JPS61247739A - Photosensitive ultra-thin film, its production and production of photopolymerized laminated film therefrom - Google Patents

Photosensitive ultra-thin film, its production and production of photopolymerized laminated film therefrom

Info

Publication number
JPS61247739A
JPS61247739A JP8878585A JP8878585A JPS61247739A JP S61247739 A JPS61247739 A JP S61247739A JP 8878585 A JP8878585 A JP 8878585A JP 8878585 A JP8878585 A JP 8878585A JP S61247739 A JPS61247739 A JP S61247739A
Authority
JP
Japan
Prior art keywords
film
monomolecular
ultra
cumulative
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8878585A
Other languages
Japanese (ja)
Other versions
JPH0649783B2 (en
Inventor
Takeyuki Kawaguchi
武行 川口
Kaoru Iwata
薫 岩田
Yutaka Takeya
豊 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8878585A priority Critical patent/JPH0649783B2/en
Publication of JPS61247739A publication Critical patent/JPS61247739A/en
Publication of JPH0649783B2 publication Critical patent/JPH0649783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain a photopolymerized laminated film highly improved in an elaborateness of processing by facilitating lamination on a solid base and easily advancing photopolymerization, by using a monomolecular membrane of a specified compound. CONSTITUTION:A phenylenebisacrylic acid ester compound of the formula (wherein R is a 7-30 C hydrocarbon, and the two substitutents in the benzene nucleus are meta or para to each other is dissolved in, e.g., acetone (1-20 mg/100 ml) and this solution is cast on the surface of still water to obtain a monomolecular membrane. This membrane is compressed at 15-20 deg.C and a pressure of 3-10 mN/m and photopolymerized by irradiation with, e.g., ultraviolet rays. The obtained polymer film is laminated on the surface of the solid base rendered hydrophobic, while it is compressed by application of a pressure of 10-40 mN/m.

Description

【発明の詳細な説明】 本発明は、新規な感光性超薄IIK(単分子膜及び累積
膜)とその製造方法、さらに#感光性超薄膜の、光によ
る重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel photosensitive ultra-thin IIK (monolayer film and cumulative film), a method for producing the same, and a method for photopolymerizing the photosensitive ultra-thin film.

近年、超微細加ニレジスト、光変調素子や電界発光素子
とL℃、配向構造をと秒やすい有機超薄膜であるラング
ミュア−・プロジェット(Langmuir Blod
gett )膜が見直され、7ントラセン誘導体(特開
昭52−35579号及び同参照)などを用いた薄膜素
子が提案されている。
In recent years, Langmuir Blodget, an organic ultra-thin film that can easily be used for ultra-fine resists, light modulators, electroluminescent devices, L°C, and orientation structures, has been developed.
gett) films have been reconsidered, and thin film elements using 7-nthracene derivatives (Japanese Unexamined Patent Publication No. 52-35579 and references thereof) have been proposed.

しかしながら、これらの単分子膜は、それを構成する化
合物が低分子化合物である為、充分な単分子膜状態のま
ま、または累積膜としたのち、熱、紫外線又は電子線等
によシ重合することが提案されている〔特開昭56−4
.229号、同56−432’2G各号公報、ジャーナ
ル・オプ・ポリマー・サイエンス・ポリマー・ケミスト
リ−1エディジョン(J、 Po1y、 Sai、+ 
Po1y、 Chem、) s1工y1631(197
9)*ジャーナル・オプ・コーイド・アンド・インター
フェイス・サイエンス(J、 Co11oid & I
nt、 Sci、) 、 255 、521(1977
)及びシン・ソリッド・フィルムズ(Th1n 5ol
id Films )  995Nh1〜3(1983
)参照〕 しかしながら、かかる重合反応も、100チ
完結させることは困難であり、しかして、未反応のモノ
マーが生じゃすいという問題点を残していた。
However, since the compounds constituting these monomolecular films are low-molecular compounds, they are polymerized by heat, ultraviolet rays, electron beams, etc., either in a sufficient monomolecular film state or after being made into a cumulative film. It has been proposed that
.. No. 229, Publications No. 56-432'2G, Journal of Polymer Science Polymer Chemistry-1 Edition (J, Poly, Sai, +
Po1y, Chem,) s1 engineering y1631 (197
9) *Journal of Cooid and Interface Science (J, Co11oid & I
nt, Sci.), 255, 521 (1977
) and Thin Solid Films (Th1n 5ol
id Films) 995Nh1-3 (1983
)] However, it is difficult to complete such a polymerization reaction by 100 polymers, and the problem remains that unreacted monomer remains raw.

