JPS61247165A - Method for dither picture coding - Google Patents

Method for dither picture coding

Info

Publication number
JPS61247165A
JPS61247165A JP60087394A JP8739485A JPS61247165A JP S61247165 A JPS61247165 A JP S61247165A JP 60087394 A JP60087394 A JP 60087394A JP 8739485 A JP8739485 A JP 8739485A JP S61247165 A JPS61247165 A JP S61247165A
Authority
JP
Japan
Prior art keywords
threshold value
binary
pixels
signal
binarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60087394A
Other languages
Japanese (ja)
Inventor
Makoto Kobayashi
誠 小林
Hiroshi Ochi
宏 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60087394A priority Critical patent/JPS61247165A/en
Publication of JPS61247165A publication Critical patent/JPS61247165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the coding efficiency by rearranging a binary-coded picture at the same threshold value in a matrix so that picture elements binary-coded by the same threshold value in the matrix approach together. CONSTITUTION:An intermediate signal inputted from an input section (not shown) is stored in an intermediate tone signal memory 1, the result is divided into blocks comprising plural picture elements and each picture element is compared with a threshold value at a comparator 2. The threshold value differs from each picture element and is stored in a threshold value storage memory 3. The signal binary-coded by the comparator 2 is stored in a binary signal memory 5 via a memory address controller 4 and the binary-coded picture elements by using the same threshold value are rearranged so as to approach together. Then the result is coded by a binary signal coder 6 and sent. Thus,the coding efficiency is improved.

Description

【発明の詳細な説明】 見匪立且孜 (産業上の利用分野) 本発明は、ディザ画像の冗長度抑圧符号化方法において
、ディザ画像を既存の2値化号符号化方“式に適用し易
いようにするディザ画像符号化方法に関するものである
[Detailed Description of the Invention] The present invention relates to a dithered image redundancy reduction encoding method in which a dithered image is applied to an existing binary encoding method. The present invention relates to a dither image encoding method that makes it easy to encode a dithered image.

(従来の技術) 中間調を含む画像をファクシミリ等2値表示しかできな
い装置へ伝送する場合、画像を複数画素からなるブロッ
クに分け、ブロック内の各画素を互いに異った閾値で2
値化し、中間調信号の代りにその2値化号を伝送する方
法が知られている。   。
(Prior art) When transmitting an image containing halftones to a device capable of only binary display, such as a facsimile, the image is divided into blocks each consisting of a plurality of pixels, and each pixel in the block is divided into two blocks with different threshold values.
A method is known in which the digital signal is converted into a value and the binary code is transmitted instead of the halftone signal. .

(発明が解決しようとする問題点) しかし、受信側で良質な中間調画像を表示するために、
2値化号は1〜数画素毎に1.o(あるいは白、黒)に
激しく変化する複雑な信号になり、そのため1文書1図
形等の伝送を前提とした従来の2値信号符号化方式(モ
ディファイド )\フマン方式又はモディファイド リ
ード方式など)を適用しても符号化効率が上がらないと
tlう欠点があった。
(Problem to be solved by the invention) However, in order to display a high-quality halftone image on the receiving side,
The binarization code is 1 for every 1 to several pixels. The result is a complex signal that changes rapidly between o (or white and black), so the conventional binary signal encoding method (modified) which is based on the transmission of one document, one figure, etc. (such as the human method or modified read method) is Even if applied, there was a drawback that the encoding efficiency did not improve.

一方、比較的広く用いられるベイヤー形と呼ばれるディ
ザ閾値マトリクスの一つによって2値化された信号は市
松模様に似た1、0(あるいは白、黒)の画素配列を持
つため、全画素を互いに補間し合う2つの市松格子画素
集団に分離し1あるいは0(白あるいは黒)が連続し易
いようにする方法がある。しかし、これはベイヤー形に
対してはある程度効果があるにしても、他の形の閾値マ
トリクスには全くと云っていい程効果がないという欠点
があった。
On the other hand, a signal that is binarized using one of the relatively widely used dither threshold matrices called Bayer type has a pixel arrangement of 1, 0 (or white, black) similar to a checkerboard pattern, so all pixels are connected to each other. There is a method of separating the pixels into two checkerboard grid pixel groups that interpolate with each other so that 1 or 0 (white or black) is likely to continue. However, although this method is effective to some extent for the Bayer type, it has the drawback that it is almost completely ineffective for other types of threshold matrices.

