JPS61247036A - Apparatus and method for forming insulative thin film - Google Patents

Apparatus and method for forming insulative thin film

Info

Publication number
JPS61247036A
JPS61247036A JP8786685A JP8786685A JPS61247036A JP S61247036 A JPS61247036 A JP S61247036A JP 8786685 A JP8786685 A JP 8786685A JP 8786685 A JP8786685 A JP 8786685A JP S61247036 A JPS61247036 A JP S61247036A
Authority
JP
Japan
Prior art keywords
thin film
film forming
vapor deposition
raw material
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8786685A
Other languages
Japanese (ja)
Inventor
Kenichiro Yamanishi
山西 健一郎
Masashi Yasunaga
安永 政司
Takashi Tsukasaki
塚崎 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8786685A priority Critical patent/JPS61247036A/en
Publication of JPS61247036A publication Critical patent/JPS61247036A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable to form a homogeneous insulative thin film by providing electron generating means for emitting electrons to a thin film forming substrate to reduce a charge-up by ions of depositing ionized material in a vacuum tank. CONSTITUTION:Electrons 29 are generated in the state parallel to the generation of cluster ion beam 17, and emitted to the entire insulative thin film forming region on a substrate 18. To generate the electrons 29, a filament 26a is, for example, heated, and a voltage of approx. several tens - several hundreds V is applied between the filament 26a and an anode 26b, and when a voltage of several tens - 1,000V is applied between the electron drawing electrode 27 and the filament 26b, the electrons 29 are emitted to the entire film forming region on the substrate 18. The electrons 29 are simultaneously emitted into the film deposition, and preferably emitted in the quantity equal to or larger than the quantity of ions 16. Thus, it can prevent the film formed on the substrate 18 from charging up, thereby forming the thin film in the state that no discharge is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁性薄膜形成装置あそびその方法に関し
、特に絶縁性薄膜を蒸着形成する場合の膜質の均一化に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an insulating thin film forming apparatus and method thereof, and particularly relates to uniformity of film quality when forming an insulating thin film by vapor deposition.

〔従来の技術〕[Conventional technology]

一般に、クラスタ・イオンビーム蒸着法による薄膜蒸着
方法は、真空槽内において、基板に蒸着すべき物質の蒸
気を噴出して該蒸気中の多数の原子が緩く結合したクラ
スタ(塊状原子集団)を生成し、該クラスタに電子のシ
ャワーを浴びせて該クラスタをそのうち1個の原子がイ
オン化されたクラスタ・イオンにし、該クラスタ・イオ
ンを加速して基板に衝突せしめ、これにより基板に薄膜
を蒸着形成する方法である。この蒸着法を用い絶絶性薄
膜形成を実施する装置として、従来第2図、第3図に示
すものがあった。第2図は従来の薄膜蒸着装置を模式的
に示す構成断面図、第3図はその主要部を一部断面で示
す斜視図である。図において、(11は所定の真空度C
:保持された真空槽、(2)は該真空槽(1)内の排気
を行なうための排気通路で、これは図示しない真空排気
装置に接続されている。(3)は該排気通路(2)を開
閉する真空用バルブである。(4)は直径IIIII〜
2諷のノズル(4a)が設けられた密閉形るつぼで、こ
れには蒸着原料(51、例えば弗化鉛(PI)Fりが収
容される。(6)は上記るつぼ(4)の加熱を行なうた
めの加熱用フイラメン) 、 (71は該フィラメント
(6)からの輻射熱を遮断する熱シールド板であり、上
記るつぼ(4)、加熱用フィラメント(6)及び熱シー
ルド板(7)により、蒸着原料を上記真空槽1111’
9 C噴出してクラスタを生成せしめる薄膜蒸着源(8
)が形成されている。なお、(19は上記熱シールド板
(7)を支持する絶縁支持部材、■は上記るつぼ(4)
を支持する支持台である。
In general, a thin film deposition method using cluster ion beam deposition involves ejecting the vapor of a substance to be deposited onto a substrate in a vacuum chamber to generate clusters (massive atomic groups) in which many atoms in the vapor are loosely bonded. The cluster is then showered with electrons to form a cluster ion in which one atom is ionized, and the cluster ion is accelerated to collide with a substrate, thereby depositing a thin film on the substrate. It's a method. Conventionally, there are apparatuses shown in FIGS. 2 and 3 for forming an instable thin film using this vapor deposition method. FIG. 2 is a cross-sectional view schematically showing a conventional thin film deposition apparatus, and FIG. 3 is a perspective view partially showing a main part thereof in cross section. In the figure, (11 is the predetermined degree of vacuum C
: A vacuum chamber is maintained, and (2) is an exhaust passage for evacuating the inside of the vacuum chamber (1), which is connected to a vacuum evacuation device (not shown). (3) is a vacuum valve that opens and closes the exhaust passage (2). (4) is diameter III~
This is a closed crucible equipped with two nozzles (4a), which accommodates a vapor deposition raw material (51, e.g. lead fluoride (PI)).(6) heats the crucible (4). (71 is a heat shield plate that blocks radiant heat from the filament (6), and the crucible (4), heating filament (6), and heat shield plate (7) The raw material is transferred to the vacuum chamber 1111'
A thin film deposition source (8
) is formed. Note that (19 is an insulating support member that supports the heat shield plate (7), and ■ is the crucible (4)
It is a support stand that supports.