意研究した結果、次式で表わされる、m −反びp−フ
ェニレンジアクリル酸の長鎖アルキルエステル が、水面−ヒにて、高度に配向した単分子膜を形成し、
固体基板上にも配向状態を保持したまま、累積可能なこ
と、さらに該単分子S&び累積膜が活性光線により容易
に重合しうることを見い出し、本発明を完成するに到っ
た。すなわち、本発明は、 1、下記式 で表わされる化合物から主としてなるフェニレンビスア
クリル酸エステル系単分子膜又はその累積膜からなる感
光性超薄膜。
As a result of our research, we found that a long-chain alkyl ester of m-p-phenylene diacrylic acid, represented by the following formula, forms a highly oriented monomolecular film on the water surface.
They discovered that they can be accumulated on a solid substrate while maintaining their orientation, and that the monomolecular S and accumulated film can be easily polymerized by actinic rays, leading to the completion of the present invention. That is, the present invention provides: 1. A photosensitive ultra-thin film consisting of a phenylene bisacrylic acid ester monomolecular film or a cumulative film thereof consisting mainly of a compound represented by the following formula.

2、下記式 で表わされる化合物から主としてなる単分子膜形成性物
質を単分子層として展開し、か(して形成された展開膜
を圧縮して固体状単分子凝縮模とし、固体基板上に単分
子膜として或いはその累積膜として積層することを特徴
とする感光性超薄膜の製造方法。
2. Spread a monomolecular film-forming substance mainly composed of the compound represented by the following formula as a monomolecular layer, compress the formed film to form a solid monomolecular condensation model, and place it on a solid substrate. A method for producing a photosensitive ultra-thin film, characterized in that it is laminated as a monomolecular film or as a cumulative film thereof.

3、 下記式 で表わされる化合物から主としてなるフェニレンビスア
クリル酸エステル系単分子膜又はその累積膜からなる感
光性超薄膜に活性光線を照射して光重合反応させた後、
固体基板上に累積又は積層せしめることを特徴とする光
重合累積膜の製造方法、及び 4、下記式 で表わされる化合物から二としてなるフェニレンビスア
クリル酸エステル系単分子膜又はその!!L捧模からな
る感光性超薄膜を固体基板上に累積又は積層し、しかる
後それに活性光線を照射し℃重合せしめることを49徴
とする光重合累積膜の製造方法である。
3. After irradiating a photosensitive ultra-thin film consisting of a phenylene bisacrylic acid ester monomolecular film mainly composed of a compound represented by the following formula or a cumulative film thereof with actinic rays to cause a photopolymerization reaction,
A method for producing a photopolymerized cumulative film, characterized in that it is deposited or laminated on a solid substrate, and 4. A phenylene bisacrylate monomolecular film made from a compound represented by the following formula, or its! ! This is a method for producing a photopolymerized cumulative film, which includes stacking or laminating a photosensitive ultra-thin film made of L-shaped on a solid substrate, and then irradiating the film with actinic rays and polymerizing it at °C.