見1豊皇處 (問題点を解決するための手段) 本発明は、これらの欠点を解決するために、2値化され
た画像を、マトリクス内の同じ閾値で2値化された画素
同士は接近するように並び変えを行うようにしたもので
ある。
(Means for Solving the Problems) In order to solve these drawbacks, the present invention solves these drawbacks by dividing a binarized image between pixels that have been binarized using the same threshold in a matrix. The arrangement is arranged so that they are closer to each other.

(作用) このようにすれば、閾値マトリクスの形が変った場合で
も1あるいはO(白あるいは黒)が連続して、既存の2
値信号符号化方式が適用し易いようになる。
(Function) By doing this, even if the shape of the threshold matrix changes, 1 or O (white or black) will continue, and the existing 2
It becomes easier to apply the value signal encoding method.

(実施例) 第1図は4画素からなるブロックに適用するディザ閾値
マトリクスの例であり、■、〜T4はそれぞれ異なる閾
値である。
(Example) FIG. 1 is an example of a dither threshold matrix applied to a block consisting of four pixels, and ■ and T4 are different thresholds.

第2図は、第1図のマトリクスで2値化された画素であ
り、All〜A4+はそれぞれ第1図の11〜丁4の閾
値で2値化された画素である。またiは画像の左上から
ディザ処理を施した場合の2値化された順番を示してい
る。
FIG. 2 shows pixels that have been binarized using the matrix shown in FIG. 1, and All to A4+ are pixels that have been binarized using thresholds 11 to 4 in FIG. 1, respectively. Further, i indicates the order in which the images are binarized when dither processing is performed starting from the upper left of the image.

第3図は本発明による画素の並びかえの例であり、同じ
閾値で2値化された画素は同じ領域に並ぶようになって
いる。(A、〜A4は第2図と同じ)従って、例えば八
〇、が黒、Aziが白の場合、従来の第2図では白と黒
が交互に出現し既存の符号化方式では非常に効率が低下
するが、第3図では黒・白がそれぞれ連続するようにな
り、長い黒あるいは白の連続長を短い符号で符号化でき
、効率が上がる。
FIG. 3 shows an example of pixel rearrangement according to the present invention, in which pixels binarized using the same threshold are arranged in the same area. (A, ~A4 are the same as in Figure 2) Therefore, for example, if 80 is black and Azi is white, in the conventional Figure 2, white and black appear alternately, and the existing encoding method is extremely inefficient. However, in FIG. 3, black and white are continuous, and a long continuous length of black or white can be encoded with a short code, increasing efficiency.

第4図は、さらに効率を上げる場合に、同じ閾値で2値
化された画素の集合に、その閾値に値が近い閾値で2値
化された画素の集合を接近させるよう並びかえを行う例
である。
Figure 4 shows an example of rearranging pixels that have been binarized using the same threshold to bring them closer to a set of pixels that have been binarized using a threshold that is close to that threshold, in order to further improve efficiency. It is.

例えば第1図において閾値がT、>T、>T、>T、の
大小関係を持つ場合、第2図のAzi画素が集まってい
る領域にA41画素の集合を配植するとT、、T。
For example, if the threshold values have a magnitude relationship of T, >T, >T, >T in FIG. 1, if a set of A41 pixels is placed in the area where Azi pixels are gathered in FIG. 2, T, , T.

が互いに近い値ならば、at+とA41も同じ値になる
ことが多いから黒あるいは白の画素が連続する長さがさ
らに長くなり、符号化効率が上がる6また2次元的に白
、黒の相関を利用する符号化方式では、第4図でA41
のグループをA1のグループの下に配置すれば良い。
If the values are close to each other, at+ and A41 often have the same value, so the length of consecutive black or white pixels becomes even longer, increasing the encoding efficiency.6 Also, the two-dimensional correlation between white and black In the encoding method using A41 in Fig. 4,
It is sufficient to place the group below the group A1.

第5図は、さらに上記の変形であって、閾値の大小関係
のままに各閾値で2値化された画素のグループを配置し
た例である。閾値の大小関係は丁□〉丁、〉丁2〉ちと
した場合である。
FIG. 5 is a further modification of the above, and is an example in which groups of pixels binarized with each threshold are arranged while maintaining the magnitude relationship of the thresholds. The magnitude relationship of the threshold values is for the case of □〉〉〉〉〉〉〉〉2〉.

