JPS61247168A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS61247168A
JPS61247168A JP60090313A JP9031385A JPS61247168A JP S61247168 A JPS61247168 A JP S61247168A JP 60090313 A JP60090313 A JP 60090313A JP 9031385 A JP9031385 A JP 9031385A JP S61247168 A JPS61247168 A JP S61247168A
Authority
JP
Japan
Prior art keywords
voltage
image pickup
incident light
incident
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60090313A
Other languages
Japanese (ja)
Other versions
JP2575619B2 (en
Inventor
Yoshiaki Otsu
大津 芳明
Kazuo Sayanagi
佐柳 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60090313A priority Critical patent/JP2575619B2/en
Publication of JPS61247168A publication Critical patent/JPS61247168A/en
Application granted granted Critical
Publication of JP2575619B2 publication Critical patent/JP2575619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the resolution with simple constitution by using an electrooptical element and a dual refraction means by which a polarized characteristic is controlled so as to displace selectively an image to each photodetector element in the image pickup means. CONSTITUTION:Incident lights A and B are made incident to an image pickup means 3 comprising plural photodetectors via a double refraction plate 2 and the electrooptical element 1 whose polarization characteristic is changed by a voltage fed to electrodes 4, 4' and recorded to a memory circuit 13 as a picture signal. In applying the 1st voltage to the element 1, the incident light is rotated by 90 deg., polarized at the double refraction plate 2 by a prescribed plate 2 and the result is made incident to the image pickup element 3. Thus, the incident light B is formed to the photodetector C. In making the applied voltage to the element 1 zero, the incident light is not rotated and not polarized by the dual refraction plate 2, then the incident light A is formed to the photodetector C. Thus, the digital interpolation of the image pickup element 3 is attained by switching the applied voltage to improve the resolution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有限開口の撮像素子の解像度を上げる為のソリ
ッドステート化した高解像 の撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state high-resolution imaging device for increasing the resolution of a finite aperture imaging element.

〔開示の概要〕[Summary of disclosure]

本明細書及び図面はソリッドステート化した高解像の撮
像装置において偏光特性を制御し得る電気光学素子と複
屈折手段との組み合わせにより撮像手段内の各受光素子
に対する像を選択的に変位させられるようにし、これに
より完全なソリッドステート化された高解像の撮像装置
を得る技術を開示するものである。
This specification and drawings describe a solid-state high-resolution imaging device in which an image for each light-receiving element within the imaging device can be selectively displaced by a combination of an electro-optical element capable of controlling polarization characteristics and a birefringence device. This invention discloses a technique for obtaining a completely solid-state, high-resolution imaging device.

〔従来技術〕[Prior art]

従来は例えば特開昭60−18958号公報の如くピエ
ゾ素子で固体撮像素子を半画素ピッチ分振動させて解像
度を2倍にする方式。又は特開昭59−53978号公
報の如く複屈折を利用して画素の2列を重ねて受像する
倍像方式しかし、前者ではピエゾ振動サイクルに制限が
あった。又、後者では機構部品が多く、高価で、位置決
め等、組立て精度も要求される。一方、固体撮像素子自
身を高解像にする為に光電変換画素の形成密度を向上せ
しめるには、技術的外困難を伴うばかりか、特性の劣化
や大幅なコストアップを伴う。
Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 60-18958, the resolution is doubled by using a piezo element to vibrate a solid-state image sensor by a half-pixel pitch. Or, as in Japanese Patent Laid-Open No. 59-53978, there is a double image system in which two rows of pixels are overlapped to receive an image using birefringence.However, in the former method, there is a limit to the piezo vibration cycle. Moreover, the latter has many mechanical parts, is expensive, and requires precision in positioning and assembly. On the other hand, increasing the formation density of photoelectric conversion pixels in order to improve the resolution of the solid-state imaging device itself not only involves technical difficulties, but also involves deterioration of characteristics and a significant increase in cost.