本発明に用いられる、m−及びp−フェニレンビスアク
リル酸エステルは下記の公知の方法(アール・ターン、
ヘミツシエ・ベリtzテ(R,Kuhn+ Chem、
 Ber、)*ユと+ 304 f3(19〜60)】 により、合成可能である。上記フェニレンビスアクリル
酸エステルは炭素原子数7〜30の炭化水素基を有し、
メタ位又はメタ位にアクリルエステル基を有する。これ
らはクロロホルム、トルエン、アセトン、メチルエチル
ケトン又はテトラヒドロフラン等の有機溶媒に、1〜2
0す/food溶解させたのち、清浄な水面上に展開す
ることにより、単分子膜となしつる。この水面上に展開
された単分子膜は、そのまま水面上で活性光線を照射し
て重合させるか、一旦、固体基板上に累積したのち、活
性光線を照射して重合させることKより、溶媒不溶性と
することができる。水面上にて光重合させる為には、ま
ず、咳単分子嘆の曖縮状聾を重合に適したものにするた
め、膜を圧縮する必要がある。−例として、メタフェニ
レンビスアクリル酸エステルの場合、15〜20℃にて
3〜10 mN/m  の圧力にて圧縮した場合に、水
面上での光重合が進行する。この時照射する活性光線と
しては、紫外線、可視光線、r線、電子線などが使用で
きる。水面上で光重合した本発明の単分子膜は、表面を
疎水化した固体基板上に累積して使用される。その累積
に際しては、水面上の光1合単分子膜は10〜40 m
N/m の圧力好ましくは20〜30 mN/m  の
圧力で圧啼しながら累積することにより、高い累積比で
累積できる。
The m- and p-phenylene bisacrylic acid esters used in the present invention can be prepared by the following known methods (R-Turn,
R, Kuhn+ Chem,
Ber, ) * Yu and + 304 f3 (19-60)] can be synthesized. The phenylene bisacrylic acid ester has a hydrocarbon group having 7 to 30 carbon atoms,
It has an acrylic ester group at the meta or meta position. These are added to an organic solvent such as chloroform, toluene, acetone, methyl ethyl ketone or tetrahydrofuran for 1 to 2 hours.
After dissolving 0 food/food, it is spread on a clean water surface to form a monomolecular film. The monomolecular film developed on the water surface can be polymerized by irradiating actinic rays directly on the water surface, or it can be accumulated on a solid substrate and then polymerized by irradiating actinic rays. It can be done. In order to perform photopolymerization on the water surface, it is first necessary to compress the membrane in order to make the monomolecular membrane suitable for polymerization. - As an example, in the case of metaphenylene bisacrylic acid ester, photopolymerization proceeds on the water surface when compressed at 15-20° C. and a pressure of 3-10 mN/m. As the active light irradiated at this time, ultraviolet rays, visible light, r-rays, electron beams, etc. can be used. The monomolecular film of the present invention photopolymerized on the water surface is used by accumulating it on a solid substrate whose surface has been made hydrophobic. During its accumulation, a single monolayer of light on the water surface is 10 to 40 m
By accumulating while applying pressure at a pressure of N/m 2 , preferably 20 to 30 mN/m 2 , it is possible to accumulate at a high accumulation ratio.

また一旦1本発明の単分子膜を固体基板上に累積したの
ち、活性光線を照射することにより、上記−分子嗅の重
合を行なうこ邂も可能でちる。該累積膜の重合は、累積
篇作成時の模王箸圧力(依存して進行する。
It is also possible to carry out the polymerization of the above molecules by once accumulating the monomolecular film of the present invention on a solid substrate and then irradiating it with actinic rays. The polymerization of the cumulative film progresses depending on the pressure applied during the creation of the cumulative film.

本発明のフェニレンビスアクリル酸エステルの場合には
、水面上に展開した単分子膜を、2〜40 mN/me
好ましくは5〜30LTLN/KrIの圧力で圧縮しな
がら累積した場合忙、その累積した場合に、その累積膜
の光重合が容易に進行する。上記累積膜中での光重合反
応は、一般には下記の如(進行するものと考えられる。
In the case of the phenylene bisacrylic ester of the present invention, a monomolecular film developed on the water surface is heated at 2 to 40 mN/me.
Preferably, when the layers are accumulated while being compressed at a pressure of 5 to 30 LTLN/KrI, photopolymerization of the accumulated film easily proceeds. The photopolymerization reaction in the above-mentioned cumulative film is generally thought to proceed as follows.

かく重合することにより、その膜の溶解性は変化し、重
合度が充分に高い場合には、該光重合膜は不溶化する。
This polymerization changes the solubility of the film, and if the degree of polymerization is sufficiently high, the photopolymerized film becomes insolubilized.