+91はイオン化用の熱電子(13を放出するイオン化
フィラメント、αlは該イオン化フィラメントT91か
ら放出された熱電子0を加速する電子引き出し電極、α
υはイオン化フィラメント(91からの輻射熱を遮断す
る熱シールド板であり、上記イオン化フィラメント(9
J、電子引き出し電極部及び熱シールド仮住υにより、
上記薄膜蒸着源181からのクラスタをイオン化するた
めのイオン化手段住りが形成されている。な詔、(ハ)
は熱シールド板αυを支持する絶縁支持部材である。0
は上記イオン化されたクラスタ・イオンαQを加速して
これをイオン化されていない中性クラスタ(L!19と
共に薄膜形成用基板(18) C衝突させて薄膜を蒸着
させる加速手段すなわち加速電極であり、これは電子引
き出し電極Qlとの間に電位を印加できる構造となって
いる。なお、(至)は1速電極(1荀を支持する絶縁支
持部材、のは基板(1g+を支持する基板ホルダー、(
2)1は該基板ホルダー圏を支持する絶縁支持部材、α
力はクラスタ・イオンulと中性クラスタa9とからな
るクラスタ・ビームである。
+91 is an ionization filament that emits thermionic electrons (13) for ionization, αl is an electron extraction electrode that accelerates thermionic electrons (0) emitted from the ionization filament T91, α
υ is a heat shield plate that blocks radiant heat from the ionized filament (91);
J, due to the electron extraction electrode part and heat shield temporary residence υ,
An ionization means housing for ionizing the clusters from the thin film deposition source 181 is formed. An edict, (ha)
is an insulating support member that supports the heat shield plate αυ. 0
is an accelerating means, that is, an accelerating electrode, which accelerates the ionized cluster ion αQ and causes it to collide with the non-ionized neutral cluster (L!19) on the thin film forming substrate (18) C to deposit a thin film; This has a structure that allows a potential to be applied between it and the electron extraction electrode Ql. Note that (to) is the insulating support member that supports the 1-speed electrode (1g+), and the substrate (substrate holder that supports 1g+) (
2) 1 is an insulating support member that supports the substrate holder area, α
The force is a cluster beam consisting of cluster ions ul and neutral cluster a9.

次に動作について説明する。Next, the operation will be explained.

