装する方法、(4−4)は互に非接着性の2種
の樹脂15.16を交互に重ねる方法、(4−5)は樹
脂素地が表層17と内核18から成る3層であり、3層
の多軸配向シートを成形する場合を示したものであり、
3層の樹脂素地を2個重ね、その界面と両表面に非接着
性フィルム19を置く方法である。(4−6)は樹脂素
地の厚みが異る2枚以上の素地を重ねたもので厚肉素地
20と薄肉素地21を重ねて置き、その各界面に非接着
性樹脂フィルムあるいはシート22を置いたものである
。樹脂素地はその界面に置く非接着性樹脂シートより薄
いこともあり、(4−7)は薄肉の樹脂素地23を厚肉
非接着性樹脂シート24ではさんだ例である。
FIG. 4 shows various methods of placing two or more layers of thermoplastic resin substrates on top of each other in a non-adhesive manner. (4-1
) is a method in which the resin substrates 11 are stacked as they are, or a method in which a lubricant or mold release agent is applied to each interface 12 of the resin substrate 11, and (4-2) is a method in which each interface and surface of the resin substrate 11 is non-adhesive. Method of placing resin film 13, (4-3)
A non-adhesive resin film 13 is placed on each interface of the resin base 11, and the entire stacked base is covered with a non-adhesive resin film 14.
(4-4) is a method in which two types of non-adhesive resins 15 and 16 are alternately layered, and (4-5) is a method in which the resin base is a three-layered material consisting of a surface layer 17 and an inner core 18. This shows the case of molding a three-layer multiaxially oriented sheet,
This is a method in which two three-layer resin bases are stacked and a non-adhesive film 19 is placed on the interface and both surfaces. (4-6) is a stack of two or more resin substrates with different thicknesses, in which a thick substrate 20 and a thin substrate 21 are placed one on top of the other, and a non-adhesive resin film or sheet 22 is placed on each interface. It is something that The resin substrate may be thinner than the non-adhesive resin sheet placed on its interface, and (4-7) is an example in which a thin resin substrate 23 is sandwiched between thick non-adhesive resin sheets 24.

(4−7)の方法は、特に100μm以下の薄肉配向シ
ートを成形する時に良好に使用できる。この各種方法の
中で(4−3)の方法は最も良好に使用できる。
The method (4-7) can be used particularly well when forming a thin oriented sheet of 100 μm or less. Among these various methods, method (4-3) can be used most favorably.

すなわち、樹脂素地を真空包装することにより、重ね合
せた界面に空気が残留して、成形品表面が悪くなるのを
防ぐことができる。表面が鏡面平滑な樹脂素地を用い、
表面が鏡面平滑な非接着性樹脂フィルムあるいはシート
を用い、(4−3)に示した真空包装した後、圧縮成形
して2軸配向すると、表面が平滑な2軸配向成形品が得
られ、本発明の最も好ましい例である。
That is, by vacuum packaging the resin base material, it is possible to prevent air from remaining at the overlapped interface and deteriorating the surface of the molded product. Using a resin base with a mirror-like smooth surface,
By using a non-adhesive resin film or sheet with a mirror-like smooth surface, vacuum packaging as shown in (4-3), compression molding and biaxial orientation, a biaxially oriented molded product with a smooth surface can be obtained. This is the most preferred example of the present invention.

(4−2)で示した2個以上の樹脂素地と、その各素地
界面と両表面に非接着性フィルムを置く方法も良好に使
用できる。
The method shown in (4-2), in which two or more resin substrates are placed and a non-adhesive film is placed on each substrate interface and both surfaces, can also be used successfully.

真空包装するフィルムあるいはシートは、各樹脂素地界
面に置くフィルムあるいはシートと同じものでも、異っ
ても良い。ダイ内表面との滑りが良いシートを最表面に
使用することが安定なプラグフロー圧縮成形に好ましい
The film or sheet for vacuum packaging may be the same as or different from the film or sheet placed on each resin substrate interface. For stable plug flow compression molding, it is preferable to use a sheet on the outermost surface that has good slippage with the inner surface of the die.