従って、本発明の単分子膜及び累積膜は、その分子レベ
ルでの配向構造と光重合性の時機を活かして、超微細加
工レジるト、超微細にパターン化された絶緻膜等に応用
することが可能であし、従来知られていたレジスト材料
よ)も、その微細加工度(解像度)は大幅に改善される
ものである。
Therefore, the monomolecular film and cumulative film of the present invention can be applied to ultrafine processing resists, ultrafinely patterned extremely dense films, etc. by taking advantage of their molecular-level orientation structure and photopolymerizability. The microfabrication degree (resolution) of conventionally known resist materials can be greatly improved.

以下に本発明を更に詳しく説明する為に実施例を挙げる
Examples will be given below to explain the present invention in more detail.

実施例1 攪拌機、温度計、遭流器を備えた4つ口丸底フラスコ(
300TR1)中に、イソフタルアルデヒド6.70.
9 (0,05モル)、マシン酸11.44.9(0゜
11モルン、ピペリジン4.3 Ii(0,11モル)
及びピリジン100jljを入れ、窒素雰囲気中(て7
0〜80℃で、6時間攪拌した。反応後の混合物をll
のl/1ONHCl 水中に投入し、系を中和した処、
結晶が析出した。該結晶をF別、水洗後、50℃にて真
空乾燥して、次式テ表わされる。1.4−)ユニレンビ
ス(2−を7.69得た。引き続き、この化合物を塩化
チオニル100−中に加え、触媒量のジメチルホルム7
ミドを共存させて6時間加熱、還流することにより、上
記カルボン酸を酸クロライドに変換した。該酸クロライ
ドは、トルエンとn −ヘキサンのl:l(容積比)混
合溶媒から再結晶後、真空乾燥するごとくより精製した
。か(精製して得られた酸クロライド5.31をりpロ
ホルム100dK溶鱗後、3.2gのピリジン共存下、
250j’のエイコサノール−1(CsaH4xOH)
と還流下、8時間攪拌した。反応後糸よりクーロホルム
を蒸発により除去したのち、析出した固体生成物の水洗
、P辿なく9返した。
Example 1 A four-necked round-bottomed flask equipped with a stirrer, thermometer, and flow vessel (
300TR1), isophthalaldehyde 6.70.
9 (0.05 mol), macinic acid 11.44.9 (0°11 mol), piperidine 4.3 Ii (0.11 mol)
and 100 lj of pyridine, and placed in a nitrogen atmosphere (7 ml).
The mixture was stirred at 0 to 80°C for 6 hours. 1 l of the mixture after reaction
of 1/1 ON HCl was added to water to neutralize the system,
Crystals precipitated. The crystals were separated by F, washed with water, and then dried under vacuum at 50°C to give the following formula. 7.69 of 1.4-)unilenebis(2-) was obtained. This compound was then added to thionyl chloride 100- and a catalytic amount of dimethylform 7.
The above carboxylic acid was converted to acid chloride by heating and refluxing for 6 hours in the presence of amide. The acid chloride was recrystallized from a mixed solvent of toluene and n-hexane (l:l (volume ratio)) and further purified by vacuum drying. (5.31 of the acid chloride obtained by purification was molten with 100 dK of polyproform, and in the presence of 3.2 g of pyridine,
250j' eicosanol-1 (CsaH4xOH)
The mixture was stirred for 8 hours under reflux. After the reaction, coulloform was removed from the thread by evaporation, and the precipitated solid product was washed with water and returned 9 times without trace.