本発明は以上の欠点を解決し得る撮像装置を提供するこ
とを目的としている。
An object of the present invention is to provide an imaging device that can solve the above-mentioned drawbacks.

特に簡単で安定した動作を行なう事のできる撮像装置を
提供する事を目的としている。
In particular, it is an object of the present invention to provide an imaging device that can operate easily and stably.

〔問題を解決する為の手段〕[Means to solve the problem]

以下、本発明を実施例に基づき詳述する。 Hereinafter, the present invention will be explained in detail based on Examples.

本発明は偏光特性を電圧に応じて制御可能な電気光学素
子と複屈折手段とを撮像手段の前に配置し、更に前記電
気光学素子を制御する為の電圧切換手段を設ける。
In the present invention, an electro-optical element whose polarization characteristics can be controlled according to voltage and a birefringence means are arranged in front of an imaging means, and a voltage switching means is further provided to control the electro-optical element.

〔作用〕[Effect]

偏光手段に対し所定の第1の電圧を印加した状態では直
線偏光の入射光はλ=90°偏光する。
When a predetermined first voltage is applied to the polarizing means, linearly polarized incident light is polarized at λ=90°.

この光は複屈折手段の主面に平行に入射して異常光線と
して偏向を受ける。
This light is incident parallel to the main surface of the birefringent means and is deflected as an extraordinary ray.

一方、偏光手段に対し所定のts2の電圧を印加した状
態では偏光手段への入射光は偏光されずに複屈折手段の
主面に垂直に入射する。そして常光線となり偏向しない
で直進する。
On the other hand, when a predetermined voltage ts2 is applied to the polarizing means, the light incident on the polarizing means is not polarized and is incident perpendicularly to the main surface of the birefringent means. Then, it becomes an ordinary ray and travels straight without being deflected.

従って偏光手段への電圧を切り換えるだけで像と撮像手
段との相対関係を所定量変位することができる。
Therefore, simply by switching the voltage applied to the polarizing means, the relative relationship between the image and the imaging means can be changed by a predetermined amount.

この変位量を撮像手段の画素ピッチのHに選べば解像度
を2倍にすることができる。
If this amount of displacement is selected as H of the pixel pitch of the imaging means, the resolution can be doubled.

〔実施例〕〔Example〕

第1図は本発明の第1実施例図で、第1図〜第4図は本
発明の実施例を示す図で、1は第1の光偏光素子(電気
光学効果を持つKDP (KH,PO4) 。
Fig. 1 is a diagram showing a first embodiment of the present invention, and Figs. 1 to 4 are diagrams showing embodiments of the present invention. PO4).

ADP (NH4H2PO4) 、 LiNb0. ’
& E O結晶材料からなるポッケルスセルや、液晶の
TI効果のあるシップ塩基系の材料から成る。4,4′
は電極で、導電性接着材などで偏光素子に接着されてい
る。2は方解石などの複屈折材料又はウニラストンプリ
ズムやサバール板から成る複屈折手段としての複屈折板
である。
ADP (NH4H2PO4), LiNb0. '
&E Pockels cell made of O crystal material and ship base material with liquid crystal TI effect. 4,4'
is an electrode, which is bonded to the polarizing element with a conductive adhesive or the like. Reference numeral 2 denotes a birefringent plate as a birefringent means, which is made of a birefringent material such as calcite, or a Unirastone prism or a Savard plate.

