JPS61247516A - Hydraulic motor circuit - Google Patents

Hydraulic motor circuit

Info

Publication number
JPS61247516A
JPS61247516A JP8893185A JP8893185A JPS61247516A JP S61247516 A JPS61247516 A JP S61247516A JP 8893185 A JP8893185 A JP 8893185A JP 8893185 A JP8893185 A JP 8893185A JP S61247516 A JPS61247516 A JP S61247516A
Authority
JP
Japan
Prior art keywords
main flow
hydraulic pump
hydraulic motor
control valve
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8893185A
Other languages
Japanese (ja)
Inventor
Yukio Ikeda
池田 由紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8893185A priority Critical patent/JPS61247516A/en
Publication of JPS61247516A publication Critical patent/JPS61247516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)

Abstract

PURPOSE:To regulate the extent of differential pressure at will as well as to make power transmission between a hydraulic pump and a hydraulic pump possible to be intermittent, by installing a control valve which regulates the differential pressure between liquids inside a pair of main flow passages interconnecting both these hydraulic pump and motor. CONSTITUTION:When a hydraulic pump 1 is driven by an engine 6, the liquid discharged out of this pump enters a hydraulic motor 2 by way of either of main flow passages 3a and 3b, rotation this motor. This turning force is transmitted to a driving wheel via a differential gear 10, moving wheels forward. At the above-mentioned, since differential pressure between liquids inside these main flow passages 3a and 3b is freely regulated, there is provided with a pressure control valve 13 in addition. And, according to the operating extent of a clutch pedal 14, opening of the pressure control valve 13 is increased by a control box 15, and in response to this opening increment, the differential pressure between liquids inside each of these main flow passages 3a and 3b is lowered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はローダ−、ブルドーザ等の車両の駆動輪を駆動
するのに好適な液圧モータ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydraulic motor circuit suitable for driving drive wheels of vehicles such as loaders and bulldozers.

(従来の技術) 従来のこの種液圧モータ回路の1例が第6図に示され、
1は液圧ポンプ、2は液圧モータ、3a、3bは液圧ポ
ンプ1と液圧モータ2を連結するメイン流路、4as 
4bはメイン流路3aと3bとを連通ずるバイパス流路
5a、 5bにそれぞれ介装されたメインリリーフ弁、
6は液圧ポンプl及びチャージポンプ7を駆動するため
のエンジン、8はチャージポンプ7の吐出油をメイン流
路3aに導入する補給流路9に介装されたリリーフ弁、
10は差動歯車、11は駆動輪、12はタンクを示す。
(Prior Art) An example of a conventional hydraulic motor circuit of this type is shown in FIG.
1 is a hydraulic pump, 2 is a hydraulic motor, 3a and 3b are main flow paths connecting the hydraulic pump 1 and the hydraulic motor 2, 4as
4b is a main relief valve installed in bypass flow paths 5a and 5b, which communicate the main flow paths 3a and 3b, respectively;
6 is an engine for driving the hydraulic pump l and the charge pump 7; 8 is a relief valve interposed in the replenishment passage 9 that introduces oil discharged from the charge pump 7 into the main passage 3a;
10 is a differential gear, 11 is a drive wheel, and 12 is a tank.

エンジン6により液圧ポンプ1を駆動すると、これから
吐出された液体はメイン流路3a又は3bのいずれか一
方を通って液圧モータ2に入り、これを回転駆動する。
When the hydraulic pump 1 is driven by the engine 6, liquid discharged from the hydraulic pump 1 passes through either the main flow path 3a or 3b and enters the hydraulic motor 2, driving the hydraulic motor 2 to rotate.

