JPS61247617A - Production of glauber's salt - Google Patents

Production of glauber's salt

Info

Publication number
JPS61247617A
JPS61247617A JP8593685A JP8593685A JPS61247617A JP S61247617 A JPS61247617 A JP S61247617A JP 8593685 A JP8593685 A JP 8593685A JP 8593685 A JP8593685 A JP 8593685A JP S61247617 A JPS61247617 A JP S61247617A
Authority
JP
Japan
Prior art keywords
salt
iron oxide
glauber
iron
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8593685A
Other languages
Japanese (ja)
Other versions
JPH0210086B2 (en
Inventor
Kiyoshi Shinozuka
篠塚 清
Masami Nakayama
中山 政美
Nobuo Watanabe
伸男 渡辺
Hitoshi Hayashi
林 斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Sakai Kagaku KK
Original Assignee
Onahama Sakai Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Sakai Kagaku KK filed Critical Onahama Sakai Kagaku KK
Priority to JP8593685A priority Critical patent/JPS61247617A/en
Publication of JPS61247617A publication Critical patent/JPS61247617A/en
Publication of JPH0210086B2 publication Critical patent/JPH0210086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain Glauber's salt economically and favorably by roasting the mixture of iron sulfate and NaCl in the presence of O2 and steam, volatilizing the chlorine content, producing the water slurry of a roasted material, purifying and concentrating a mother liquor after filtering iron oxide. CONSTITUTION:After mixing or granulating iron sulfate and NaCl, the mixture is roasted at >=400 deg.C in the presence of O2 and steam to volatilize the chlorine content and a roasted material consisting essentially of iron oxide and Glauber's salt is obtained. Hydrochloric acid is recovered by cooling and absorbing the gas generated in the above-mentioned process. After the roasted material is treated with water or a Glauber salt aq. soln. to make the Glauber's salt aq. soln. slurry of iron oxide, the mother liquor of Glauber's salt is obtained by filtering and separating iron oxide and Glauber's salt is obtained by purifying the mother liquor, heating and concentrating or cooling it. Also iron oxide is recovered by washing and drying the separated iron oxide. By this method, Glauber's salt is obtained by using inexpensive NaCl and, also hydrochloric acid and iron oxide can be simultaneously produced.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は硫酸鉄塩と塩化ナトリウムを原料とする経済的
に有利な芒硝のa遺失に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the economically advantageous production of sodium chloride using iron sulfate and sodium chloride as raw materials.

〔従来の技術〕[Conventional technology]

硫酸鉄は硫酸法酸化チタ/の製造工程及び鉄鋼酸洗工程
より硫酸第一鉄として多を発生し1、一部はべ/ガラ、
磁性材料、シ子材料、水処理剤等の原料として利用さn
ている。又、これまで、かかる硫酸鉄を原料として需要
が大である芒硝を製造する試みが行なわれてきた。即ら
、硫酸第一鉄を溶解して水溶液とし0、カ性ンーダ或い
は炭酸ンーダ等で中和するか、或いは中和後9!、気酸
化、ノ又はNOx触媒を使用して酸化せし、め、水酸化
鉄、炭酸鉄、酸化鉄等を生成きし4め、これを分離して
芒硝溶液を得、さらに精製した後、加熱漠縮或いは冷却
して芒硝を製造する方法が公知である。し、かり。
Ferrous sulfate is produced in large amounts as ferrous sulfate from the sulfuric acid method titanium oxide manufacturing process and steel pickling process.
Used as a raw material for magnetic materials, shield materials, water treatment agents, etc.
ing. Furthermore, attempts have been made to produce Glauber's salt, which is in great demand, using such iron sulfate as a raw material. That is, ferrous sulfate is dissolved to make an aqueous solution, and then neutralized with sodium carbonate or carbonate, or after neutralization. , vapor oxidation, or oxidation using a NOx catalyst to produce iron hydroxide, iron carbonate, iron oxide, etc.4, which is separated to obtain a sodium sulfate solution, and after further purification, Methods for producing Glauber's salt by heat aggravation or cooling are known. Yes.

これら従来の方法は上述のごとく高価な力性ンーダ、或
いは炭酸ンーダを用いるため経済的には必ずし、も好ま
し、い方法とはいえなか)た。
As mentioned above, these conventional methods use an expensive carbon powder or carbon powder, so they are not necessarily economically preferable.

〔発明が解決すべき問題点及びその手段〕本発明者は上
述の1Iffを考慮し1、問題を解決するべく鋭意研究
を行なった結果、力性ソーダ及び炭酸ソーダを用いず、
塩化ナトリウムを原料として芒硝を製造する方法を発明
するにいたったものである。
[Problems to be solved by the invention and means thereof] The present inventor took into consideration the above-mentioned 1Iff, and conducted intensive research to solve the problems.
This led to the invention of a method for producing Glauber's salt using sodium chloride as a raw material.