上記の陳処場により、得られた粗反応生成物をエタノー
ルから3回再結晶した。か(して得られたtl、Y&の
I’Rスペクトル、NMRスペクトル及び元素分析より
、このものは、m−フェニレンビス(エイフシル−2−
7クリレート)〔以下、m −P B F、 kと略す
〕:と亀定できた。次に、このものの単分子膜を作成す
るために、m−PBEA10#を25−2回蒸留クロロ
ホルムに溶屏したのち、5626Ilcりの水相#!面
墳を有するLa n gmn i r型の表面圧−面積
m +!11測定用水櫂上忙ウルトラマイクロピペット
を用い℃、上記溶液100μ!を20μ!ずつ、徐々に
滴下した。滴下終了後、水面展開膜な5分間静置してか
ら、仕切板の移動を開始し、該嗅の表面圧−面積曲線(
以下、π−人曲線と略す)を測定した。その結果、水面
上に展開したm −P B F Aは、25〜55mN
/rrノ表面圧力下17℃に於て1.1!!a膜を与え
、その分子極限占有面積は38.OA’であった。
The crude reaction product obtained was recrystallized three times from ethanol using the above procedure. From the I'R spectrum, NMR spectrum, and elemental analysis of tl, Y& obtained in
7 acrylate) [hereinafter abbreviated as m-PBF, k]: Next, in order to create a monomolecular film of this material, 10# of m-PBEA was dissolved in 25 times twice distilled chloroform, and then an aqueous phase of 5626Ilc # was dissolved. Surface pressure of Lan gmni r type with face mound - area m +! 11°C using an ultra micropipette on a water paddle for measuring 100μ of the above solution! 20μ! It was gradually added dropwise. After dropping, the membrane was allowed to stand still for 5 minutes, and then the partition plate was moved, and the surface pressure-area curve (
Hereinafter, the π-human curve) was measured. As a result, m -P B F A developed on the water surface was 25 to 55 mN
1.1 at 17°C under surface pressure of /rr! ! a membrane, whose molecular ultimate occupied area is 38. It was OA'.

実施例2 実施例1で得た、水面上のm−PBKA単分子膜を、表
面圧5 mN/m K保ちながら、LOWの低圧水釧灯
2本を水面上5Lxの位置から8分間照射した。光照射
を開始して、2分後に、水面上の単分子膜は膨張し始め
、6分後に膜の膨張は、初期膜面積の1.8倍に及んだ
。その時点で光照射を停止し、かく光照射した膜を、再
び30 mN/mで圧縮しながら、表面疎水処理した7
ツ化カルシウム板を水面に垂直に浸漬及び引上げる(以
後、LB法と略す)操作を30回くり返し、累積膜を得
た。このd)のの、FT−IRスペクトルを測定した結
果、νC=C(1635ffi’)け大幅に消滅し、ν
C=0 (1705cIL”)は1725〜1730a
a’にシフトしており、m−PBEAの光重合を示唆し
た。
Example 2 The m-PBKA monomolecular film on the water surface obtained in Example 1 was irradiated with two LOW low-pressure water lamps for 8 minutes from a position 5Lx above the water surface while maintaining a surface pressure of 5 mN/mK. . Two minutes after the start of light irradiation, the monomolecular film on the water surface began to expand, and six minutes later, the expansion of the film reached 1.8 times the initial film area. At that point, the light irradiation was stopped, and the surface of the irradiated film was subjected to hydrophobic treatment while being compressed again at 30 mN/m.
A cumulative film was obtained by repeating the operation of dipping and pulling up the calcium tsuride plate perpendicularly to the water surface (hereinafter abbreviated as LB method) 30 times. As a result of measuring the FT-IR spectrum of this d), νC=C(1635ffi') disappeared significantly, and ν
C=0 (1705cIL”) is 1725-1730a
It was shifted to a', suggesting photopolymerization of m-PBEA.

実施例3 実施例1で得た、m−PBEAの水面展開膜を30 m
N/mに圧縮しながら、予め表面疎水処理した7ツ化カ
ルシウム板上に30層LB法によシ累積した。その平均
累積比は0.94であった。かくして得られた累積膜に
、20W低圧水銀灯を照射して一定時間毎に、rRスペ
クトルに於るνC=Cの吸収強度変化を追跡した処、光
照射1分後及び5分後には、νC=Cの吸収強度は初期
値の各々32チ、及び100■で低下し、60分後には
はy完全に消滅した。νC=0は、νC=Cの減少に伴
ない、1705m→から1725〜1730cm″ へ
長波数シフトした。
Example 3 The m-PBEA water surface-deployed membrane obtained in Example 1 was spread over a 30 m
While compressing to N/m, 30 layers were deposited by the LB method on a calcium heptadide plate whose surface had been previously subjected to hydrophobic treatment. The average cumulative ratio was 0.94. The thus obtained cumulative film was irradiated with a 20W low-pressure mercury lamp and the change in absorption intensity of νC=C in the rR spectrum was tracked at regular intervals.As a result, after 1 minute and 5 minutes of light irradiation, νC= The absorption intensity of C decreased at the initial values of 32 cm and 100 cm, respectively, and completely disappeared after 60 minutes. νC=0 shifted to a longer wavelength from 1705 m→1725 to 1730 cm″ as νC=C decreased.