基板餞に弗化鉛薄膜を蒸着形成する場合について説明す
ると、まず弗化鉛【5:をるつぼ(4)内に充填し、上
記真空排気装置により真空槽111内の空気を排気して
該真空槽(1)円を10 Torr程度の真空度C:す
る。次いで、加熱用フィラメント(61に通電して発熱
せしめ、該加熱用フィラメント(6]からの輻射熱によ
り、または該フィラメント(61から放出される熱電子
をるつぼ(41に衝突させると、即ち電子衝撃によって
、該るつぼ(41内の弗化鉛(5)を加熱し蒸発せしめ
る。そして該るつぼ(41内が弗化鉛(5)の蒸気圧が
0.1〜数IQTorr程度になる温度::昇温すると
、ノズル(41)から噴出した蒸気は、るつぼ(4)と
真空槽(1)との圧力差により断熱膨張してクラスタと
呼ばれる多数の原子が緩く結合した塊状原子集団となる
To explain the case of forming a lead fluoride thin film on a substrate by vapor deposition, first, lead fluoride [5] is filled into a crucible (4), and the air in the vacuum chamber 111 is evacuated by the vacuum evacuation device to remove the vacuum. The tank (1) is vacuumed to a degree of vacuum of approximately 10 Torr. Next, the heating filament (61) is energized to generate heat, and the thermoelectrons emitted from the heating filament (6) collide with the crucible (41), that is, by electron impact. , the lead fluoride (5) in the crucible (41) is heated and evaporated.Then, the temperature is increased so that the vapor pressure of the lead fluoride (5) in the crucible (41) is about 0.1 to several IQ Torr. Then, the steam ejected from the nozzle (41) expands adiabatically due to the pressure difference between the crucible (4) and the vacuum chamber (1), and becomes a massive atomic group called a cluster, in which many atoms are loosely bonded.

このクラスタ・ビームαηは、イオン化フィラメント(
9)から電子引き出し電極Qlによって引き出された熱
電子0と衝突するため、その一部のクラスタはそのうち
の1個の原子がイオン化されてクラスタ・イオンαeと
なる。このクラスタ・イオン(1119は加速電極Iと
電子引き出し電極αqとの間に形成された電界により適
度に加速され、イオン化されていない中性クラスタ霞が
るつぼ(4)から噴射される時運動エネルギーでもって
基板(1&に衝突するのと共に基板αgに衝突し、これ
により該基板(181上に弗化鉛薄膜が蒸着形成される
This cluster beam αη is formed by an ionized filament (
9) collides with the thermoelectron 0 extracted by the electron extraction electrode Ql, so one atom of some of the clusters is ionized and becomes a cluster ion αe. These cluster ions (1119) are moderately accelerated by the electric field formed between the accelerating electrode I and the electron extraction electrode αq, and when the non-ionized neutral cluster haze is injected from the crucible (4), it has kinetic energy. As a result, the lead fluoride thin film is deposited on the substrate (181) by colliding with the substrate (1&) and the substrate αg.

ここで形成される薄膜の密度及び基板に対する付着力は
、加速電圧を高くしイオン電流を多くするにつれて大き
くなる。
The density of the thin film formed here and the adhesion force to the substrate increase as the accelerating voltage increases and the ion current increases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、加速電圧を高くし、イオン電流を多くすると
、蒸着される薄膜が絶縁性であるため、イオンによるチ
ャージアップが生じ部分的な放電のため、膜質の均一性
がそこなわれ、例えば弗化鉛を用いた赤外線用の透過膜
Cついては、付着力と透過特性の両方の特性を同時に満
足するような薄膜は形成できないという問題点を有して
いた。
However, when the accelerating voltage is increased and the ion current is increased, the thin film to be deposited is insulating, so charge-up due to ions occurs and partial discharge occurs, which impairs the uniformity of the film quality. The infrared transmission film C using lead has a problem in that it is impossible to form a thin film that satisfies both adhesion and transmission characteristics at the same time.