即らまず硫酸鉄塩と塩化ナトIJウムを混合或いはm粒
し、た後、酸素及び水蒸気の存在下400 ’Cで焙焼
し1、塩素分金渾発せり、め、酸化鉄と芒硝金生成分と
する焙焼物を製造する。次いで、これを水或いは希芒硝
液と混合し1、焙焼物中の芒硝を溶解し2、酸化鉄の芒
硝水溶液スラリーとする。このスラリーより酸化鉄fr
:濾過分離後得らnた芒硝母液金種#し1、加熱#縮或
いは冷kgL、芒硝を舟ゐ。
That is, first, iron sulfate and sodium chloride are mixed or made into m-granules, and then roasted at 400'C in the presence of oxygen and water vapor. A roasted product is produced as a product. Next, this is mixed with water or a diluted sodium sulfate solution (1) to dissolve the sodium sulfate in the roasted product (2) to obtain a slurry of iron oxide in an aqueous sodium sulfate solution. From this slurry, iron oxide fr
: After filtration and separation, the obtained mirabilite mother liquor was heated to 1 kgL, heated to 1 kg, and the mirabilite was poured into a boat.

焙@により発生する塩酸含有ガスを冷却後吸収し一1塩
酸を回収することができる。又酸化鉄は濾過、洗浄、し
乾・凍上、」回収する。
Hydrochloric acid-containing gas generated by roasting can be absorbed after cooling to recover 11-hydrochloric acid. In addition, iron oxide is recovered by filtration, washing, drying, and freezing.

本発明によれば高価な力性ソーダを用いることなく、副
生1JiIa鉄及び安価な岩塩を原料とし−で、M用で
価直の高い芒硝とともに塩酸、酸化鉄を経済的に製造で
きるので工業的方法として極めてM利である。
According to the present invention, it is possible to economically produce hydrochloric acid and iron oxide for M using 1JIIa iron by-product and cheap rock salt as raw materials without using expensive hydrocarbon soda, and to produce hydrochloric acid and iron oxide, which are highly priced for M. As a method, it is extremely advantageous.

〔手段の詳細〕[Details of means]

以下、本発明について詳述する。 The present invention will be explained in detail below.

先ず原料とする硫酸鉄塩及び塩化ナトIJウム粉末をそ
のままニーダ−等の混合機により混合するか上述原料が
塊状の場合にはハンマーミル等で粉砕混合を同時に行な
う。
First, the raw materials, iron sulfate and sodium chloride powder, are mixed as they are in a mixer such as a kneader, or if the raw materials are in the form of lumps, they are simultaneously pulverized and mixed in a hammer mill or the like.

又、水、芒硝、@液、塩化ナトリウム溶液を使用し、上
述原料を温片造粒すめこともでき、この@汗には取扱い
が容易になるので好まし、い。
Alternatively, the above-mentioned raw materials can be granulated using water, sodium sulfate, liquid, or sodium chloride solution, which is preferred because it facilitates handling.

原料硫酸鉄塩としては、酸化チタノ副生、酸洗副生等の
硫酸第一鉄7水塩、7水塩金脱水し、た5水塩、4水塩
、l水塩、無水塩及びこj、らの混片物が用いろ几る。
Raw material iron sulfate salts include ferrous sulfate heptahydrate such as titanium oxide by-products and pickling by-products, heptahydrate gold dehydrated salts, pentahydrate salts, tetrahydrate salts, l-hydrate salts, anhydrous salts, and the like. Use a mixture of j and et al.

硫酸第二鉄塩や、硫酸鉄とと硝の謀塩も利用できること
は当然でろる。塩化ナトリウムとしては岩塩、工業用塩
等が用いられる。
Of course, ferric sulfate and salts of iron sulfate and salt can also be used. Rock salt, industrial salt, etc. are used as sodium chloride.

原料の混合割合即ら(Fe50./Na01 )や、比
は焙焼して得ら几る焙焼物の残留塩素分ひいては芒硝の
品位、収率に影響するので重要である。即ら、(FeS
O4/Na1l ) モル比は0.45〜0.65が好
fLい。
The mixing ratio of the raw materials (Fe50./Na01) and the ratio are important because they affect the residual chlorine content of the roasted product obtained by roasting, as well as the quality and yield of Glauber's salt. That is, (FeS
O4/Na1l) The molar ratio is preferably 0.45 to 0.65.