以上の結果より、固体基板上に累積したm−PBEA単
分子累積嘆累積光重合したことが示唆された。
The above results suggested that cumulative photopolymerization of m-PBEA single molecules accumulated on the solid substrate occurred.

実施例4 実施例1のm−PBli:Aの合成に於て、イン丁フタ
ルアルデしドの代りに、テレ7タルアルデヒドを用い、
同様の反応領路により、バラ−フェニレンビス(エイコ
シル−2−アクリル陵)(P−PBEAと略す〕を得た
。このものをlO雫、2回蒸留りジロホルム254に溶
解して、実施例1と同様にして、水面上に単分子膜を形
成させた処、このものは、35〜65mN/inに於て
、凝縮嗅を形成し、その分子極限占有面積は55A2で
あった。
Example 4 In the synthesis of m-PBli:A of Example 1, telephthalaldehyde was used instead of inchophthalaldehyde,
By the same reaction route, rose-phenylenebis(eicosyl-2-acrylic acid) (abbreviated as P-PBEA) was obtained. This was dissolved in 10 drops and double-distilled diroform 254. Similarly, when a monomolecular film was formed on the water surface, it formed a condensed odor at a pressure of 35 to 65 mN/in, and its molecular ultimate occupied area was 55A2.

実施例5 実施例4で得られたP−PBEAの水面展開膜に、5m
N/mの一定圧力をかけたまま、実施例2と同様に光照
射した処、光照射時間と共に膜の膨張が起り、6分後に
は膜面積は初期値の1.85倍に及んだ。この時点で光
照射を停止し、該膜を3QmN/mに圧縮しながら、L
B法により、CaF、板上に累積膜を得た(30M累積
)。
Example 5 A 5 m
When light was irradiated in the same manner as in Example 2 while a constant pressure of N/m was applied, the film expanded as the light irradiation time increased, and after 6 minutes, the film area was 1.85 times the initial value. . At this point, the light irradiation was stopped and the film was compressed to 3QmN/m while the L
By method B, a cumulative film was obtained on a CaF plate (30M cumulative).

このものの、FT−IRスペクトルを測定した結果、y
 C= C(1637c!!L−” )の吸収強度は大
幅に減少し、νC=O(1710cWL″4・)・が1
?30〜1735 cm−”Kシフトした。以上の結果
より、水面上に展開したP−PBEAの単分子膜は、光
照射により重合することが示唆された。
As a result of measuring the FT-IR spectrum of this product, y
The absorption intensity of C=C(1637c!!L-”) decreased significantly, and νC=O(1710cWL″4・)・
? The P-PBEA monomolecular film spread on the water surface was polymerized by light irradiation.

実施例6 実施例4で得た、P−PBEAの水面展開膜を30 m
N/mの圧力下忙て圧縮しながら、表面疎水処理を施し
たCaF、板上に30層累積した。
Example 6 The P-PBEA water surface-deployed membrane obtained in Example 4 was spread over a 30 m
Thirty layers were accumulated on the surface-hydrophobically treated CaF plate while being compressed under a pressure of N/m.

(平均累積比: 0.83 ) この累積膜を、実施例3と同様に光照射しIRスペクト
ルを測定した処、νC=C(1637α4)の吸収強度
は1分間及び5分間光照射後に、各々初期値の44チ、
及び16チにまで減少した。
(Average cumulative ratio: 0.83) This cumulative film was irradiated with light in the same manner as in Example 3, and the IR spectrum was measured. The initial value is 44chi,
and decreased to 16 inches.