この回転力は差動歯車10を経て駆動輪11に伝達され
、車両を前進させる。液圧モータ2から流出した液体は
メイン流路3b又は3aのいずれか他方を通って液圧ポ
ンプ1に戻り、以下これを繰り返す。液圧ポンプ1を逆
転すれば液圧モータ2も逆転して車両は後退する。エン
ジン6の回転数が一定の状態で液圧ポンプ1の吐出量を
無段階に変更し、液圧モータ2の斜板角を大、小二段に
切り換えることにより第7図に示すような性能曲線が得
られ、この性能曲線に沿って車両は移動する。メイン流
路3a又は3bのいずれか一方に過大な圧力が発生する
と、メインリリーフ弁4a又は4bが開いて、高圧のメ
イン流路3a又は3b内の液体をバイパス流路5a又は
5bを介して他方のメイン流路3b又は3aに流過させ
る。液体の漏洩その他により閉回路内の液体が少なくな
ったときはチャージポンプ7から液体が補給流路9を通
ってこの閉回路内に補給される。
This rotational force is transmitted to the drive wheels 11 via the differential gear 10 to move the vehicle forward. The liquid flowing out from the hydraulic motor 2 returns to the hydraulic pump 1 through either the main channel 3b or 3a, and this process is repeated thereafter. When the hydraulic pump 1 is reversed, the hydraulic motor 2 is also reversed and the vehicle moves backward. By steplessly changing the discharge amount of the hydraulic pump 1 while the rotational speed of the engine 6 is constant, and by switching the swash plate angle of the hydraulic motor 2 into two stages, large and small, the performance as shown in Fig. 7 is achieved. A curve is obtained and the vehicle moves along this performance curve. When excessive pressure occurs in either the main flow path 3a or 3b, the main relief valve 4a or 4b opens, and the liquid in the high pressure main flow path 3a or 3b is transferred to the other side via the bypass flow path 5a or 5b. The main flow path 3b or 3a. When the amount of liquid in the closed circuit becomes low due to liquid leakage or the like, liquid is replenished from the charge pump 7 through the replenishment channel 9 into the closed circuit.

(発明が解決しようとする問題点) 上記従来の回路においては、液圧ポンプ1の入力軸と液
圧モータ2の出力軸が常時液体を介して完全に繋がって
いるため、エンジンの回転力を変速機、クラッチを経て
機械的に駆動輪に伝達するダイレクトドライブ車のよう
に、エンジンから駆動輪に伝達される回転力をクラッチ
により断接することができず、従って、半クラッチによ
り必要な出力を得たり、過負荷時に動力の伝達を切って
エンジンストールを防ぐことができなかった。また、液
圧ポンプ1が中立位置を占め、その吐出量が零であって
も、閉回路からの液体の漏洩によって車両が動いてしま
うという不具合があった。
(Problems to be Solved by the Invention) In the conventional circuit described above, the input shaft of the hydraulic pump 1 and the output shaft of the hydraulic motor 2 are always completely connected via the liquid, so that the rotational force of the engine is Unlike direct drive vehicles, which mechanically transmit power to the drive wheels via a transmission and clutch, the rotational force transmitted from the engine to the drive wheels cannot be connected or disconnected by the clutch; therefore, the necessary output cannot be achieved with a half clutch. It was not possible to prevent the engine from stalling by cutting off the power transmission during overload. Further, even if the hydraulic pump 1 is in the neutral position and its discharge amount is zero, there is a problem in that the vehicle moves due to leakage of liquid from the closed circuit.

本発明は上記問題に対処するために発明されたものであ
って、その目的とするところは液圧ポンプと液圧モータ
との間の動力伝達を任意に切ったり継いだりできるよう
にしようとするものである。
The present invention was invented to solve the above problem, and its purpose is to enable power transmission between a hydraulic pump and a hydraulic motor to be switched off and on at will. It is something.

(問題点を解決するための手段) 上記目的は、本発明によれば、液圧ポンプと液圧モータ
とこれらを連結する一対のメイン流路とが閉回路中に組
み込まれた液圧モータ回路において、上記一対のメイン
流路内の液体間の差圧を調節するコントロール弁を設け
ることによって達成しうる。
(Means for Solving the Problems) According to the present invention, the above object is to provide a hydraulic motor circuit in which a hydraulic pump, a hydraulic motor, and a pair of main passages connecting these are incorporated in a closed circuit. This can be achieved by providing a control valve that adjusts the differential pressure between the liquids in the pair of main flow paths.

(作用) 本発明においてはコントロール弁の開度を加減して、一
対のメイン流路内の液体間の差圧を自由に調節すること
により液圧ポンプと液圧モータとの間の動力伝達を任意
に切ったり継いだりすることができる。
(Function) In the present invention, power transmission between the hydraulic pump and the hydraulic motor is achieved by adjusting the opening degree of the control valve to freely adjust the differential pressure between the liquids in the pair of main flow paths. It can be cut and spliced as you like.

(実施例) 本発明の1実施例が第1図に示されている。(Example) One embodiment of the invention is shown in FIG.

1は液圧ポンプ、2は液圧モータ、3a、 3bはメイ
ン流路、4a、 4bはメインリリーフ弁、5a、 5
bはバイパス流路、6はエンジン、7はチャージポンプ
、8はリリーフ弁、9は補給流路、10は差動歯車、1
1は駆動輪、12はタンクで、以上は第6図に示す従来
のものと同様である。13はメイン流路3aと3b内の
液体間の差圧を自由に調節するための電磁比例弁等の圧
力コントロール弁、14はクラッチペダル、15はコン
トロールボックスで、クラッチペダル14の踏込量を電
気量に置き換え、これをマイコン等により演算して得ら
れた制御電流を圧力コントロール弁13に出力する。
1 is a hydraulic pump, 2 is a hydraulic motor, 3a, 3b are main flow paths, 4a, 4b are main relief valves, 5a, 5
b is a bypass flow path, 6 is an engine, 7 is a charge pump, 8 is a relief valve, 9 is a supply flow path, 10 is a differential gear, 1
1 is a drive wheel, 12 is a tank, and the above is the same as the conventional one shown in FIG. 13 is a pressure control valve such as an electromagnetic proportional valve for freely adjusting the differential pressure between the liquids in the main flow paths 3a and 3b, 14 is a clutch pedal, and 15 is a control box that controls the amount of depression of the clutch pedal 14 by electricity. A control current obtained by calculating this by a microcomputer or the like is output to the pressure control valve 13.

かくして、クラッチペダル14を踏込むとその踏込量に
応じて圧力コントロール弁13の開度が増大し、これに
対応してメイン流路3aと3b内の液体間の差圧が第2
図に示すように低下する。そして、エンジンの回転数が
一定の場合に液圧ポンプ1の吐出量を無段階に切り換え
ると同時に液圧モータ2の斜板角を大、小二段に切り換
えたとき、クラッチペダルの踏込量に応じて第3図に示
す斜線内の任意の出力特性を得ることができる。液圧モ
ータ2の出力トルクTは 7− p X q Xη 但し、pはメイン流路3aと3b内の液体間の差圧qは
液圧モータ2の吐出量 ηは液圧モータ2の効率 で表されるので、差圧pの低下に応じて出力トルクTは
低下し、動力伝達量が低減する。従って、差圧pが零の
時、動力伝達量も零となる。
Thus, when the clutch pedal 14 is depressed, the opening degree of the pressure control valve 13 increases in accordance with the amount of depression, and correspondingly, the differential pressure between the liquids in the main flow paths 3a and 3b increases to the second level.
It decreases as shown in the figure. When the engine speed is constant, the discharge amount of the hydraulic pump 1 is changed steplessly, and at the same time the swash plate angle of the hydraulic motor 2 is changed to two stages, large and small. Accordingly, any output characteristic within the shaded area shown in FIG. 3 can be obtained. The output torque T of the hydraulic motor 2 is 7- p Therefore, as the differential pressure p decreases, the output torque T decreases, and the amount of power transmission decreases. Therefore, when the differential pressure p is zero, the amount of power transmitted is also zero.

しかして、動力伝達量はメイン流路3aと3b内の液体
間の差圧により決まるので、この差圧を自由に調節する
ことにより動力の伝達を遮断したり、動力の伝達量を任
意に低減することが可能となる。
The amount of power transmitted is determined by the pressure difference between the liquids in the main flow paths 3a and 3b, so by freely adjusting this pressure difference, the power transmission can be cut off or the amount of power transmitted can be arbitrarily reduced. It becomes possible to do so.

そして、液圧ポンプ1を中立にした場合には圧力コント
ロール弁13を開くことによって車両を完全に停止させ
ることが可能となり、また、エンジン6のストール時に
圧力コントロール弁13を開くことによってエンジン6
のストールを防止することができる。
When the hydraulic pump 1 is set to neutral, it is possible to completely stop the vehicle by opening the pressure control valve 13, and when the engine 6 stalls, by opening the pressure control valve 13, the engine 6
stall can be prevented.

なお、圧力コントロール弁に代えて流量コントロール弁
を用いることができ、また、第4図に示すように、コン
トロール弁13aのドレンをタンク16に流出させ、メ
イン流路3a内の液体圧を低下させることによってメイ
ン流路3aと3b内の液体間の差圧を調節するようにす
ることも可能であり、更に、第5図に示すように、高圧
のメイン流路内の液体を低圧のメイン流路にバイパスさ
せると同時に液圧モータ2に供給してこれらの液体圧を
同じにする圧力コントロール弁13bを用いることがで
きる。
Note that a flow rate control valve can be used in place of the pressure control valve, and as shown in FIG. It is also possible to adjust the differential pressure between the liquids in the main flow paths 3a and 3b by adjusting the pressure difference between the liquids in the main flow paths 3a and 3b.Furthermore, as shown in FIG. It is possible to use a pressure control valve 13b which simultaneously bypasses the flow path and supplies the hydraulic motor 2 to keep these liquid pressures the same.