この発明は上記のような問題点を解消するためになされ
たもので、イオンを用いた蒸着C:より絶縁性薄膜を形
成する場合≦:、絶縁性薄膜上Cニイオンがチャージア
ップするのを防ぎ、放電が起こらないような状態を作る
ことにより、均質な絶縁性薄膜を形成する装置およびそ
の方法を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to prevent the charge-up of C ions on an insulating thin film by vapor deposition using ions when forming a more insulating thin film. An object of the present invention is to provide an apparatus and method for forming a homogeneous insulating thin film by creating a condition in which no discharge occurs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る絶縁性薄膜形成装置は、蒸着原料を噴出す
る薄膜蒸着源、この薄膜蒸着源2:対向して配置された
薄膜形成用基板、上記蒸着原料をイオン化するイオン化
手段、イオン化された上記蒸着原料を加速して上記薄膜
形成用基板C:衝突させる加速手段、および上記薄膜形
成用基板1:電子を照射して上記イオン化された蒸着原
料のイオンによるチャージアップを減少させる電子発生
手段を真空槽内に備えたものである。
An insulating thin film forming apparatus according to the present invention includes a thin film deposition source that spouts out a vapor deposition raw material, a thin film deposition source 2: a thin film forming substrate disposed opposite to each other, an ionization unit that ionizes the vapor deposition raw material, and an ionized thin film deposition source that ejects a vapor deposition raw material. An accelerating means for accelerating the vapor deposition raw material to collide with the thin film forming substrate C: and an electron generating means for irradiating electrons to reduce the charge-up due to ions of the ionized vapor deposition raw material. It is provided inside the tank.

また、本発明の別の発明に係る絶縁性薄膜形成方法は、
蒸着原料を噴出する第1の工程、噴出した上記蒸着原料
をイオン化する第2の工程、イオン化した上記蒸着原料
を薄膜形成用基板に衝突するよう1:加速する第3の工
程、および上記薄膜形成用基板冨:電子を照射して上記
イオン化した蒸着原料のイオンC:よるチャージアップ
を減少させる第4の工程、以上の工程を真空中で施すこ
とにより上記薄膜形成用基板に上記蒸着原料を蒸着する
ものである。
Moreover, an insulating thin film forming method according to another invention of the present invention includes:
a first step of ejecting the vapor deposition raw material, a second step of ionizing the ejected vapor deposition raw material, a third step of accelerating the ionized vapor deposition raw material so that it collides with the thin film forming substrate, and the thin film formation. A fourth step of reducing the charge-up due to ions C of the ionized vapor deposition raw material by irradiating the substrate with electrons, and depositing the vapor deposition raw material on the thin film forming substrate by performing the above steps in a vacuum. It is something to do.

〔作用〕[Effect]

本発明::おける薄膜形成用基板に照射される電子は、
上記薄膜形成用基板上におけるイオンを薄膜形成時に中
性化することにより絶縁性薄膜形成時におけるチャージ
アップを減少させ、膜質を均質化できる。
The electrons irradiated onto the thin film forming substrate in the present invention:
By neutralizing the ions on the thin film forming substrate during forming the thin film, charge-up during forming the insulating thin film can be reduced and the film quality can be made homogeneous.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第1
図において、■は電子銃であり、フィラメント(26a
)とアノード(26b)からなる。■は電子引き出し電
極であり、■はこれら電子銃(261よび電子引き出し
電極(5)よりなる電子発生手段である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, ■ is an electron gun, and the filament (26a
) and an anode (26b). (2) is an electron extraction electrode, and (2) is an electron generating means consisting of these electron guns (261) and the electron extraction electrode (5).

次(−動作について説明する。Next (-Explain the operation.

クラスタ・イオンビーム住ηの発生法は従来法と同様で
あり、これと並行するかたちで電子(至)を発生させ基
板(181上の絶縁性薄膜形成領域全体!=照射する。
The method of generating the cluster ion beam is the same as the conventional method, and in parallel, electrons are generated and the entire insulating thin film formation region on the substrate (181) is irradiated.