また、νC=Cの吸収強度の減少に伴ない、シC−0(
1710α4)が1735信−1ヘシフトした。以上の
結果より、P−PBEAの鴫分子累積膜は、光照射によ
り%重合することが示唆された。
In addition, with the decrease in the absorption intensity of νC=C, siC−0(
1710α4) shifted to 1735 signal-1. From the above results, it was suggested that the P-PBEA molecule-accumulated film undergoes % polymerization by light irradiation.

比較例1 m−PBEA累積頃を水面展開膜からLB法で形成する
代りに、同一のC,F、板上にスピンコード法により、
m−PREAフィルムを形成する以外は実施例3と同様
にして、積7′!lを作成し光照射した処、νC=Cの
吸収強度は、光照射1分及び5分後には、各々、初期値
の80係。
Comparative Example 1 Instead of forming the m-PBEA cumulative layer from a water surface spread film by the LB method, it was formed on the same C, F, plate by the spin code method.
The product was 7'! in the same manner as in Example 3 except that the m-PREA film was formed. 1 and irradiated with light, the absorption intensity of νC=C is 80 times the initial value at 1 minute and 5 minutes after light irradiation, respectively.

及び50つ残存[7ており、累f*慣沖よりも反応が極
めて遅いことが明らかになった。
There were 50 and 50 remaining [7], and it became clear that the reaction was much slower than that of cumulative f* inertia.

比較例2 実施例6シζ於けるP−PBEA累墳膜の代υK、同一
のCaF’l板上にスピンコード法忙より、P−PBE
Aフィルムを形成し、以下、笑施例6と同様にして、光
照射した処、νC±Cの吸収強度は、光照射1分及び5
分後には、各々初期値の86チ、及び73%残存し℃お
抄、累積膜中よりも反r6が極め℃遅いことが明らかく
なった。
Comparative Example 2 The thickness υK of the P-PBEA stacked film in Example 6
A film was formed and irradiated with light in the same manner as in Example 6.
After a few minutes, 86% and 73% of the initial values remained, respectively, and it became clear that the reaction r6 was extremely slower than that in the accumulated film.

Claims (1)

【特許請求の範囲】 1、下記式 ▲数式、化学式、表等があります▼ 〔但し、式中Rは炭素原子数7〜30の炭 化水素基を表わし、ベンゼン核上の2個 の置換基は互いにメタ位又はパラ位にあ る。〕 で表わされる化合物から主としてなるフエニレンビスア
クリル酸エステル系単分子膜又はその累積膜からなる感
光性超薄膜。 2、下記式 ▲数式、化学式、表等があります▼ 〔但し、式中Rは炭素原子数7〜30の炭化水素基を表
わし、ベンゼン核上の2個の置 換基は互いにメタ位又はパラ位にある。〕 で表わされる化合物から主としてなる単分子膜形成性物
質を、単分子層として展開し、かくして形成された展開
膜を圧縮して固体状単分子凝縮膜とし、固体基板上に単
分子膜として或いはその累積膜として積層することを特
徴とする感光性超薄膜の製造方法。 3、下記式 ▲数式、化学式、表等があります▼ 〔但し、式中Rは炭素原子数7〜30炭化水素基を表わ
し、ベンゼン核上の2個の置換 基は互いにメタ位又はパラ位にある。〕 で表わされる化合物から主としてなるフエニレンビスア
クリル酸エステル系単分子膜又はその累積膜からなる感
光性超薄膜に活性光線を照射して光重合反応させた後、
固体基板上に累積又は積層せしめることを特徴とする光
重合累積膜の製造方法。 4、下記式 ▲数式、化学式、表等があります▼ 〔但し、式中Rは炭素原子数7〜30の炭化水素基を表
わし、ベンゼン核上の2個の置 換基は互いにメタ位又はパラ位にある。〕 で表わされる化合物から主としてなるフエニレンビスア
クリル酸エステル系単分子膜又はその累積膜からなる感
光性超薄膜を固体基板上に累積又は積層し、しかる後そ
れに活性光線を照射して重合せしめることを特徴とする
光重合累積膜の製造方法。
[Claims] 1. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, in the formula, R represents a hydrocarbon group having 7 to 30 carbon atoms, and the two substituents on the benzene nucleus are They are in meta or para position to each other. ] A photosensitive ultra-thin film consisting of a phenylene bisacrylic acid ester monomolecular film mainly composed of a compound represented by the above or a cumulative film thereof. 2. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. It is in. ] A monomolecular film-forming substance mainly composed of the compound represented by is spread as a monomolecular layer, the spread film thus formed is compressed to form a solid monomolecular condensed film, and it is applied as a monomolecular film on a solid substrate or A method for producing a photosensitive ultra-thin film characterized by laminating the film as a cumulative film. 3. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, in the formula, R represents a hydrocarbon group with 7 to 30 carbon atoms, and the two substituents on the benzene nucleus are in the meta or para position of each other. be. ] After irradiating a photosensitive ultra-thin film consisting of a phenylene bisacrylic acid ester monomolecular film mainly composed of the compound represented by the above or a cumulative film thereof with actinic rays to cause a photopolymerization reaction,
1. A method for producing a photopolymerized cumulative film, which comprises depositing or laminating it on a solid substrate. 4. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. It is in. ] Accumulating or laminating a photosensitive ultra-thin film consisting of a phenylene bisacrylic acid ester monomolecular film or a cumulative film thereof on a solid substrate, and then irradiating it with actinic rays to polymerize it. A method for producing a photopolymerized cumulative film characterized by:
JP8878585A 1985-04-26 1985-04-26 Photosensitive ultra-thin film, method for producing the same, and method for producing a photopolymerization cumulative film using the same Expired - Lifetime JPH0649783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8878585A JPH0649783B2 (en) 1985-04-26 1985-04-26 Photosensitive ultra-thin film, method for producing the same, and method for producing a photopolymerization cumulative film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8878585A JPH0649783B2 (en) 1985-04-26 1985-04-26 Photosensitive ultra-thin film, method for producing the same, and method for producing a photopolymerization cumulative film using the same