この複屈折板は一定の結晶軸の面でカットされ、入射面
を研磨されている。3は撮像素子でMO8イメージセン
サ−1CODイメージセンサ−、アモル7アスシリコン
センザーなどで、複数の受光素子を含む。11は偏光素
子に対して撮像素子の駆動タイミングと同期させて逐次
印加電圧゛ を切り換えていく電圧切換手段としての電
圧制御回路、12は撮像素子駆動回路、13はメモリ回
路である。第2図は標本画素と受光素子の位置関係を示
し、3′は偏光素子IK対し4−4′間に第1の電圧が
印加された時に受光素子の行2′に結像する被写体画素
行の位置を示す。又偏向光素子1に対し、第2の電圧が
印加された時には標本画素からの光は偏向を受けずに受
光素子に入射する。
This birefringent plate is cut along a plane with a fixed crystal axis, and its entrance surface is polished. Reference numeral 3 denotes an image sensor, which is an MO8 image sensor-1 COD image sensor, an Amol 7A silicon sensor, etc., and includes a plurality of light-receiving elements. Reference numeral 11 designates a voltage control circuit as a voltage switching means for sequentially switching the voltage applied to the polarizing element in synchronization with the drive timing of the image sensor, 12 an image sensor drive circuit, and 13 a memory circuit. Figure 2 shows the positional relationship between the sample pixel and the light-receiving element, and 3' is the object pixel row that is imaged on the row 2' of the light-receiving element when the first voltage is applied between 4 and 4' to the polarizing element IK. Indicates the location of Further, when a second voltage is applied to the deflection light element 1, the light from the sample pixel enters the light receiving element without being deflected.

即ち、偏光素子1に第1の電圧(半波長電圧)vlを印
加すると直線偏光の入射光は90°回転する。この光は
複屈折板2の主面に平行に入射して異常光線として約5
°90′の偏向を受ける。例えば10鵡のポッケルス効
果素子で90°回転させる為に第1の電圧(例えば2K
Y)を印加すると厚さ0.2鶴の複屈折板を用いた場合
結像位置を約20μmン7卜することができる。
That is, when the first voltage (half-wavelength voltage) vl is applied to the polarizing element 1, the linearly polarized incident light is rotated by 90 degrees. This light is incident parallel to the main surface of the birefringent plate 2 and forms an extraordinary ray of about 5
subject to a deflection of 90'. For example, in order to rotate 90 degrees with 10 parrot Pockels effect elements, the first voltage (for example, 2K
When Y) is applied, the imaging position can be shifted by about 20 μm when a birefringent plate with a thickness of 0.2 mm is used.

一方、偏光素子への印加電圧を0ボルト(第2の電圧)
v2とすると偏光素子内で偏光は起きず、複屈折板の主
面に垂直に入射]−常光線となって偏向を受けずに直進
する。
On the other hand, the voltage applied to the polarizing element is set to 0 volts (second voltage).
When v2, no polarization occurs within the polarizing element, and the light is incident perpendicularly to the main surface of the birefringent plate] - becomes an ordinary ray and travels straight without being deflected.

この結果印加電圧のスイッチングにより撮像素子のデジ
タル的な補間が可能であり、従来の解像度を2倍にする
ことができる。
As a result, digital interpolation of the image sensor is possible by switching the applied voltage, and the conventional resolution can be doubled.

このように本実施例によればデジタル偏向の為に従来の
アナログ偏向で画素を掃偉子上に走査して受像していた
ものに比べて同期がと9易く、又入力信号の立上りがき
れいになる。又偏光材料が簡単に安く手に入り(特に液
晶の場合厚さは1fiで済む。)印加電圧も小さく(数
V)でできるので、装置に組み込んだり機器に搭載する
のに適する。
As described above, according to this embodiment, since the digital deflection is used, synchronization is easier to achieve compared to the conventional analog deflection system in which pixels are scanned on a sweeper to receive images, and the input signal rises more clearly. Become. In addition, polarizing materials are easily available at low cost (particularly in the case of liquid crystal, the thickness is only 1 fi), and the applied voltage can be small (several volts), making it suitable for incorporating into equipment or mounting on equipment.