電子c!Iを発生するf二はフィラメント(26a)を
加熱し、このフィラメント(26a)とアノード(26
b)間に数lO〜数100v程度の電圧を印加すればよ
く、更に電子引き出し電極−とフィラメント(26b)
間C:も数10〜1000 V程度の電圧を印加すれば
、電子(至)は基板al上の絶縁性薄膜形成領域全体に
照射される。
Electronic c! f2 that generates I heats the filament (26a), and this filament (26a) and the anode (26
b) It is sufficient to apply a voltage of several lO to several hundreds of volts between the electron extraction electrode and the filament (26b).
When a voltage of about several 10 to 1000 V is applied, electrons are irradiated onto the entire insulating thin film formation region on the substrate Al.

電子(至)の照射は絶縁性薄膜蒸着中に同時C:行なわ
れ、かつクラスタ・イオンtteの量と同量もしくはそ
れ以上の量の電子(ハ)を照射するのが望ましく、基板
αa上に形成される絶縁性薄膜上でのチャージアップを
防ぎ、放電か発生し得ない状態で絶縁性薄膜を形成する
ことができる。
The irradiation of electrons (C) is carried out simultaneously during the deposition of the insulating thin film, and it is desirable to irradiate the same amount of electrons (C) as the amount of cluster ions tte or more. Charge-up on the insulating thin film to be formed can be prevented, and the insulating thin film can be formed in a state where discharge cannot occur.

第1表に本方法を用いて硫化亜鉛基板上に形成した弗化
鉛薄膜の形成条件及び形成された薄膜の特性を従来の方
法と比較して示す。表から明らかなように、本方法を用
いることで、弗化錯形成時C:弗化鉛薄膜上でのイオン
のチャージアップが解消され、基板全面にわたり均質な
薄膜が形成され、付着力と透過特性の両方の特性を同時
(−満足する弗化鉛薄膜を得ることができ、この薄膜は
光学デバイスなどに用いることができる。
Table 1 shows the formation conditions of a lead fluoride thin film formed on a zinc sulfide substrate using this method and the characteristics of the formed thin film in comparison with a conventional method. As is clear from the table, by using this method, the charge-up of ions on the lead fluoride thin film during fluoride complex formation is eliminated, and a homogeneous thin film is formed over the entire surface of the substrate, resulting in improved adhesion and permeability. It is possible to obtain a lead fluoride thin film that satisfies both properties simultaneously, and this thin film can be used for optical devices and the like.

第   1   表 なお、上記実施例では噴出された蒸着原料がクラスタを
形成しているクラスタイオンビーム蒸着法にこの発明を
適用した場合について説明したが、例えばイオンビーム
デポジションなど他のイオンビームを用いた蒸着法にも
適用できるのは明白である。
Table 1 Note that in the above embodiments, the present invention was applied to a cluster ion beam evaporation method in which the ejected evaporation raw material forms clusters, but other ion beams such as ion beam deposition may also be used. It is obvious that the present invention can also be applied to other vapor deposition methods.

また、上記実施例では蒸着原料が弗化鉛の場合について
説明したが、例えば二酸化硅素や亜鉛など他の絶縁物で
あっても上記実施例と同様の効果が得られる。
Further, in the above embodiments, the case where the vapor deposition raw material is lead fluoride has been described, but the same effects as in the above embodiments can be obtained even if other insulating materials such as silicon dioxide or zinc are used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、蒸着原料を噴出する
薄膜蒸着源、この薄膜蒸着源に対向して配置された薄膜
形成用基板、上記蒸着原料をイオン化するイオン手段、
イオン化された上記蒸着原料を加速しで上記薄膜形成用
基板に衝突させる加速手段、および上記薄膜形成用基板
に電子を照射して上記イオン化された蒸着原料のイオン
によるチャージアップを減少させる電子発生手段を真空
槽内C:備えたので、均質な絶縁性薄膜が得られる効果
がある。
As described above, according to the present invention, there is provided a thin film deposition source that spouts out a vapor deposition raw material, a thin film forming substrate disposed opposite to the thin film deposition source, an ion means for ionizing the vapor deposition raw material,
Accelerating means for accelerating the ionized vapor deposition raw material to collide with the thin film forming substrate; and electron generating means for irradiating the thin film forming substrate with electrons to reduce charge-up of the ionized vapor deposition raw material due to ions. C: in the vacuum chamber, it is effective to obtain a homogeneous insulating thin film.