〔本発明の効果〕[Effects of the present invention]

均一に多軸配向された薄肉シートを成形するに適した圧
縮成形法を開発した結果、従来得ることができなかった
均一な多軸配向シートが得られた。
As a result of developing a compression molding method suitable for forming thin sheets with uniform multiaxial orientation, we were able to obtain uniform multiaxially oriented sheets that were previously impossible to obtain.

均一多軸配向シートは光学的性質、熱的性質、機機的性
質が均一であり、フロッピーディスク等の精密電子機器
部品に、あるいはドラムの皮等の音響機器等に良好に使
用できる。
Uniform multiaxially oriented sheets have uniform optical properties, thermal properties, and mechanical properties, and can be well used in precision electronic equipment parts such as floppy disks, or audio equipment such as drum skins.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例1 メチルアクリレート5重量%のCo (MMA −AA
 )に螢光剤としてスチルベンメチルベンゾオキサゾー
ル(注文化学製Whitex RP )を0.02重量
%練込んだ2m厚の表面平滑な無配向シートを樹脂素地
とし、該素地を10枚重ね、その各素地の界面にポリプ
ロピレンの100μm厚の無配向鏡面シートを置き、該
10枚重ねの厚肉素地を上記ポリプロピレンシートで真
空包装して圧縮多軸配向成形の素地とした。第3図に示
した様に、圧縮ダイ内表面にポリジメチルシロキサンを
塗布し、圧縮ダイ及び樹脂素地を140℃に加熱し圧縮
してプラグ70−させ、面i比で4倍に多軸配向した。
Example 1 Methyl acrylate 5% by weight Co (MMA-AA
) and 0.02% by weight of stilbenemethylbenzoxazole (Whitex RP manufactured by Kyodo Kagaku Co., Ltd.) as a fluorescent agent. A 100 μm thick non-oriented mirror-finish polypropylene sheet was placed on the interface of the polypropylene sheet, and the 10-layer thick base was vacuum-packed with the polypropylene sheet to provide a base for compression multiaxial orientation molding. As shown in Fig. 3, polydimethylsiloxane is applied to the inner surface of the compression die, and the compression die and resin base are heated to 140°C and compressed to form a plug 70-, resulting in multiaxial orientation with an area i ratio of 4 times. did.

圧縮ダイを冷却して多軸配向成形品を冷却した後、圧縮
ダイより成形品を取り出し、各成形品を互に剥離し、更
にポリプロピレンを剥離すると表面が平滑な0.5 m
m厚のPMMA多軸配向シートが10枚得られた。
After cooling the compression die and cooling the multiaxially oriented molded product, the molded products are taken out from the compression die, each molded product is peeled off from each other, and the polypropylene is further peeled off, resulting in a smooth surface of 0.5 m.
Ten m-thick PMMA multiaxially oriented sheets were obtained.

該0.5 龍厚のP MMA多軸配向シートと同時に成
形されたポリプロピレンフィルムの均一多軸配向性を日
本分光工業(株)製の偏光螢光光度計FOM−2形で測
定した。又、該PMMAシートのORB、各種物理的性
質を測定し、次表に示した。該シートは著るしく均一な
多軸配向性を示した。
The uniform multiaxial orientation of the polypropylene film molded at the same time as the PMMA multiaxially oriented sheet having a thickness of 0.5 mm was measured using a polarizing fluorescence photometer model FOM-2 manufactured by JASCO Corporation. In addition, the ORB and various physical properties of the PMMA sheet were measured and are shown in the following table. The sheet exhibited remarkable uniform multiaxial orientation.

又、同時に成形された25μm厚のポリプロピレン多軸
配向フィルムに螢光剤を含浸させて測定した(IMAX
  ”エエN)/■MAXは0.05であり、これも均
一な多軸配向性を示した。
In addition, a 25 μm thick multiaxially oriented polypropylene film that was molded at the same time was impregnated with a fluorescent agent and measured (IMAX
"N)/MAX" was 0.05, which also showed uniform multiaxial orientation.