Publications (2)

Publication Number Publication Date
JPS61247739A true JPS61247739A (en) 1986-11-05
JPH0649783B2 JPH0649783B2 (en) 1994-06-29

Family

ID=13952499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8878585A Expired - Lifetime JPH0649783B2 (en) 1985-04-26 1985-04-26 Photosensitive ultra-thin film, method for producing the same, and method for producing a photopolymerization cumulative film using the same

Country Status (1)

Country Link
JP (1) JPH0649783B2 (en)

Also Published As

Publication number Publication date
JPH0649783B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP5187825B2 (en) Hyperbranched polymer and method for producing the same
EP3078688B1 (en) Block copolymer
JP2017531709A (en) Block copolymer
JPH10182556A (en) Production of compound and liquid crystal polymer therefrom and its use
JPS61247739A (en) Photosensitive ultra-thin film, its production and production of photopolymerized laminated film therefrom
JPH0556192B2 (en)
JPS62240956A (en) Positive type resist pattern forming method
Ogawa et al. Study of photoreaction processes of PDA Langmuir films
JPH01103611A (en) Organometal-containing polymer and its use for forming image
Odani et al. First example of the topochemical polymerization of the (E, E)‐muconic acid derivative
TWI649342B (en) Block copolymer
TWI636070B (en) Block copolymer
JP2020132694A (en) Production method of block copolymer for creating special structure pattern
JP2009062416A (en) Polymer fine particles formed in aliphatic hydrocarbon based solvent, and its manufacturing method
JPH01139620A (en) Production of novel thin filmy polymer
JPH0245509A (en) Fluorine-containing polyacrylic acid derivative
Dai et al. Highly Ordered Methacrylate Block Copolymers Containing Liquid Crystal Side Chains
JPS6165237A (en) Resist material
JPH01213321A (en) Production of novel thin film polymer
Iwane et al. Synthesis of Resist Materials Containing Hemiacetal Groups and Their Resist Sensitivity
JPS63280086A (en) Dinuclear complex of salt thereof and langmuir-blodgett membrane
Xu et al. Studies on photolithography and photoreaction of copolymer containing naphthyl in ultrathin nanosheets induced by deep UV irradiation
JPH02208306A (en) Production of new photoreactive thin-film polymer
JPS62178244A (en) Negative type resist
JPH03141357A (en) Photosensitive amphiphilic polymer compound and its production