また、本発明の別の発明によれば、蒸着原料を噴出する
第1の工程、噴出した上記蒸着原料をイオン化する第2
の工程、イオン化した上記蒸着原料を薄膜形成用基板に
衝突するように加速する第3の工程、および上記薄膜形
成用基板に電子を照射して上記イオン化した蒸着原料の
イオンによるチャージアップを減少させる第4の工程、
以上の工程を真空中で施すことにより上記薄膜形成用基
板に上記蒸着原料を蒸着するので、均質な絶縁性薄膜が
得られる効果がある。
According to another aspect of the present invention, the first step is to blow out the vapor deposition raw material, and the second step is to ionize the spouted vapor deposition material.
a third step of accelerating the ionized vapor deposition raw material so that it collides with the thin film forming substrate, and irradiating the thin film forming substrate with electrons to reduce charge-up of the ionized vapor deposition raw material due to ions. The fourth step,
By carrying out the above steps in a vacuum, the vapor deposition raw material is vapor-deposited onto the thin film forming substrate, so that a homogeneous insulating thin film can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成断面図、第2図
は従来の絶縁性薄膜形成装置を示す構成断面図、第3図
は第2図の主要部を一部断面で示す斜視図である。 図において、[11は真空槽、(4)は密閉形るつぼ、
(5)は蒸着原料、(6)は加熱用フィラメント、(7
)は熱シールド板、(81は薄膜蒸着源、191はイオ
ン化フィラメント、Q(1は電子引き出し電極、αυは
熱シールド板、αりはイオン化手段、Iは加速電極、(
181は薄膜形成用基板、■は電子銃、(2)は電子引
き出し電極、(ハ)は電子発生手段、(至)は電子であ
る。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a conventional insulating thin film forming apparatus, and FIG. 3 is a perspective view partially showing the main parts of FIG. 2. It is a diagram. In the figure, [11 is a vacuum chamber, (4) is a closed crucible,
(5) is a vapor deposition raw material, (6) is a heating filament, (7
) is a heat shield plate, (81 is a thin film deposition source, 191 is an ionization filament, Q (1 is an electron extraction electrode, αυ is a heat shield plate, α is an ionization means, I is an accelerating electrode, (
181 is a substrate for forming a thin film, (2) is an electron gun, (2) is an electron extraction electrode, (C) is an electron generating means, and (to) is an electron. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)蒸着原料を噴出する薄膜蒸着源、この薄膜蒸着源
に対向して配置された薄膜形成用基板、上記蒸着原料を
イオン化するイオン化手段、イオン化された上記蒸着原
料を加速して上記薄膜形成用基板に衝突させる加速手段
、および上記薄膜形成用基板に電子を照射して上記イオ
ン化された蒸着原料のイオンによるチャージアップを減
少させる電子発生手段を真空槽内に備えた絶縁性薄膜形
成装置。
(1) A thin film deposition source that spouts out a vapor deposition source, a thin film forming substrate placed opposite to the thin film deposition source, an ionization unit that ionizes the vapor deposition raw material, and an ionized vapor deposition source that is accelerated to form the thin film. An insulating thin film forming apparatus comprising, in a vacuum chamber, an accelerating means for colliding the thin film forming substrate with electrons, and an electron generating means for irradiating the thin film forming substrate with electrons to reduce charge-up due to ions of the ionized vapor deposition raw material.
(2)噴出された蒸着原料はクラスタを形成している特
許請求の範囲第1項記載の絶縁性薄膜形成装置。
(2) The insulating thin film forming apparatus according to claim 1, wherein the ejected vapor deposition raw material forms clusters.
(3)薄膜形成用基板に照射する電子の量はイオン化さ
れた蒸着原料の量以上である特許請求の範囲第1項また
は第2項記載の絶縁性薄膜形成装置。
(3) The insulating thin film forming apparatus according to claim 1 or 2, wherein the amount of electrons irradiated onto the thin film forming substrate is greater than or equal to the amount of ionized vapor deposition raw material.
(4)蒸着原料を噴出する第1の工程、噴出した上記蒸
着原料をイオン化する第2の工程、イオン化した上記蒸
着原料を薄膜形成用基板に衝突するように加速する第3
の工程、および上記薄膜形成用基板に電子を照射して上
記イオン化した蒸着原料のイオンによるチャージアップ
を減少させる第4の工程、以上の工程を真空中で施すこ
とにより上記薄膜形成用基板に上記蒸着原料を蒸着する
絶縁性薄膜形成方法。
(4) A first step of spewing out the vapor deposition raw material, a second step of ionizing the spouted vapor deposition raw material, and a third step of accelerating the ionized vapor deposition raw material so that it collides with the thin film forming substrate.
and a fourth step of irradiating the thin film forming substrate with electrons to reduce charge-up due to ions of the ionized vapor deposition raw material. By performing the above steps in a vacuum, the thin film forming substrate has the above described A method for forming an insulating thin film by evaporating a deposition raw material.
(5)噴出した蒸着原料はクラスタを形成している特許
請求の範囲第4項記載の絶縁性薄膜形成方法。
(5) The insulating thin film forming method according to claim 4, wherein the ejected vapor deposition raw material forms clusters.
(6)薄膜形成用基板に照射する電子の量はイオン化し
た蒸着原料の量以上である特許請求の範囲第4項または
第5項記載の絶縁性薄膜形成方法。
(6) The insulating thin film forming method according to claim 4 or 5, wherein the amount of electrons irradiated onto the thin film forming substrate is greater than or equal to the amount of ionized vapor deposition raw material.
JP8786685A 1985-04-24 1985-04-24 Apparatus and method for forming insulative thin film Pending JPS61247036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8786685A JPS61247036A (en) 1985-04-24 1985-04-24 Apparatus and method for forming insulative thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8786685A JPS61247036A (en) 1985-04-24 1985-04-24 Apparatus and method for forming insulative thin film