実施例2 次に示す各樹脂、各フィルムを用い、次に示す各成形温
度で実施例1と同様に成形を行った。
Example 2 Molding was carried out in the same manner as in Example 1 using the following resins and films at the following molding temperatures.

いずれの樹脂に於ても、表面平滑な0.5 mm厚の多
軸配向シートと25−の多軸配向フィルムが、1度の成
形で10枚づつ得られた。これ等多軸配向シート及びフ
ィルムの(IMAX−I、工N)/’MAX値は0.0
2〜0.09の範囲であり、均一に多軸配向されていた
For each resin, 10 0.5 mm thick multiaxially oriented sheets with smooth surfaces and 10 25-mm multiaxially oriented films were obtained in one molding process. The (IMAX-I, Engineering N)/'MAX value of these multiaxially oriented sheets and films is 0.0
It was in the range of 2 to 0.09, and was uniformly multiaxially oriented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧縮成形により多軸配向シートを成形する経過
を示す概略説明図、第2図はCo (MMA−AA)を
第1図の方法で多軸配向シートにした時の多軸配向シー
ト厚みと必要圧縮力の関係を示すグラフ、第3図は圧縮
成形法により多軸配向シートを成形する経過を示す概略
説明図、第4図は4層の樹脂素地を互に非接着状態にし
て重ねて置く各種方法を示す概略断面図である。
Figure 1 is a schematic explanatory diagram showing the process of forming a multiaxially oriented sheet by compression molding, and Figure 2 is a multiaxially oriented sheet obtained when Co (MMA-AA) is made into a multiaxially oriented sheet by the method shown in Figure 1. A graph showing the relationship between thickness and required compressive force. Fig. 3 is a schematic explanatory diagram showing the process of forming a multiaxially oriented sheet by compression molding. Fig. 4 is a graph showing the process of forming a multiaxially oriented sheet by compression molding. Fig. 4 is a graph showing the process of forming a multiaxially oriented sheet by compression molding. It is a schematic sectional view showing various methods of stacking.

Claims (2)

【特許請求の範囲】[Claims] (1)、熱可塑性樹脂の配向シートあるいはフィルムで
あり、 (a)面積比延伸倍率が2倍以上であり、 (b)厚みが1mm以下であり、 (c)偏光螢光光度計で測定した全角度方向の螢光偏光
成分強度I(シートあるいはフィルムの前後に置く2つ
の偏光板の偏光軸を平行にした時の螢光偏光成分強度)
の最大I_M_A_Xと最小I_M_I_Nの差が (I_M_A_X−I_M_I_N)/(I_M_A_
X)<0.1であることを特徴とする均一に多軸配向さ
れた熱可塑性樹脂シートあるいはフィルム。
(1) It is an oriented sheet or film of thermoplastic resin, (a) the area ratio stretching ratio is 2 times or more, (b) the thickness is 1 mm or less, and (c) it is measured with a polarized fluorophotometer. Fluorescent polarized component intensity I in all angular directions (fluorescent polarized component intensity when the polarizing axes of two polarizing plates placed before and after the sheet or film are parallel)
The difference between the maximum I_M_A_X and the minimum I_M_I_N is (I_M_A_X - I_M_I_N)/(I_M_A_
X) A uniformly multiaxially oriented thermoplastic resin sheet or film, characterized in that <0.1.
(2)、圧縮成形により成形された特許請求範囲第1項
のシートあるいはフィルム。
(2) A sheet or film according to claim 1 formed by compression molding.
JP60088872A 1985-04-26 1985-04-26 Sheet or film of uniform multi-axially orientated thermoplastic resin Pending JPS61248727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088872A JPS61248727A (en) 1985-04-26 1985-04-26 Sheet or film of uniform multi-axially orientated thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088872A JPS61248727A (en) 1985-04-26 1985-04-26 Sheet or film of uniform multi-axially orientated thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS61248727A true JPS61248727A (en) 1986-11-06