この場合、白、黒画素の連続する可能性はA工、。In this case, the probability that white and black pixels are consecutive is A.

A4iのグループ間ばかりでなく、A41tAiiのグ
ループ間、A□、A1、のグループ間でも高くなり、符
号化効率が向上する。
It becomes high not only between the A4i groups, but also between the A41tAii groups, and between the A□ and A1 groups, and the coding efficiency improves.

第5図では特に、閾値の大小の順になるよう画素のグル
ープを並びかえたが、閾値の大小に関係なく並べかえて
もよい。
In particular, in FIG. 5, the pixel groups are rearranged in order of magnitude of the threshold values, but they may be rearranged regardless of the magnitude of the threshold values.

その場合は符号化効率は第5図の場合よりも若干低下す
るが、閾値の大小を考慮しなくてもよいため、処理が簡
単になる。
In that case, the encoding efficiency will be slightly lower than in the case of FIG. 5, but the processing becomes simpler because it is not necessary to consider the magnitude of the threshold value.

また、第5図のように横一列に次々に画素のグループを
並べていく方法は、第3図、第4図のように2次元的に
画素グループを並べる方法に比べ。
Also, the method of arranging pixel groups one after another in a horizontal row as shown in FIG. 5 is compared to the method of arranging pixel groups two-dimensionally as shown in FIGS. 3 and 4.

画素がディザ法で2値化される順番と2値化号符号器へ
入力される順番が比較的近い。
The order in which pixels are binarized using the dither method and the order in which they are input to the binarization encoder are relatively close.

並びかえた画像の上の方に2値化された順番の若い画素
、すなわちAiiでjの数が小さいものが集っている。
At the top of the rearranged image, the pixels with the lowest binarization order, that is, the pixels with the smallest number of j in Aii, are clustered.

このためリアルタイム性を追求する場合有効である。Therefore, it is effective when pursuing real-time performance.

第6図は本発明の構成を示す一実施例のブロック図であ
って、1は中間調信号メモリ、2は比較器、3は閾値格
納メモリ、4はメモリアドレスコントローラ、5は2値
化号メモリ、6は2値化号符号器である。
FIG. 6 is a block diagram of an embodiment showing the configuration of the present invention, in which 1 is a halftone signal memory, 2 is a comparator, 3 is a threshold storage memory, 4 is a memory address controller, and 5 is a binarization signal. Memory 6 is a binary encoder.

入力部から入力された中間調信号は一度メモリに格納さ
れ、その後閾値と比較されて2値化号に変換される。
The halftone signal input from the input section is once stored in a memory, and then compared with a threshold value and converted into a binary signal.

メモリアドレスコントローラは、比較の際使われた閾値
を判断して、同じ閾値で2値化された画素は、近接する
ようにメモリアドレスをコントロールして2値化号をメ
モリに格納する。
The memory address controller determines the threshold value used in the comparison, controls the memory address so that pixels binarized with the same threshold value are located close to each other, and stores the binarized code in the memory.

その後、符号器によって2値化号は符号化され伝送され
る。
Thereafter, the binary code is encoded and transmitted by an encoder.

第7図は本発明の他の実施例の構成を示す図であり、1
〜6の構成要素は第6図と同じである。
FIG. 7 is a diagram showing the configuration of another embodiment of the present invention, 1
Components 6 to 6 are the same as in FIG.

第6図との相違は、第6図では2値化の際に同時に画素
の並びかえを行ったのに対し、第7図では一度2値信号
をメモリに格納した後、2値化号符号器へ転送する際1
画素並びかえを行うことである。
The difference with Fig. 6 is that in Fig. 6, pixels are rearranged at the same time during binarization, whereas in Fig. 7, after the binary signal is stored in memory, the binarized code is When transferring to the device 1
This is to rearrange the pixels.

発」【@りU艮 以上説明したように、本発明を用いれば、既存の2値符
号化方式が非常に効率良く適用できる。
As explained above, by using the present invention, existing binary encoding methods can be applied very efficiently.