Publications (1)

Publication Number Publication Date
JPS61247036A true JPS61247036A (en) 1986-11-04

Family

ID=13926797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8786685A Pending JPS61247036A (en) 1985-04-24 1985-04-24 Apparatus and method for forming insulative thin film

Country Status (1)

Country Link
JP (1) JPS61247036A (en)

Similar Documents

Publication Publication Date Title
US4812326A (en) Evaporation source with a shaped nozzle
US5100526A (en) Apparatus for forming thin film
JP2501828B2 (en) Thin film deposition equipment
GB2248340A (en) Thin film deposition apparatus
JPS61247036A (en) Apparatus and method for forming insulative thin film
JP2000144392A (en) Thin film forming device and formation of thin film
JP2755499B2 (en) Thin film forming equipment
KR900008155B1 (en) Method and apparatus for forming a thin fim
JPS6329925A (en) Forming device for compound thin-film
JPS60125368A (en) Vapor deposition device for thin film
JP2812517B2 (en) Ion plating method and apparatus
JPH05339720A (en) Device for formation of thin film
JPS60124915A (en) Thin film deposition equipment
JPH0390567A (en) Thin film forming device
JPS60124931A (en) Device for vapor deposition of thin film
JPH0719746B2 (en) Thin film deposition equipment
JPS60124932A (en) Device for vapor deposition of thin film
JPS63213338A (en) Device for forming compound thin film
JPS60124916A (en) Device for vapor deposition of thin film
JPH0215629B2 (en)
JPS6215815A (en) Thin film evaporating apparatus
JPS60124923A (en) Device for vapor deposition of thin film
JPH0543783B2 (en)
JPH0352533B2 (en)
JPS6218019A (en) Thin-film evaporating device