上記モル比が過小であれば塩化す) +7ウムが未反応
のまま残留し焙焼物を浸出した芒硝溶液の塩素含有量が
増大し4、得られる芒硝収率の低下、品位悪化の原因と
なるばかりでなく結晶缶の材質の問題も発生してくる。
If the above molar ratio is too small, 7 um will remain unreacted and the chlorine content of the mirabilite solution from which the roasted product has been leached will increase4, causing a decrease in the yield of mirabilite and deterioration of the quality. In addition, problems arise regarding the material of the crystal can.

逆に、過大であれは芒硝溶液中に未反応の硫酸鉄が多く
な夛、中オI]等に使用する力性ソーダが増大する。又
SO5、E302−Jのガス発生皺が増加するため回収
塩酸の品位悪化の原因とな/)。
On the other hand, if the amount is too high, the amount of sodium chloride used in the solution will increase, as there will be a large amount of unreacted iron sulfate in the sodium sulfate solution. Also, gas generation wrinkles in SO5 and E302-J increase, which causes deterioration in the quality of recovered hydrochloric acid.

次に前述のごと< L、で得た混合物を酸素と水蒸気の
存在下400℃以上、700〜750℃まで昇温し、焙
焼する。
Next, the mixture obtained in < L as described above is heated to 400° C. or higher and 700 to 750° C. in the presence of oxygen and water vapor, and roasted.

即ち、塩累分の揮発は約350℃から始′tり、昇温と
ともに揮発速度が早くなり、500℃以上では極めて早
くなる。工業的には700〜750℃まで昇温し、焙焼
すりことが好まし、い。
That is, the volatilization of salt accumulation begins at about 350°C, and the rate of volatilization increases as the temperature rises, becoming extremely rapid above 500°C. Industrially, it is preferable to raise the temperature to 700 to 750°C and roast and grind.

かかる焙焼の全体の反応は Fe804−1− H,0−1−Z NaOl+lAO
The overall reaction of such roasting is Fe804-1-H,0-1-Z NaOl+lAO
.

→1/12Fe 20s +Nag 804 + 2 
”01” ” illであp、その過程で350℃まで
は以下の(2)〜(5)の反応がおこり 3 F13804 +3/402   →イkrLa2
03+Fe2(SQ、) 、  11 @ @ (2)
Fe、(So、)、+6Na01−+2FeO1,+3
Na2SO,ee中+31或いは Fe50.+2NaO1−+Fe01□+NaR8o、
     *@ef413 Fe01 t + 3/1
02   →”/2F ” 20 g +2 F801
*   @ @ @ (51350’CJul上になる
と、以下の(6)〜(力の反応も始まり。
→1/12Fe 20s +Nag 804 + 2
``01''''Ill p, in the process, the following reactions (2) to (5) occur up to 350℃ 3 F13804 +3/402 → IkrLa2
03+Fe2(SQ,), 11 @ @ (2)
Fe, (So,), +6Na01-+2FeO1,+3
Na2SO, ee +31 or Fe50. +2NaO1-+Fe01□+NaR8o,
*@ef413 Fe01 t + 3/1
02 →”/2F” 20 g +2 F801
* @ @ @ (When it reaches 51350'CJul, the following (6) ~ (force reaction also begins.

2FeO1,+2i(2Q−1−1/20□−pFe、
O,+2HO1@ee(Q)2FeO1,+3/2H,
O→ffe O3+3HO15o−(71全体としては
(1)式で表わされる。
2FeO1,+2i(2Q-1-1/20□-pFe,
O, +2HO1@ee(Q)2FeO1,+3/2H,
O→ffe O3+3HO15o-(71 as a whole is expressed by formula (1).

酸素は通常、燃料の燃焼過剰空気或いは2次空゛気とり
、−C供給できる。又、水蒸気は燃焼によって生成する
水蒸気によってもよいし3、不足な場合、水や水蒸気全
燃焼ガスに混合することにより供給で@る。
Oxygen can usually be supplied by combustion excess air of the fuel or secondary air vent, -C. The water vapor may be produced by combustion, or if it is insufficient, it may be supplied by mixing water or water vapor with the total combustion gas.

この場&酸素菫と水蒸気′1はtl1式理論量の2〜3
倍以上が好まし、い。水蒸気が多い場合には塩酸のみが
生成し8、回収できる。水蒸気がない場合、又は少ない
場合には塩素が発生し、一部塩酸も回収できるがこの場
合には硫酸鉄と塩1ヒナ) IJウムの反応が遅くなり
、塩素分の揮発が抑制されて焙焼物中の残留Jif4が
多くなるので好まり、 <ない。
This field & oxygen violet and water vapor '1 are 2 to 3 of the tl1 formula theoretical quantity
More than twice as much is preferable. If there is a lot of water vapor, only hydrochloric acid will be produced8 and can be recovered. If there is no or little water vapor, chlorine will be generated, and some hydrochloric acid can also be recovered, but in this case, the reaction between iron sulfate and salt (IJum) will be slow, and the volatilization of chlorine will be suppressed, resulting in roasting. It is preferable because it increases the amount of residual Jif4 in the baked goods. <No.