例えば、ベイヤー形の4×4画素大のマトリクスを用い
た場合、ファクシミリの標準符号化方式のモディファイ
ド リード方式で、そのまま符号化すると、約2 bi
t/画素の符号量になるが、本発明を用いれば、171
0以下の約0.18bit/画素で符号化できる。
For example, when using a Bayer-type matrix with a size of 4 x 4 pixels, if it is encoded as is using the modified read method, which is the standard encoding method for facsimile, approximately 2 bi
The code amount is t/pixel, but if the present invention is used, the code amount is 171
It can be encoded with approximately 0.18 bits/pixel of 0 or less.

また、ベイヤー形以外のマトリクスにおいても第3図に
おける同じ閾値で2値化された画素集団の位置がマクロ
的に移動するだけであるので符号化効率はほとんど変化
しない。
Furthermore, even in matrices other than the Bayer type, the encoding efficiency hardly changes because the positions of the pixel groups binarized using the same threshold value in FIG. 3 only move macroscopically.

なお、説明の中でマトリクスの大きさを2×2の正方領
域にしたり、閾値の数を4個にしたが、これはあくまで
も−例であって形や個数が変ってもさしつかえない。
In the description, the size of the matrix is set to a 2×2 square area and the number of thresholds is set to 4, but these are just examples, and the shape and number may be changed.

また、例では、説明上1画面全部に同時に並びかえを施
した場合を考えたが、処理量やメモリ量の関係で1画面
の何分割か毎に本発明を施しても問題はなく、効果もほ
とんど変らない。
In addition, in the example, for explanation purposes, we considered a case in which the entire screen is rearranged at the same time, but due to the amount of processing and memory, there is no problem and the present invention can be applied to every several divisions of one screen, and the effect will be more effective. is almost unchanged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4画素からなるブロックに適用するディザ閾値
マトリクスの例、第2図はディザ法により2値化された
画像、第3図は本発明による画素の並びかえの例、第4
図は本発明による閾値の近い画素集合を接近させた画素
並びかえの例、第5図は第4図の変形した例で閾値の大
小関係のままに各閾値で2値化された画素のグループを
配置した例、第6図は本発明の構成を示す一実施例のブ
ロック図、第7図は本発明の他の実施例の構成を示す図
である。 1 ・・・中間調信号メモリ、2・・・比較器、3 ・
・・閾値格納メモリ、4 ・・・メモリアドレスコント
ローラ、5・・・2値化号メモリ、6 ・・・2値化号
符号器、T1〜T4・・・閾値、All””A4i ・
・・それぞれ11〜丁4で2値化された画素、i ・・
・2値化された順番。 第1図 第2図 第3図 第4図 第5図 第6図 第7図
Figure 1 is an example of a dither threshold matrix applied to a block consisting of four pixels, Figure 2 is an image binarized by the dither method, Figure 3 is an example of pixel rearrangement according to the present invention, and Figure 4 is an example of a dither threshold matrix applied to a block consisting of four pixels.
The figure shows an example of pixel rearrangement in which pixel sets with similar threshold values are brought closer together according to the present invention, and Figure 5 is a modified example of Figure 4, which is a group of pixels that are binarized at each threshold value while maintaining the magnitude relationship of the threshold values. FIG. 6 is a block diagram of one embodiment showing the configuration of the present invention, and FIG. 7 is a diagram showing the configuration of another embodiment of the present invention. 1...Halftone signal memory, 2...Comparator, 3.
...Threshold value storage memory, 4...Memory address controller, 5...Binarization code memory, 6...Binarization code encoder, T1 to T4...Threshold value, All""A4i.
・Pixels that were binarized from 11 to 4 respectively, i ・・
- Binarized order. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)中間調画信号をディザ閾値マトリクスにより2値
化して伝送するシステムにおいて、2値化された信号の
うち同じ閾値で2値化された画素同士は接近するように
画素位置の並びかえを行い、並びかえを行った画信号を
既存の2値信号符号化方式で符号化することを特徴とす
るディザ画像符号化方法。
(1) In a system that binarizes a halftone image signal using a dither threshold matrix and transmits it, the pixel positions of the binarized signal are rearranged so that pixels binarized with the same threshold are close to each other. 1. A dithered image encoding method, characterized in that an image signal that has been processed and rearranged is encoded using an existing binary signal encoding method.
(2)同じ閾値で2値化された画素の集合に、その閾値
の値に近い閾値で2値化された画素の集合が接近するよ
うに画素位置の並びかえを行い、その後既存の2値信号
符号化方式で符号化することを特徴とする特許請求の範
囲第(1)項記載のディザ画像符号化方法。
(2) Rearrange the pixel positions so that the set of pixels binarized with a threshold value close to that threshold value approaches the set of pixels binarized with the same threshold value, and then The dither image encoding method according to claim 1, characterized in that encoding is performed using a signal encoding method.
(3)同じ閾値で2値化された画素が集った画素集合が
、一定の方向に次々に接続するように画素位置の並びか
えを行い、その後既存の2値信号符号化方式で符号化す
ることを特徴とする特許請求の範囲第(1)項又は第(
2)項記載のディザ画像符号化方法。
(3) The pixel positions are rearranged so that a pixel set of pixels binarized with the same threshold is connected one after another in a fixed direction, and then encoded using the existing binary signal encoding method. Claims (1) or (2) characterized in that:
The dither image encoding method described in section 2).
JP60087394A 1985-04-25 1985-04-25 Method for dither picture coding Pending JPS61247165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087394A JPS61247165A (en) 1985-04-25 1985-04-25 Method for dither picture coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087394A JPS61247165A (en) 1985-04-25 1985-04-25 Method for dither picture coding