又、ポッケルス効果のある半波長の偏光素子(LiM’
bO,ヤPI、ZT) t[イi場合でも、半波長電圧
(直線偏光方向を90°回転させる印加電圧)は・厚さ
10關の偏光素子で、2〜5にVでよい。
In addition, a half-wavelength polarizing element (LiM'
bO, YPI, ZT) t[Even in the case of A, the half-wave voltage (applied voltage that rotates the linear polarization direction by 90°) may be 2 to 5 V for a polarizing element with a thickness of 10 degrees.

又、複屈折板も5°90′で偏向させる為には0.2顛
程度と簿〈できる。従って両者を重ね合せた全体構成と
して、薄くしかも低電圧で電流を小型にして簡単に手に
入る材料で安価に容易に製作する事ができる。
Also, in order to deflect the birefringent plate by 5°90', it will take about 0.2 degrees. Therefore, the overall structure in which the two are superimposed can be made thin, with a low voltage, a small current, and can be easily manufactured at low cost using easily available materials.

次に第3図は本発明の第2実施例を示す図で本発明に係
るデジタル偏向器を4組重ねて配置した例で、図中X軸
方向の+側に偏向させる為の偏光素子1、複屈折板20
組み合わせと1図中2軸の+側に偏向させる為の偏光素
子5、複屈折板60組み合わせ、X軸の一側に偏向させ
る為の偏光素子7と複屈折板80組み合わせ。
Next, FIG. 3 is a diagram showing a second embodiment of the present invention, and is an example in which four sets of digital deflectors according to the present invention are arranged one on top of the other. , birefringent plate 20
Combinations: 1. In Figure 1, a combination of a polarizing element 5 and a birefringent plate 60 for deflecting to the + side of the two axes, and a combination of a polarizing element 7 and a birefringent plate 80 for deflecting to one side of the X axis.

z軸の一側に偏向させる為の偏光素子9と複屈折板10
の組み合わせとを有している。
Polarizing element 9 and birefringent plate 10 for deflecting to one side of the z-axis
It has a combination of.

第4図はこの実施例の場合における標本画素と受光素子
5′の位置関係を示す図である。
FIG. 4 is a diagram showing the positional relationship between the sample pixel and the light receiving element 5' in this embodiment.

偏光素子j、5,7.9に対し夫々下の表のような関係
の順序で半波長電圧V1を印加することにより、受光素
子3′に結像する標本画素が第4図示の2’、 6’、
 8’、 10’の如く回転する。
By applying the half-wave voltage V1 to the polarizing elements j, 5, and 7.9 in the order shown in the table below, the sample pixels imaged on the light receiving element 3' become 2', 2', and 7.9 as shown in the fourth figure. 6',
Rotate like 8', 10'.

この半波長電圧vでの切換を1フイールド毎に垂直ブラ
ンキング期間内で行ない各フィールドの出力をメモリ回
路において対応するメモリ番地に記憶する。
This switching using the half-wave voltage v is performed for each field within the vertical blanking period, and the output of each field is stored in the corresponding memory address in the memory circuit.

次に第5図は本発明の第3実施例を示す図で同じ方向へ
のシフト量の異なる偏向器を2組配置したものである。
Next, FIG. 5 is a diagram showing a third embodiment of the present invention, in which two sets of deflectors having different shift amounts in the same direction are arranged.

偏光素子14に半波長電圧V1が印加されている状態で
直線偏光が入射すると、この偏光は90゜回転させられ
て複屈折板12で1段偏向される。
When linearly polarized light is incident on the polarizing element 14 with the half-wave voltage V1 applied, this polarized light is rotated by 90 degrees and deflected by one step by the birefringent plate 12.

次に複屈折板12よりも厚い複屈折板14にて同様に大
きく2段目の偏向が為され、18の位置の標本画素は撮
像素子上の受光素子3′に入力する。
Next, a large second-stage deflection is performed by a birefringent plate 14, which is thicker than the birefringent plate 12, and the sample pixel at position 18 is input to the light receiving element 3' on the image sensor.