原料が含水物の場合、焙焼時の昇温速度は200〜b と焙焼中に反応物が溶融することがあるからである。か
かる現象は先ず硫酸鉄Ig、@とし−て7水塩金便用り
、7+:場合、或いは造粒用に水を多く使用する#b合
など、原料の混合物中の水分が多いと起り易い。このよ
うな場合昇温速度をより遅くするか或いは先ず混合物を
300℃以Fで予め一部又は殆んどの水分と結晶水の脱
水を行ない、続いて高温まで焙焼することが好まし、い
。−万硫酸鉄の結晶水が3水塩以fのものを原料とする
場合かかる現象は殆んど発生し、なくなる。
This is because when the raw material is a hydrated material, the temperature increase rate during roasting is 200 to 200 b, which may cause the reactants to melt during roasting. This phenomenon is likely to occur when there is a large amount of water in the raw material mixture, such as when iron sulfate Ig is used as a 7-hydrate salt, or when a large amount of water is used for granulation. . In such cases, it is preferable to reduce the heating rate, or to first dehydrate the mixture at 300° C. or higher to partially or most of the water and crystallization water, and then roast it to a high temperature. . - When the crystallization water of iron sulfate is trihydrate or more, such a phenomenon almost never occurs and disappears.

次に他の原因とり、て400〜600℃の間で、Feo
l、 −Fe、Ol、  −Na1l −Na25o、
の共融物生成によるものと考えられる溶融現象かめるが
、昇温速度が200〜b 題とならない。ただし、溶融が僅かの場合には、ダスデ
イ/グを減少せし、めるので、塩酸回収王権を容易にす
る効果がある。    ゛ このようにして優られた焙焼物を冷却浸酸りは冷却tず
に、水或いは後の酸化鉄分離工程で発生する希芒硝液の
供給されている浸出漕に供給する。
Next, other causes are considered, and Feo
l, -Fe, Ol, -Na1l -Na25o,
Although the melting phenomenon is thought to be due to the formation of a eutectic, it is not a problem when the heating rate is 200~b. However, if the amount of melting is small, it will reduce and eliminate dust, which will have the effect of facilitating the recovery of hydrochloric acid. ``The thus improved roasted product is fed to a leaching tank which is supplied with water or diluted sulfur solution generated in the subsequent iron oxide separation step, without being cooled or pickled.

焙焼物中の芒硝は容易に溶解り0、酸化鉄が憑濁り。Glauber's salt in the roasted product dissolves easily, and the iron oxide makes it cloudy.

た芒硝水溶液スラリーとなり、芒硝@液の濃度を容易に
29〜31チにすることができる。
The resulting slurry becomes a sodium sulfate aqueous solution slurry, and the concentration of the sodium sulfate solution can be easily adjusted to 29-31 g.

次にこのスラリーを濾過り9、酸化鉄を分離り、芒硝母
液とする。芒硝母液には未反応の硫酸鉄や反応性が低l
A硫酸塩例えば硫酸マノガンが溶解している。酸化チタ
ン副生硫e鉄tl−原料とL−た場合の1列とり、では
、80.265.3 Vt、Fe0.15がtlMn 
3.5 Vl 1?める。L述の芒硝母液を力性ンーダ
等でpH5〜8 とし、空気酸化或いは酸化剤kO1!
用り、酸化することによりyθ2+をFe(0)i)3
沈澱として除去り1次いでpH9以上とし炭酸ガス或い
は炭酸ソーダを添加し1、炭酸マ/ガ/として除去回収
する。
Next, this slurry is filtered 9 to separate iron oxide and obtain a mirabilite mother liquor. The mirabilite mother liquor contains unreacted iron sulfate and low reactivity.
A sulfate, such as manogan sulfate, is dissolved. Taking one row of titanium oxide by-product sulfur e iron tl- raw material and L-, then, 80.265.3 Vt, Fe0.15 is tlMn
3.5 Vl 1? Melt. The mirabilite mother liquor described above was adjusted to pH 5 to 8 using a powder, etc., and then oxidized with air or with an oxidizing agent of 1 kO1!
By using and oxidizing yθ2+, Fe(0)i)3
It is removed as a precipitate, the pH is adjusted to 9 or higher, carbon dioxide gas or sodium carbonate is added thereto, and the solution is removed and recovered as carbonic acid.

又単にpH1(IIc中和すると水酸化鉄及び水酸化マ
/ガ/として除去でき精練され友芒硝母液が得らA/)
Alternatively, simply pH 1 (IIc neutralization can remove iron hydroxide and hydroxide ma/ga/, and scouring can yield tomokinite mother liquor A/)
.