(発明の効果) 本発明においては液圧ポンプと液圧モータとこれらを連
結する一対のメイン流路とが閉回路中に組み込まれた液
圧モータ回路において、上記一対のメイン流路内の液体
間の差圧を調節するコントロール弁を設けたので、コン
トロール弁の開度を加減して一対のメイン流路内の液体
間の差圧を自由に調節することにより、液圧ポンプと液
圧モータとの間の動力伝達を遮断したり、動力伝達量を
任意に低減できる。そして、コントロール弁を開くこと
により液圧モータを完全に停止させることができるとと
もに液圧ポンプを駆動するエンジンのストールを防止す
ることも可能となる。
(Effects of the Invention) In the present invention, in a hydraulic motor circuit in which a hydraulic pump, a hydraulic motor, and a pair of main flow paths connecting these are incorporated in a closed circuit, the liquid in the pair of main flow paths is A control valve is provided to adjust the differential pressure between the hydraulic pump and the hydraulic motor. It is possible to cut off the power transmission between the two or to arbitrarily reduce the amount of power transmitted. By opening the control valve, it is possible to completely stop the hydraulic motor, and it is also possible to prevent the engine that drives the hydraulic pump from stalling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の1実施例を示し、第1図
は系統図、第2図はコントロール弁の開度とメイン流路
内の液体間の差圧との関係を示す線図、第3図は牽引力
と車速との関係を示す線図である。第4図及び第5図は
それぞれ本発明の他の実施例を示す系統図、第6図は従
来の液圧モータ回路の系統図、第7図は同上の牽引力と
車速との関係を示す線図である。
Figures 1 to 3 show one embodiment of the present invention, Figure 1 is a system diagram, and Figure 2 is a line showing the relationship between the opening degree of the control valve and the differential pressure between the liquid in the main flow path. 3 are diagrams showing the relationship between traction force and vehicle speed. Figures 4 and 5 are system diagrams showing other embodiments of the present invention, Figure 6 is a system diagram of a conventional hydraulic motor circuit, and Figure 7 is a line showing the relationship between traction force and vehicle speed. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 液圧ポンプと液圧モータとこれらを連結する一対のメイ
ン流路とが閉回路中に組み込まれた液圧モータ回路にお
いて、上記一対のメイン流路内の液体間の差圧を調節す
るコントロール弁を設けたことを特徴とする液圧モータ
回路。
In a hydraulic motor circuit in which a hydraulic pump, a hydraulic motor, and a pair of main flow paths connecting these are incorporated in a closed circuit, a control valve that adjusts the differential pressure between the liquid in the pair of main flow paths. A hydraulic motor circuit characterized by being provided with.
JP8893185A 1985-04-26 1985-04-26 Hydraulic motor circuit Pending JPS61247516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8893185A JPS61247516A (en) 1985-04-26 1985-04-26 Hydraulic motor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8893185A JPS61247516A (en) 1985-04-26 1985-04-26 Hydraulic motor circuit

Publications (1)

Publication Number Publication Date
JPS61247516A true JPS61247516A (en) 1986-11-04

Family

ID=13956639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8893185A Pending JPS61247516A (en) 1985-04-26 1985-04-26 Hydraulic motor circuit

Country Status (1)

Country Link
JP (1) JPS61247516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242906U (en) * 1988-09-12 1990-03-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242906U (en) * 1988-09-12 1990-03-26

Similar Documents

Publication Publication Date Title
US4354420A (en) Fluid motor control system providing speed change by combination of displacement and flow control
EP1321697B1 (en) Speed controller of wheel type hydraulic traveling vehicle
JPH0243063B2 (en)
CA1321527C (en) Hydraulic control device for a continuously variable transmission for motor vehicles
JPH0217702B2 (en)
GB1496264A (en) Hydrostatic propulsion system
JPH051756A (en) Continuously variable transmission
JP3273373B2 (en) Hydrostatic propulsion drive
KR20010032678A (en) Hydromechanical travelling mechanism
US4444297A (en) Control system for a fluid pressure engaged clutch
JPS61247516A (en) Hydraulic motor circuit
JPH03224830A (en) Power transmission device for four-wheel drive vehicle
US4306640A (en) Multi-range hydraulic drive
JPH06265013A (en) Hst hydraulic travel driving device
JPH0450181Y2 (en)
JPH06107020A (en) Oil pressure control device for vehicle with automatic transmission
JP2003161305A (en) Hydraulic retarder device of power transmission equipment
US4191017A (en) Motor displacement control system
JPS6111814B2 (en)
EP0028448A2 (en) Fluid motor control system
JPS6242825Y2 (en)
JPS6231708Y2 (en)
KR100497662B1 (en) Hydrostatic transmission using flux discharged from a pump
JPH04131568A (en) Hydraulic transmission device
JPH09209410A (en) Speed controller of construction vehicle