Family

ID=13955097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088872A Pending JPS61248727A (en) 1985-04-26 1985-04-26 Sheet or film of uniform multi-axially orientated thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS61248727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132417A (en) * 1988-03-11 1990-05-21 Baiotoron:Kk Light control lens body and production thereof and production of polycarbonate member used for light control lens body
WO1997010010A1 (en) * 1995-09-14 1997-03-20 Takiron Co., Ltd. Osteosynthetic material, composited implant material, and process for preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113427A (en) * 1980-02-14 1981-09-07 Toyobo Co Ltd Film-forming method
JPS57135119A (en) * 1981-02-17 1982-08-20 Asahi Chem Ind Co Ltd Strong acryl sheet
JPS57144728A (en) * 1981-03-02 1982-09-07 Asahi Chem Ind Co Ltd New oriented molded article
JPS57176126A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS57176125A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS59129124A (en) * 1983-01-14 1984-07-25 Asahi Chem Ind Co Ltd Novel moldings and manufacture therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113427A (en) * 1980-02-14 1981-09-07 Toyobo Co Ltd Film-forming method
JPS57135119A (en) * 1981-02-17 1982-08-20 Asahi Chem Ind Co Ltd Strong acryl sheet
JPS57144728A (en) * 1981-03-02 1982-09-07 Asahi Chem Ind Co Ltd New oriented molded article
JPS57176126A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS57176125A (en) * 1981-04-22 1982-10-29 Sekisui Chem Co Ltd Production of extremely thin resin film
JPS59129124A (en) * 1983-01-14 1984-07-25 Asahi Chem Ind Co Ltd Novel moldings and manufacture therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132417A (en) * 1988-03-11 1990-05-21 Baiotoron:Kk Light control lens body and production thereof and production of polycarbonate member used for light control lens body
WO1997010010A1 (en) * 1995-09-14 1997-03-20 Takiron Co., Ltd. Osteosynthetic material, composited implant material, and process for preparing the same
US5981619A (en) * 1995-09-14 1999-11-09 Takiron Co., Ltd. Material for osteosynthesis and composite implant material, and production processes thereof

Similar Documents

Publication Publication Date Title
US10690819B2 (en) Multi-layer sealing films
US9259885B2 (en) Oriented polymeric articles and method
JP3585412B2 (en) Manufacturing method of continuous sheet having optical function
US4668729A (en) Process for compression molding of thermoplastic resin and moldings molded by said process
JP3518677B2 (en) Surface protection film
US20050167863A1 (en) Process and apparatus for microreplication
WO2006071616A1 (en) Uniaxially oriented birefringent article having a structured surface
Nguyen et al. Better shrinkage than shrinky-dinks
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
JP2006511354A (en) Polymer film
JPH05200858A (en) Syndiotactic polystyrenic film
JPS61248727A (en) Sheet or film of uniform multi-axially orientated thermoplastic resin
CN1436125A (en) Laminate and its use
JP2001506767A (en) Peelable thermoplastic skin layer
CN1489612A (en) Tie layers for polyvinylalcohol coatings
EP0862992A1 (en) Packing material, base material for adhesive tape, or separator
JP5014630B2 (en) Polyester film and printed circuit board coverlay film pressing sheet
KR910015395A (en) Photo-stable polystyrene-polymethylmethacrylate laminate and method for preparing same
JP3520347B2 (en) Release film for polarizing plate
JP4214797B2 (en) Optical film and manufacturing method thereof
JPWO2019022022A1 (en) Laminate
KR20040070067A (en) Carrier film and method for its production
JPH02281926A (en) Molded product to which tensile stress is applied and its molding method
JPH02220820A (en) Anisotropic stretched sheet of thermoplastic resin, its manufacture and die
JPS60149420A (en) Compression molding of oriented molding product