上述の精製によって得らn、た芒硝母液を公知の方法に
よって、加熱濃縮してご銅結晶スラリーとし、遠心分離
機等で結晶を分離、洗浄、乾燥して製品P:硝を得るこ
とができる。
The mirabilite mother liquor obtained by the above-mentioned purification is heated and concentrated to a copper crystal slurry by a known method, and the crystals are separated using a centrifuge, washed, and dried to obtain product P: nitrate. .

一方、と硝溶液スラリーより分離された酸化鉄及びm#
!により分離した炭酸1/ガ/は洗浄、乾燥し1回収す
る。
On the other hand, iron oxide and m# separated from the nitric solution slurry
! The carbonic acid 1/gas/gas separated is washed, dried, and recovered.

〔実施列〕[Implementation row]

実施例1 1流酸鉄原料として酸化チタノ鯛造工程の副生硫酸鉄1
ioyと、・・/マーミルで粉砕した岩塩43、1 f
をニーダ−でlO分乾乾式混合、た。混合割合(FeE
30. / Na01 ) モル  は0,54であっ
た。
Example 1 1 Iron sulfate by-product of the titanium oxide sea bream production process as a raw material for iron sulfate 1
ioy and... / Rock salt crushed with Marmil 43, 1 f
The mixture was dry-mixed in a kneader for 10 minutes. Mixing ratio (FeE
30. /Na01) mol was 0.54.

使用したt述原料の組成と粒度は以下の通りである。The composition and particle size of the raw materials used are as follows.

酸化チタノ副生硫峨鉄の分析1直 岩塩の分析値 上述の混合物を70℃、1時間乾燥機で乾燥し、Fe 
16.9 jJ、 01分20.6%の乾燥物を優り。
Analysis of titanium oxide by-product iron sulfate 1 Analytical value of straight rock salt The above mixture was dried in a dryer at 70°C for 1 hour, and Fe
16.9 jJ, 01 min 20.6% dry matter.

乾燥物中のd酸鉄の結晶水は3水塩に相当′rるもので
bつ次。
The water of crystallization of d-acid iron in the dried material is equivalent to the trihydrate salt and is of the order of magnitude.

この乾燥物100?金内径100膓、量さ300錫のレ
トルトに入れ、電気炉中で回転させて焙焼し、た。レト
ルトの一端より空気200 co/min 。
This dried food is 100? It was placed in a retort with a gold inner diameter of 100mm and a volume of 300mm, and roasted by rotating it in an electric furnace. 200 co/min of air from one end of the retort.

水蒸気9. l f/hr  を供給し、ながら200
℃/hr (D。
Water vapor9. l f/hr while supplying 200
°C/hr (D.

?、Fe2、、.4.1チ、So、 43.2チ、OL
o、05%で6つ之。又1回収塩+1!直童は58?で
)1013.2.0チ、Fe20 ppm でめった。
? , Fe2, . 4.1chi, So, 43.2chi, OL
o, 6 at 05%. Another 1 recovered salt +1! Is Naodo 58? ) 1013.2.0chi, Fe20 ppm.

該焙焼物60!lfを水89 rnlに加えて60’C
11時間攪拌し1.焙焼物中の芒硝を溶W4後、濾過、
洗浄1.、 So、 195 F//l、Fe O,1
3f/l 、 Mn 2.4 LVtの芒硝I@l&1
30rnlを得た。
The roasted product is 60! Add lf to 89 rnl of water and heat to 60'C.
Stir for 11 hours.1. After dissolving mirabilite in the roasted product W4, filtration,
Cleaning 1. , So, 195 F//l, Fe O,1
3f/l, Mn 2.4 LVt Glauber's Salt I@l&1
Obtained 30rnl.

このご硝躊液’100m/に50%力性ソーダ1.21
を〃lえてpHl Oとし0、 鉄とマ/ガ/を水酸出
物として沈澱除去し、た。優らAた母液を加熱蒸発乾1
mlシ、て無水芒硝結晶28.8 Pを優友。この結晶
20.6?、Fe20..97.9チであ)た。
This glass solution'100m/50% strength soda 1.21
The pH was reduced to 0, and iron and magnesium were precipitated and removed as hydroxide products. Heat and evaporate the mother liquor to dryness 1
ml, anhydrous mirabilite crystal 28.8 P. This crystal 20.6? , Fe20. .. It was 97.9 cm.