Publications (1)

Publication Number Publication Date
JPS61247165A true JPS61247165A (en) 1986-11-04

Family

ID=13913661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087394A Pending JPS61247165A (en) 1985-04-25 1985-04-25 Method for dither picture coding

Country Status (1)

Country Link
JP (1) JPS61247165A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449373A (en) * 1987-08-19 1989-02-23 Fuji Photo Film Co Ltd Method for compressing network point image-data
JPH0322759A (en) * 1989-06-20 1991-01-31 Ricoh Co Ltd Information processor equipped with artificial half-tone image processing function
JPH0373669A (en) * 1989-08-15 1991-03-28 Ricoh Co Ltd Data compression device for dither image
JPH0396071A (en) * 1989-09-07 1991-04-22 Fujitsu Ltd Dither image data compression system
JPH0879531A (en) * 1994-08-19 1996-03-22 Kinhyo Rin Preprocessing method for dither image data compression

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449373A (en) * 1987-08-19 1989-02-23 Fuji Photo Film Co Ltd Method for compressing network point image-data
JPH0322759A (en) * 1989-06-20 1991-01-31 Ricoh Co Ltd Information processor equipped with artificial half-tone image processing function
JPH0373669A (en) * 1989-08-15 1991-03-28 Ricoh Co Ltd Data compression device for dither image
JPH0396071A (en) * 1989-09-07 1991-04-22 Fujitsu Ltd Dither image data compression system
JPH0879531A (en) * 1994-08-19 1996-03-22 Kinhyo Rin Preprocessing method for dither image data compression

Similar Documents

Publication Publication Date Title
JPS62145988A (en) Transmission system for picture applied with adoptive scanning-line conversion
JPH0529172B2 (en)
US5271072A (en) Image reduction of binary images using filtering processing
GB2204462A (en) Compression method for dot image data
US5243446A (en) Adaptive clumped dithering with clump plane separation
JPH0356035B2 (en)
JPS61247165A (en) Method for dither picture coding
JP3387738B2 (en) Image pattern converter
US4782400A (en) System for encoding or decoding analog video signals
JPH09275559A (en) Coding method and its device
JPS62236269A (en) Dither image encoding device
JP3128874B2 (en) Halftone image encoding method
JP2685791B2 (en) Halftone fax machine
JPH0232675A (en) Transmission processing method for pseudo halftone data in facsimile equipment
JPH0125473B2 (en)
JPH0329564A (en) Picture coding method
JPS62200979A (en) Encoding method for dither picture
JPS63102562A (en) Image processing device
JPS62203479A (en) Dither picture encoding method
JPS5857863A (en) Picture contracting method
JPH0322759A (en) Information processor equipped with artificial half-tone image processing function
JPH0828816B2 (en) Method for compressing halftone image data
JPS6392185A (en) Compression method for quantity of information on picture
JPS6382060A (en) Image signal processing circuit for facsimile
JPH01103369A (en) Coding system for picture signal and equipment therefor