この様に、同方向へ2段の偏向器の組み合せで17の複
屈折板を複屈折板15の2倍の厚さにすると18.17
’、 15’、5’  と等間隔に並んだ4つの画素を
任意に入力できる。即ち、18は2つの偏光素子に共に
vlを印加し、17′は偏光素子16のみにvlを印加
し、15′は偏光素子14のみにvlを印加することに
よりそれぞれ受光素子6′に入力する事ができる。
In this way, if we make 17 birefringent plates twice as thick as birefringent plate 15 by combining two stages of deflectors in the same direction, the thickness will be 18.17.
You can arbitrarily input four equally spaced pixels such as ', 15', and 5'. That is, 18 applies vl to both of the two polarizing elements, 17' applies vl only to the polarizing element 16, and 15' applies vl only to the polarizing element 14, thereby inputting them to the light receiving element 6'. I can do things.

又、5′は偏光素子に共に0ポル)(Vz)を印加する
ことKより入力可能である。
Further, 5' can be inputted from K by applying 0pol (Vz) to both polarizing elements.

組み合せにより2次元方向についても数倍の解像が得ら
れる。しかもスイッチングの速度は素子では10 ne
、電源の切換えは数10μ8と高速化を計ることができ
る。又重ね合せてもせいぜい数10101と薄く小型軽
量化に適している。又ポッケルス効果を利用した従来の
偏向器などがアナログであるのに比して1画素を撮像素
子上のみに結像するデジタル方式の為撮像素子の受像信
号の立上υがシャープになる。又、電源や切換え用のコ
ントローラーも極性の反転機構がいらないので簡単にな
る。又、特に液晶の偏光素子を用いれば数Vの印加電圧
でよく、電源の
By combining them, several times the resolution can be obtained even in two-dimensional directions. Moreover, the switching speed of the element is 10 ne
, switching of the power supply can be performed at a high speed of several tens of μ8. Moreover, even if they are stacked together, they are as thin as several 10,101 layers at most, making them suitable for miniaturization and weight reduction. Furthermore, unlike conventional deflectors that utilize the Pockels effect, which are analog, the rise υ of the image signal received by the image sensor is sharper because it is a digital system that forms an image of one pixel only on the image sensor. In addition, the controller for power supply and switching becomes simpler because there is no need for a polarity reversal mechanism. In addition, especially if a liquid crystal polarizing element is used, an applied voltage of several volts is sufficient, and the power supply

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1次元の1段の偏向器を用込た本発明の第1実
施例図、第2図は第1図の場合の標本画素と撮像素子の
受光素子の位置関係図、第5図は第1図の基本構成を9
0°づつ回転させてX 、Z軸方向に4枚組み合せて2
次元の画素を、印加電圧と切9換えて逐次取り込む本発
明の第2実施例による4倍解像度の例を示す図、第4図
は第3図の実施例において、取り込む画素標本芳、の入
力順序と配置を示す位置図、第5図は同じ方向に2段階
で偏向して4画素入力する多段偏向の1例を示す第3実
施例図。 1.5,7,9,14 、IS・・・電気光学素子とし
ての偏光素子 2.6,8,10,15.17 ・・・複屈折手段とし
ての複屈折板3 ・・・撮像手段としての撮像素子 4・・・電極 本発明/l蜀3尖旭j1菌 佑5図
FIG. 1 is a diagram of a first embodiment of the present invention using a one-dimensional, one-stage deflector, FIG. The figure shows the basic configuration of Figure 1.
Rotate 0 degrees at a time and combine 4 pieces in the X and Z axis directions.
4 is a diagram showing an example of quadruple resolution according to the second embodiment of the present invention, in which dimensional pixels are sequentially captured by changing the applied voltage. FIG. FIG. 5 is a position diagram showing the order and arrangement, and FIG. 5 is a third embodiment diagram showing an example of multi-stage deflection in which four pixels are input by deflecting in two stages in the same direction. 1.5, 7, 9, 14, IS... Polarizing element as an electro-optical element 2.6, 8, 10, 15.17... Birefringence plate 3 as a birefringence means... As an imaging means Imaging device 4...Electrode Invention/l Shu 3 Tsubaki Asahi J1 Bacteria Yu 5 Diagram