−j!施例2 硫d1鉄原料とり、で、酸1ヒテタン副生硫酸鉄をまず
脱水し0、硫酸鉄l水塩10.OkIPと粒状の岩塩6
、09 rfを混合し1、ハンマーミルで粉砕し、混合
物′t−4た。混合、吻の(FeSO,/Na01) 
モル比Vよ0,55でめった。使用した1水項の分析値
は80.55.7優、Re 30.8 %、 Mn O
,86%で6つた。岩塩の分析値は実施例1と同じであ
る。
-j! Example 2 Take the sulfur d1 iron raw material, and first dehydrate the acid 1 hytetane by-product iron sulfate to 0.0% iron sulfate hydrate and 10.0% iron sulfate hydrate. OkIP and granular rock salt 6
, 09 rf were mixed and ground in a hammer mill to form a mixture 't-4. Mixed, proboscis (FeSO,/Na01)
The molar ratio V was 0.55. The analysis value of 1 water term used was 80.55.7 excellent, Re 30.8%, MnO
, 86% answered 6. The analysis value of rock salt is the same as in Example 1.

上述の混は物金径140騙、長さ1400騰の回転炉1
c450℃5/n rで連続供給し、最高温度750℃
で焙mした。培尭中、空気200 HA/hr、水蒸気
150 f/hrを供給した。優らnた焙焼物の組成は
80.44’、5 %、 Fe 23.0%、MnO,
63チで95りた。
The above-mentioned mixture is a rotary furnace 1 with a metal diameter of 140 mm and a length of 1400 mm.
Continuously supplied at c450℃5/nr, maximum temperature 750℃
It was roasted. During cultivation, air was supplied at 200 HA/hr and water vapor at 150 f/hr. The composition of the roasted product is 80.44', 5%, Fe 23.0%, MnO,
I got 95 with 63 chips.

該焙焼物のうら7.5 kfを、水11.5111i入
れである浸出槽に人n、60℃に昇温し、1時間攪拌受
出L4硝を溶解した。生成した酸化鉄のご硝スラ+I−
kf’、JAL、1、e硝t6a1a、 05 Q (
xo、lt)をろ4)友。組成はSo、 265.3 
f/l、  Feo、 15 ′t/l、Mrl” V
t、 pH(lま2.5でありfco e化鉄のケーキ
を濾過水洗し、 so、 117 Vtの洗浄液5.5
tを優た。Za洗浄液は全虐焙焼吻の浸出lこリサイク
ルし2て1史用する。焙焼物中の804はほぼ全mをP
液及び洗浄液に溶出せし、めることができた。
The bottom 7.5 kf of the roasted material was placed in a leaching tank containing 11.511 l of water, heated to 60°C, and stirred for 1 hour to dissolve the L4 nitrate. The generated iron oxide glass slurry +I-
kf', JAL, 1, e Nit6a1a, 05 Q (
xo, lt) 4) Friend. Composition is So, 265.3
f/l, Feo, 15′t/l, Mrl”V
t, pH (l) is 2.5, fco e iron cake is filtered and washed with water, so, 117 Vt washing solution 5.5
Excellent t. The Za cleaning solution is recycled from the leaching process of roasting and then reused. Almost all m of 804 in the roasted product is P
It was able to be eluted and contained in the washing solution and washing solution.

酸化鉄ケーキ金乾jA L、Fe69. l %、Mn
 0.11チの微粉末のα−FO1032,45qを得
た。
Iron oxide cake gold dry jA L, Fe69. l%, Mn
A 0.11 inch fine powder of α-FO1032,45q was obtained.

久に芒口肖弓液に10チカ性ンーダ76pを刀lえ、 
pa 7〜8で空気酸化し0、水酸比鉄を主成せしめ、
これをろ過分離し、た。続いてf液を攪拌し、なから6
0℃に昇温しで炭酸ガスを加えた。液のpHは9.3で
炭酸7/ガ/は実it全部沈澱り、7t。このスラリー
全f過、洗浄し、芒硝母液と炭酸マ/ガ/l−得た。乾
燥談の炭酸マンガンの分析値はun43.8優、Fe1
00 pp+71の高品位のものであった。
For a long time, I put 10 power and 76p on Akonguchi Shoyui,
Air oxidation at pa 7 to 8 causes 0, hydroxide ratio to mainly form iron,
This was separated by filtration. Next, stir the f solution and add 6
The temperature was raised to 0°C and carbon dioxide gas was added. The pH of the liquid was 9.3, and 7 tons of carbonic acid was precipitated. The entire slurry was filtered and washed to obtain mirabilite mother liquor and carbonate solution. The analysis value of manganese carbonate in dry story is un43.8 excellent, Fe1
It was of high quality with a rating of 00 pp+71.

上述の精製により得られた芒硝母液の組成はNa、80
.30.1%、Mail 0.038 %であった。
The composition of the mirabilite mother liquor obtained by the above purification is Na, 80
.. 30.1%, and Mail 0.038%.

この芒硝母液のうら、1Okfをステ/レス容器に入A
711熱磯縮し、結晶スラリーを生成せしめ、スラリー
の一部を抜き出り、濾過り、て結晶を分離L6、re、
vまステ/レス容器にもどすことにより結晶を分l1I
L、i。C(1)j’)lcL、てfi水芒硝結晶2.
785ffと0.6 k7の分離液を得た。
Put 1 oz of this mirabilite mother liquor into a steel/less container.
711 Heat compression to generate a crystal slurry, extract a part of the slurry, filter it, and separate the crystals L6, re,
Separate the crystals by returning them to the container.
L.i. C(1)j')lcL, tefi sulfur salt crystal 2.
Separated liquids of 785ff and 0.6 k7 were obtained.

分離液は引き続き加熱濃縮し、た後、結晶f、f過分離
1−.307の芒硝母液をスプレーL、で洗浄し、た。
The separated liquid was then heated and concentrated, and then crystals f and f were separated 1-. The mirabilite mother liquor of No. 307 was washed with Spray L.

最終段階で優られた芒硝結晶90iの分析値はHa、S
o、 99.8 %、Na1l o、o 05 %  
であった。
The analytical values of 90i of mirabilite crystals that were excellent in the final stage were Ha, S
o, 99.8%, Na1l o, o 05%
Met.

得られた全無水芒硝結晶は2.875すで、その分析値
はNa、So、 99.8 %、Mail 0.004
8 %と高品位のものでめった。
The total anhydrous mirabilite crystal obtained was 2.875%, and its analytical values were Na, So, 99.8%, Mail 0.004
It was very high quality at 8%.

結晶分離麦の分離液はNa、80.30チで330y−
であった。
The crystallized barley separation liquid contains Na, 80.30% and 330y-
Met.

手続補正書 昭和61年7月I6「1 1、事件の表示 昭和60年特許願第85936号 2、発明の名称 芒硝の製造方法 3、補正をする者 事件との関係 特許出願人 住所福島県いわき市泉町下用字り1宿110番地4、代
理人 住所 東京都千代田区丸の内二丁目4番1号5、補正の
対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第6百最ド行 [塩酸 1をろ塩素 1と訂正する。
Procedural amendment document July 1985 I6 "1 1. Indication of the case 1985 Patent Application No. 85936 2. Name of the invention Method for manufacturing mirabilite 3. Person making the amendment Relationship to the case Patent applicant address Iwaki, Fukushima Prefecture 110-4, Shimoyoji 1, Ichiizumi-cho, Address of agent: 2-4-1-5, Marunouchi 2-chome, Chiyoda-ku, Tokyo, Detailed explanation of the invention in the specification to be amended, column 6, Contents of the amendment (1) Details Book No. 6, first line [Correct hydrochloric acid 1 to chlorine 1.

(2)同第11頁下より4行〜第12頁2行[1−述の
混合物を・・・%であった。 1を次のとおり訂正する
(2) Page 11, line 4 from the bottom to page 12, line 2 [1-% of the mixture described above]. 1 is corrected as follows.

1−上述の混合物を径140mm、長さ1400mmの
回転炉に450g/hrで連続供給し、最高温度750
℃で焙焼した。焙焼中、空気20ONσ/hr、水蒸気
1509/ hrを供給した。焙焼物生成量は平均35
0g/hrで、組成は80444.5%、Ii’e  
24.5%、MnO,63%であった。一方、回転炉よ
り発生したH Cρ含有ガスを2重管冷却器に吸引し、
間接冷却した。
1- The above mixture was continuously fed into a rotary furnace with a diameter of 140 mm and a length of 1400 mm at a rate of 450 g/hr, and the maximum temperature was 750 g/hr.
Roasted at °C. During roasting, air was supplied at 20ONσ/hr and water vapor at 1509ON/hr. The average amount of roasted products produced is 35
At 0g/hr, the composition is 80444.5%, Ii'e
24.5%, MnO, 63%. On the other hand, the H Cρ-containing gas generated from the rotary furnace is sucked into a double tube cooler,
Cooled indirectly.

ここでガス中の水蒸気及びIICQ、分を凝縮し回収し
た。回収後のガスの温度は18〜20℃であった。塩酸
の生成量は平均261 g/hr 、濃度は32.1%
、I(C12の収率は85%であつ〕こ。I (3)同第12真下より8行〜7行 [酸化鉄ケーキを乾燥し、・・・を得た。」を次のとお
り訂正する。
Here, water vapor and IICQ in the gas were condensed and recovered. The temperature of the gas after recovery was 18-20°C. The average amount of hydrochloric acid produced is 261 g/hr, and the concentration is 32.1%.
,I (The yield of C12 was 85%).I (3) Lines 8 to 7 from just below No. 12 [The iron oxide cake was dried to obtain...'' was corrected as follows. do.

Claims (1)

【特許請求の範囲】 (a)硫酸鉄塩と塩化ナトリウムを混合又は造粒後、酸
素及び水蒸気の存在下400℃以上で焙焼して塩素分を
揮発せしめ、酸化鉄と芒硝を生成分とする焙焼物を得る
工程、 (b)上記工程で発生するガスを冷却し、吸収せしめて
塩酸を回収する工程、 (c)(a)の工程で得た焙焼物を水或いは芒硝水溶液
で処理して酸化鉄の芒硝水溶液スラリーとした後酸化鉄
を分離して芒硝母液を得、これより芒硝を得る工程、 (d)(c)の工程で分離した酸化鉄をろ過、洗浄、乾
燥して回収する工程 とよりなる芒硝と塩酸及び酸化鉄を同時に製造する方法
[Claims] (a) After mixing or granulating iron sulfate and sodium chloride, roasting at 400°C or higher in the presence of oxygen and water vapor to volatilize the chlorine content, converting iron oxide and sodium sulfate into products. (b) A step of cooling and absorbing the gas generated in the above step to recover hydrochloric acid; (c) Treating the roasted product obtained in step (a) with water or an aqueous solution of Glauber's sulfate. After making a slurry of iron oxide in an aqueous solution of mirabilite, the iron oxide is separated to obtain a mirabilite mother liquor, from which mirabilite is obtained. (d) The iron oxide separated in step (c) is collected by filtering, washing, drying A method for simultaneously producing Glauber's salt, hydrochloric acid, and iron oxide.
JP8593685A 1985-04-22 1985-04-22 Production of glauber's salt Granted JPS61247617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8593685A JPS61247617A (en) 1985-04-22 1985-04-22 Production of glauber's salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8593685A JPS61247617A (en) 1985-04-22 1985-04-22 Production of glauber's salt

Publications (2)

Publication Number Publication Date
JPS61247617A true JPS61247617A (en) 1986-11-04
JPH0210086B2 JPH0210086B2 (en) 1990-03-06

Family

ID=13872644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8593685A Granted JPS61247617A (en) 1985-04-22 1985-04-22 Production of glauber's salt

Country Status (1)

Country Link
JP (1) JPS61247617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251510A (en) * 1985-04-26 1986-11-08 Onahama Sakai Kagaku Kk Production of glauber's salt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU467029A1 (en) * 1973-04-24 1975-04-15 Предприятие П/Я А-7125 The method of producing potassium sulfate
JPS5792592A (en) * 1980-11-25 1982-06-09 Hisanori Bando Needle alpha-fe2o3 grains with novel crystal orientation and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU467029A1 (en) * 1973-04-24 1975-04-15 Предприятие П/Я А-7125 The method of producing potassium sulfate
JPS5792592A (en) * 1980-11-25 1982-06-09 Hisanori Bando Needle alpha-fe2o3 grains with novel crystal orientation and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251510A (en) * 1985-04-26 1986-11-08 Onahama Sakai Kagaku Kk Production of glauber's salt

Also Published As

Publication number Publication date
JPH0210086B2 (en) 1990-03-06

Similar Documents

Publication Publication Date Title
JP6025868B2 (en) Process to treat red mud
US3862293A (en) Process for the continuous acid treatment of crude clays and schists
JP2010510156A (en) Industrial molybdenum oxide purified from molybdate
US4069295A (en) Treating raw materials containing titanium components
CN106629847B (en) Method for preparing vanadium trioxide from sodium vanadate
JP6671517B2 (en) Process for the separation of vanadium
US4485073A (en) Process of producing manganese sulfate solutions
JPS6133887B2 (en)
US4483828A (en) Method of producing manganese sulfate solutions of improved purity
US3712942A (en) Method of producing vanadium compounds by alkaline leaching
JPS61247617A (en) Production of glauber&#39;s salt
JPH0310576B2 (en)
US831280A (en) Process of treating vanadium ores.
US3017243A (en) Method of producing lithium carbonate from spodumene
US4748009A (en) Method of recovering vanadium from vanadium-containing materials with at least 6 wt % oxidic vanadium compounds
CS232711B2 (en) Parting method of ferrous,clayey and manganous impurities from magnesium chloride solution in hydrogen chloride
US2271524A (en) Treatment of waste pickling liqyuirs
JPS58151328A (en) Method of sampling vanadium from slug containing vanadium and similar article
US5624650A (en) Nitric acid process for ferric sulfate production
JP4180754B2 (en) Method for producing ferric sulfate solution
CN110042248A (en) The method for preparing ferric vandate as raw material using dephosphorization mud
JPS5858239A (en) Manufacture of metallic gallium
GB2045736A (en) Preparation of magnesium chloride
US3294481A (en) Process for recovering pure vanadium oxide from low grade vanadium ores or concentrates
US3044848A (en) Method of uranium recovery