Claims (1)

【特許請求の範囲】 電圧に応じて入射光の偏光特性を制御する為の電気光学
素子と、 該電気光学素子と組み合わされた複屈折手段と、 電気光学素子及び複屈折手段を介した光を受光する撮像
手段と、 前記電気光学素子の偏光特性を複屈折手段の複屈折特性
に対して変化させる為の電圧切換手段と、 を有する撮像装置。
[Scope of Claims] An electro-optical element for controlling the polarization characteristics of incident light according to a voltage, a birefringence means combined with the electro-optical element, and an electro-optical element for controlling the polarization characteristics of incident light according to a voltage. An imaging device comprising: an imaging means for receiving light; and a voltage switching means for changing the polarization characteristic of the electro-optical element with respect to the birefringence characteristic of the birefringence means.
JP60090313A 1985-04-25 1985-04-25 Imaging device Expired - Fee Related JP2575619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090313A JP2575619B2 (en) 1985-04-25 1985-04-25 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090313A JP2575619B2 (en) 1985-04-25 1985-04-25 Imaging device

Publications (2)

Publication Number Publication Date
JPS61247168A true JPS61247168A (en) 1986-11-04
JP2575619B2 JP2575619B2 (en) 1997-01-29

Family

ID=13995037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090313A Expired - Fee Related JP2575619B2 (en) 1985-04-25 1985-04-25 Imaging device

Country Status (1)

Country Link
JP (1) JP2575619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440009B2 (en) 2004-02-13 2008-10-21 Matsushita Electric Industrial Co., Ltd. High definition imaging method and imaging apparatus having electro-optical polarization element between two birefrigent elements forming alternately on sensor single and overlapping images

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093894A (en) * 1983-10-27 1985-05-25 Sony Corp Image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093894A (en) * 1983-10-27 1985-05-25 Sony Corp Image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440009B2 (en) 2004-02-13 2008-10-21 Matsushita Electric Industrial Co., Ltd. High definition imaging method and imaging apparatus having electro-optical polarization element between two birefrigent elements forming alternately on sensor single and overlapping images

Also Published As

Publication number Publication date
JP2575619B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US4910413A (en) Image pickup apparatus
US4920418A (en) Imaging system having a swing-driven image sensor
US5616912A (en) Three dimensional imaging apparatus, camera, and microscope using discrete shutter control to produce parallax for obtaining three dimensional images
US20120169910A1 (en) Image sensor and image capture device
US5774179A (en) Method and system for fast microscanning
JP3465776B2 (en) Liquid crystal display
CN101320129B (en) Actuator, optical scanner and image forming device
EP0606162A2 (en) Image display system with pixel mosaic pattern
US20140285703A1 (en) Liquid crystal optical device, solid state imaging device, portable information terminal, and display device
US5798875A (en) Apparatus for dithering
JPS61247168A (en) Image pickup device
US5189545A (en) Optical deflector and display unit using the same
JPH04115786A (en) Image shift type image pickup device
JPH08211423A (en) Deflector and image shift type image pickup device formed by using the same
JPH0378378A (en) Solid state image pickup device
JPH0595517A (en) High resolution image pick-up device
JPS61121671A (en) Image pick-up device
JP2000125169A (en) Image pickup device
JPH0463074A (en) Image shift type image pickup device
JPH08250692A (en) Optical device
JPS61270973A (en) Picture image input device using solid-state image pickup element
JPS62161282A (en) Image pickup device
JPS62159581A (en) Image pickup device
JPH0715732A (en) Color image pickup device
JPS5928192A (en) Image display

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees