JPS61247033A - Taper etching method - Google Patents

Taper etching method

Info

Publication number
JPS61247033A
JPS61247033A JP8775385A JP8775385A JPS61247033A JP S61247033 A JPS61247033 A JP S61247033A JP 8775385 A JP8775385 A JP 8775385A JP 8775385 A JP8775385 A JP 8775385A JP S61247033 A JPS61247033 A JP S61247033A
Authority
JP
Japan
Prior art keywords
gas
etching
mask
oxygen
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8775385A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Arikado
経敏 有門
Haruo Okano
晴雄 岡野
Keiji Horioka
啓治 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8775385A priority Critical patent/JPS61247033A/en
Publication of JPS61247033A publication Critical patent/JPS61247033A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a tapered etching shape without dimensional conversion error by using mixture gas of etching gas containing halogen atoms oxidative gas containing accumulating gas and oxygen for generating a deposited film by discharge. CONSTITUTION:A sample 24 of a substrate 11 to be treated and formed with an etching mask 12 is placed on one of parallel flat plate electrodes 22, 23, CHF3 gas is fed into a vessel 21, a high frequency power is applied to generate a discharge plasma. A resist 13 is removed by another oxygen plasma asher different from a device. Subsequently, the sample is again disposed in the vessel 21, etched by applying a high frequency power in chlorine as etching gas and methane as accumulating gas. Thus, a polymer film (accumulated film) 14 is gradually adhered to the mask 12 and the etched side wall, and a tapered etching groove 15 is formed together. It can prevent the extension 16 of the end of the mask in a large drawing pattern from generating due to the mixture of the oxygen gas.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ドライエツチング方法の改良に係わり、特に
被処理基体をテーパを付けてエツチングするテーパエツ
チング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in dry etching methods, and particularly to a taper etching method for etching a substrate in a tapered manner.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体集積回路の微細化に伴い、反応性イオンエ
ツチング技術が導入され、レジストパターンに沿った垂
直なエツチング形状が達成されるようになっている。し
かし、工程によっては、例えば2層ポリシリコンプロセ
スにおける第1ポリシリコンや埋込み型素子分離領域形
成における単結晶3i等のエツチングにおいては、垂直
よりもむしろテーパを付けることが望ましい場合がおる
In recent years, with the miniaturization of semiconductor integrated circuits, reactive ion etching technology has been introduced, and a vertical etched shape along a resist pattern has been achieved. However, depending on the process, for example, when etching the first polysilicon in a two-layer polysilicon process or the single crystal 3i in forming a buried element isolation region, it may be desirable to form the etching tapered rather than vertically.

反応性イオンエツチング装置を用いてテーパ加工する方
法として、エツチング用ガスにエタンやメタン等の炭化
水素ガスを添加し、炭化水素ガスによるポリマーの堆積
とエツチングとを同時に起こす方法が提案されている(
君塚他、第29回春季応物連合講演会予稿集P、3B1
.2ad5.1982 ”)。
As a method for taper processing using a reactive ion etching device, a method has been proposed in which a hydrocarbon gas such as ethane or methane is added to the etching gas to cause polymer deposition and etching by the hydrocarbon gas at the same time (
Kimizuka et al., Proceedings of the 29th Spring Joint Conference on Biological Sciences P, 3B1
.. 2ad5.1982”).

この方法でテーパの形成されるメカニズムを第3図を参
照して簡単に説明する。
The mechanism by which a taper is formed by this method will be briefly explained with reference to FIG.

第3図(a>に示す如<Si基板31上には、予めエツ
チングマスク材として5i02膜32が形成されている
ものとする。これを、真空容器内に対向配置された平行
平板電極の一方の電極上に配置する。その後、容器内に
例えば塩素とメタンとの混合ガスを導入し、電極間に高
周波電力を印加して放電を生起すると、まずメタンが重
合し、第3図(b)に示す如く全面にポリエチレン膜3
4が堆積する。これと同時にイオン衝撃があるので、第
3図(C)に示す如く表面上に堆積したポリエチレン膜
34は破壊され、この部分でのエツチングは進む。しか
し、イオンが入射しないパターンの側壁のポリエチレン
膜34は破壊されずに残留する。従って、次のエツチン
グは、ポリエチレン膜34の膜厚弁だけパターン端部か
ら離れたところで起こる。このようなプロセスの繰返し
によって、第3図(d)に示す如<S+のエツチング断
面にテーパが形成される。なお、このテーパ角度は、デ
ポジションとエツチングの起こる比率、即ち塩素とメタ
ンとの混合比により選択することができる。
As shown in FIG. 3(a), it is assumed that a 5i02 film 32 is previously formed on the Si substrate 31 as an etching mask material. Then, when a mixed gas of, for example, chlorine and methane is introduced into the container and high frequency power is applied between the electrodes to generate a discharge, methane will first polymerize, as shown in Figure 3(b). As shown in the figure, the entire surface is covered with a polyethylene film 3.
4 is deposited. At the same time, since there is an ion bombardment, the polyethylene film 34 deposited on the surface is destroyed as shown in FIG. 3(C), and etching progresses in this area. However, the polyethylene film 34 on the sidewall of the pattern where ions are not incident remains undestructed. Therefore, the next etch occurs a thickness valve of polyethylene film 34 away from the pattern edge. By repeating this process, a taper is formed in the etched cross section of <S+ as shown in FIG. 3(d). Note that this taper angle can be selected depending on the ratio at which deposition and etching occur, that is, the mixing ratio of chlorine and methane.

しかしながら、この種の方法にめっでは次のような問題
があった。即ち、テーパ角度がパターンのサイズに依存
すると共に、第4図(a)に示す如く小さな扱きパター
ンではマスクの端部からテーパが付くのに対し、同図(
b)に示す如く大きな汰きパターンではマスクの端部よ
り少し離れたところからテーパが付く。つまり、マスク
の端部近傍に出っ張り(未エツチング部)36が生じる
However, this type of method often has the following problems. That is, the taper angle depends on the size of the pattern, and while a small pattern as shown in FIG. 4(a) tapers from the edge of the mask,
As shown in b), in a large pattern, the mask tapers from a little distance from the edge. In other words, a protrusion (unetched portion) 36 is generated near the end of the mask.

このような形状は、寸法変換誤差の原因となるため、好
ましくないものでおる。
Such a shape is undesirable because it causes a dimensional conversion error.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、パターンサイズに起因する寸法変換誤
差を生じることなく、テーパ状のエツチング形状を得る
ことのできるテーパエツチング方法を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a taper etching method that can obtain a tapered etched shape without causing dimensional conversion errors due to pattern size. There is a particular thing.

【 〔発明の概要〕[ [Summary of the invention]

本発明の骨子は、テーパエツチングする際のがスとして
、新たに酸素を含有するガスを付加することにより、パ
ターンサイズの大きい場合に生じるマスク端部の出っ張
りを除去することにある。
The gist of the present invention is to remove protrusions at the edges of the mask that occur when the pattern size is large by adding a new oxygen-containing gas as a gas during taper etching.

本発明者等が鋭意研究を行った結果、テーパ角度のパタ
ーン依存性は、一種のローディング効果であることが判
った。即ち、小さな扱きパターンでは、エツチング面積
がマスク面積に比較して少なく、一方大きな扱きパター
ンではエツチング面積がマスク面積に比較して非常に大
きい。このた。
As a result of intensive research conducted by the present inventors, it was found that the pattern dependence of the taper angle is a type of loading effect. That is, for a small treated pattern, the etched area is small compared to the mask area, while for a large treated pattern, the etched area is very large compared to the mask area. others.

め、エツチング面積近傍での塩素とメタンとの濃度比は
、大きな扱きパターン程メタンが豊富な状態、つまり堆
積が起こり易い雰囲気となっている。
Therefore, the concentration ratio of chlorine and methane in the vicinity of the etching area is such that the larger the pattern, the more methane is present, ie, the atmosphere is more likely to cause deposition.

ざらに、マスクであるS i 02等の酸化膜もエツチ
ングされ酸素を放出する。大きな汰きパターンでは上述
の如くマスク面積が小さいために、放出酸素量が少ない
。酸素は、エツチング面近傍のメタンを酸化する作用を
有する。この酸素量が少ないと云うことも、大きな扱き
パターンで堆積が起こり易い原因の一つとなっていてる
Roughly, the oxide film such as S i 02 which is a mask is also etched and releases oxygen. In the case of a large grading pattern, since the mask area is small as described above, the amount of released oxygen is small. Oxygen has the effect of oxidizing methane near the etching surface. This low amount of oxygen is also one of the reasons why deposits tend to occur in large handling patterns.

また、マスクとして5i02等の絶縁膜を用いた場合、
マスク自体が帯電し被エツチング面に入射するイオンを
曲げる虞れがある。特に、大きな扱きパターンでは、パ
ターン側壁の近傍において該近傍のパターン側壁からの
影響を強く受け、イオンが大きく曲げられる。この問題
も、パターンサイズにより寸法変換誤差を生じる原因と
考えられる。
In addition, when using an insulating film such as 5i02 as a mask,
There is a risk that the mask itself will become electrically charged and bend the ions incident on the surface to be etched. In particular, in the case of a large handling pattern, the ions in the vicinity of the pattern sidewalls are strongly influenced by the nearby pattern sidewalls, and the ions are greatly bent. This problem is also considered to be a cause of dimensional conversion errors depending on the pattern size.

従って、テーパ角度のパターン依存性をなくするために
は、大きな汰きパターンにおける酸素濃度を上げること
が考えられ、酸化性ガスを少量添加すればよりことにな
る。そこで本発明では、工ッチング用ガスと炭化水素等
の堆積用ガスに加え、第3のガスとして酸化性ガスを添
加することを特徴とする。
Therefore, in order to eliminate the pattern dependence of the taper angle, it is possible to increase the oxygen concentration in a large taper pattern, and it is even more effective if a small amount of oxidizing gas is added. Therefore, the present invention is characterized in that, in addition to the etching gas and the deposition gas such as hydrocarbon, an oxidizing gas is added as a third gas.

即ち本発明は、被処理面上にエツチングマスクが形成さ
れた被処理基体を一対の電極間に配置し、これらの電極
間に所定のガスを導入すると共に、該電極間に放電を生
起して上記被処理基体をテーパ状にエツチングするテー
パエツチング方法において、前記ガスとして、ハロゲン
原子を含有するエツチング用ガス、放電により堆積膜を
生成する堆積用ガス及び酸素を含有する酸化性ガスの混
合ガスを用いるようにした方法である。
That is, in the present invention, a substrate to be processed having an etching mask formed on the surface to be processed is placed between a pair of electrodes, a predetermined gas is introduced between these electrodes, and a discharge is generated between the electrodes. In the taper etching method for etching the substrate to be processed into a tapered shape, the gas is a mixed gas of an etching gas containing halogen atoms, a deposition gas that generates a deposited film by electric discharge, and an oxidizing gas containing oxygen. This is the method used.

[発明の効果] 本発明によれば、酸化性ガスの添加により、特に大きな
汰きパターンにおける酸素濃度を十分に大きくすること
ができ、マスク端部の堆積膜をエツチングすることがで
きる。このため、マスクの端部の出っ張りを除去するこ
とができる。従って、パターン寸法変換誤差を著しく低
減することができ、微細化及び高集積化に有効である。
[Effects of the Invention] According to the present invention, by adding an oxidizing gas, it is possible to sufficiently increase the oxygen concentration particularly in a large pattern, and the deposited film at the edge of the mask can be etched. Therefore, protrusions at the ends of the mask can be removed. Therefore, pattern size conversion errors can be significantly reduced, which is effective for miniaturization and high integration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図(a)〜(e)は本発明の一実施例に係わるテー
パエツチング工程を示す断面図である。
FIGS. 1(a) to 1(e) are sectional views showing a taper etching process according to an embodiment of the present invention.

まず、第1図(a)に示す如く面方位(100)のP型
Si基板11を1000 [’C]で湿式酸化し、基板
11上にマスク材としてのS i 02膜12を形成し
た。続いて、このSiO2膜12上にポジ型フォトレジ
スト13を塗布し、このレジスト13をパターニングし
てレジストパターンを形成した。ここで、レジストパタ
ーンには、小さい抜きパターン大きな扱きパターンの双
方を形成した。
First, as shown in FIG. 1(a), a P-type Si substrate 11 with a plane orientation (100) was wet-oxidized at 1000 ['C] to form an Si 02 film 12 as a mask material on the substrate 11. Subsequently, a positive photoresist 13 was applied onto this SiO2 film 12, and this resist 13 was patterned to form a resist pattern. Here, both a small punching pattern and a large handling pattern were formed in the resist pattern.

次いで、第2図に示す如きエツチング装置を用い、CH
F3ガスを用いた反応性イオンエツチングにより、S 
i 02膜12を選択エツチングし、マスクパターンを
形成した。その後、酸素プラズマアッシャ−によりレジ
スト13を除去して第1図(b)に示す形状を得た。
Next, using an etching apparatus as shown in FIG.
By reactive ion etching using F3 gas, S
The i02 film 12 was selectively etched to form a mask pattern. Thereafter, the resist 13 was removed using an oxygen plasma asher to obtain the shape shown in FIG. 1(b).

なお、第2図に示す装置は通常の反応性イオンエツチン
グ装置と同様であり、図中21は真空容器、22.23
は平行平板電極、24は試料、25はマツチング回路、
26は高周波電源、27はガス導入口、28はガス排気
口をそれぞれ示している。この装置を用いて上記エツチ
ングを行うには、まず第1図(a)に示す形状の試料2
4を平行平板電極22.23の一方に載置する。そして
、容器21内にCHF3ガスを導入すると共に、電極2
2.23間に高周波電力を印加して放電プラズマを生成
すればよい。また、上記レジスト13の除去は、容器2
1内から試料24を一旦取出した俊、上記装置とは別の
酸素プラズマアッシャ−を用いて行った。
The apparatus shown in FIG. 2 is similar to a normal reactive ion etching apparatus, and in the figure 21 is a vacuum vessel, 22.23
are parallel plate electrodes, 24 is a sample, 25 is a matching circuit,
26 is a high frequency power source, 27 is a gas inlet, and 28 is a gas exhaust port. To perform the above-mentioned etching using this apparatus, first, a sample 2 having the shape shown in FIG.
4 is placed on one of the parallel plate electrodes 22 and 23. Then, while introducing CHF3 gas into the container 21, the electrode 2
A discharge plasma may be generated by applying high frequency power between 2.23 and 2.23. In addition, the removal of the resist 13 is performed on the container 2.
Once the sample 24 was taken out from inside the sample 1, an oxygen plasma asher different from the above-mentioned apparatus was used.

次いで、第1図(b)に示す試料を再び第2図に示す装
置の容器21内に配置し、エツチング用ガスとしての塩
素30 [sccm] 、堆積用ガスとしてのメタン1
0 [sccm] 、m化性ガスとしての酸素2 [S
CCm] 、圧力0.15 [torr] 、高周波電
力800[W]で、90秒間エツチングを行った(条件
1)。また、上記条件1から酸素ガスを除いた条件2に
より、同様にエツチングを行った。
Next, the sample shown in FIG. 1(b) was again placed in the container 21 of the apparatus shown in FIG.
0 [sccm], oxygen 2 [S
CCm], pressure 0.15 [torr], and high frequency power 800 [W] for 90 seconds (condition 1). Etching was also performed in the same manner under Condition 2, except that oxygen gas was removed from Condition 1 above.

このエツチングにより、条件1.2共に第1図(C)(
d)に示す如くマスク12及びエツチング側壁には重合
膜(堆積膜)14が徐々に付着し、これと共にテーパ状
のエツチング溝15が形成された。但し、条件2では第
1図(d)に示す如く広い扱きパターンでマスクの端部
に出っ張り(未エツチング部)16が生じているのに対
し、条件1ではテーパ角度が立ってくるが大きな扱きパ
ターンであっても出っ張り16はない。つまり、酸素ガ
スの混入により、大きな抜きパターンにおけるマスク端
部の出っ張り発生を防止することが可能となる。
With this etching, both conditions 1 and 2 are shown in Figure 1 (C) (
As shown in d), a polymer film (deposited film) 14 gradually adhered to the mask 12 and the etching side wall, and a tapered etching groove 15 was formed together with this. However, under condition 2, as shown in FIG. 1(d), a protrusion (unetched part) 16 is generated at the edge of the mask due to the wide handling pattern, whereas under condition 1, the taper angle is large, but the pattern is large. Even in the pattern, there is no protrusion 16. In other words, it is possible to prevent the protrusion of the end portion of the mask in a large punched pattern due to the mixing of oxygen gas.

一方、酸素ガスを添加する代りに、メタンガスの量を少
なくした条件3では、第1図(e)に示す如くテーパ角
度が立ってくると共に、マスク端部の出っ張り16が小
さくなった。メタンガスの量を更に少なくすると、出っ
張り16は完全になくなるものの、エツチング断面が垂
直となり最早テーパエツチングとは言えなくなる。即ち
、テーパ形状を保持しながら大きな汰きパターンにおけ
るマスク端部の出っ張りを除去する効果は、前記酸素ガ
スを添加することによって始めて得られるのである。
On the other hand, under condition 3 in which the amount of methane gas was reduced instead of adding oxygen gas, the taper angle increased as shown in FIG. 1(e), and the protrusion 16 at the end of the mask became smaller. If the amount of methane gas is further reduced, the protrusion 16 will be completely eliminated, but the etched cross section will become vertical and it can no longer be called taper etching. That is, the effect of removing the protrusion at the edge of the mask in a large pattern while maintaining the tapered shape can only be obtained by adding the oxygen gas.

このように本実施例方法によれば、塩素及びメタンガス
を用いたテーパエツチングにおいて、酸素ガスを添加す
ることにより、マスク端部の出っ張りを除去することが
できる。このため、マスクパターンのサイズに起因する
寸法誤差を生じることなく、所望のテーパ形状を実現す
ることができる。また、上記酸素ガスの添加は、エツチ
ング終了時における重合膜の低減をはかり得る。このた
め、エツチング後に重合膜を除去する工程を単時間で行
うことができる。従って、テーパ断面が必要な各種エツ
チングに適用して絶大なる効果が得られる。
As described above, according to the method of this embodiment, by adding oxygen gas to taper etching using chlorine and methane gas, protrusions at the edges of the mask can be removed. Therefore, a desired tapered shape can be achieved without causing dimensional errors due to the size of the mask pattern. Furthermore, the addition of oxygen gas can reduce the amount of polymerized film at the end of etching. Therefore, the step of removing the polymer film after etching can be performed in a single hour. Therefore, great effects can be obtained when applied to various types of etching that require a tapered cross section.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記被エツチング物は81基板に限るもの
ではなく、ポリ3i膜、SiO2膜或いはA2膜に適用
することもできる。また、エツチング用ガスとしての塩
素の代りには、少なくともハロゲン原子を含有するガス
であればよい。
Note that the present invention is not limited to the embodiments described above. For example, the object to be etched is not limited to the 81 substrate, but may also be applied to a poly 3i film, a SiO2 film, or an A2 film. Further, instead of chlorine as the etching gas, any gas containing at least halogen atoms may be used.

さらに、堆積用ガスとしてのメタンの代りには、放電に
より堆積膜を生成するガスであればよく、メタン以外の
炭化水素或いは炭化水素化合物を用いることができる。
Furthermore, instead of methane as the deposition gas, any gas that can generate a deposited film by electric discharge may be used, and hydrocarbons or hydrocarbon compounds other than methane can be used.

また、上記ガスに添加する酸化性ガスとしては酸素に限
らず、一酸化炭素、二酸化炭素、亜酸化窒素、二酸化窒
素、二酸化イオウ、三酸化イオウ、水蒸気のいずれか一
つ、或いはこれらの複数種の混合ガスであってもよい。
In addition, the oxidizing gas to be added to the above gas is not limited to oxygen, but any one of carbon monoxide, carbon dioxide, nitrous oxide, nitrogen dioxide, sulfur dioxide, sulfur trioxide, and water vapor, or multiple types thereof. It may be a mixed gas.

また、エツチング装置は第2図の構成に同等限定される
ものではなく、適宜変更可能である。その他、本発明の
要旨を逸脱しない範囲で、種々変形して実施することが
できる。
Further, the etching apparatus is not limited to the configuration shown in FIG. 2, but can be modified as appropriate. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例に係わるテー
パエツチング工程を示す断面図、第2図は上記実施例方
法に使用した反応性イオンエツチング装置の概略構成を
示す断面図、第3図(a)〜(d)はテーパエツチング
のメカニズムを説明するための断面図、第4図(a)(
b)は従来の問題点を説明するための断面図である。 11・・・3i基板(被エツチング物)、12・・・S
iO2膜(マスク)、13・・・レジスト、14・・・
重合膜(堆積膜)、15・・・エツチング溝、16・・
・出っ張り(未エツチング部)、21・・・真空容器、
22.23・・・平行平板電極、24・・・試料、25
・・・マツチング回路、26・・・高周波電源、27・
・・ガス導入口、28・・・ガス排気口。 出願人代理人 弁理士 鈴江武彦 第1図 ^               ^ −、Ω          0
FIGS. 1(a) to (e) are cross-sectional views showing a taper etching process according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a schematic configuration of a reactive ion etching apparatus used in the method of the above embodiment. , FIGS. 3(a) to 3(d) are cross-sectional views for explaining the mechanism of taper etching, and FIG. 4(a)(
b) is a sectional view for explaining the conventional problems. 11...3i substrate (object to be etched), 12...S
iO2 film (mask), 13... resist, 14...
Polymer film (deposited film), 15... Etching groove, 16...
・Protrusion (unetched part), 21... vacuum container,
22.23... Parallel plate electrode, 24... Sample, 25
...Matching circuit, 26...High frequency power supply, 27.
...Gas inlet, 28...Gas exhaust port. Applicant's agent Patent attorney Takehiko Suzue Figure 1 ^ ^ -, Ω 0

Claims (5)

【特許請求の範囲】[Claims] (1)被処理面上にエッチングマスクが形成された被処
理基体を一対の電極間に配置し、これらの電極間に所定
のガスを導入すると共に、該電極間に放電を生起して上
記被処理基体をテーパ状にエッチングするテーパエッチ
ング方法において、前記ガスとして、ハロゲン原子を含
有するエッチング用ガス、放電により堆積膜を生成する
堆積用ガス及び酸素を含有する酸化性ガスの混合ガスを
用いたことを特徴とするテーパエッチング方法。
(1) A substrate to be processed with an etching mask formed on the surface to be processed is placed between a pair of electrodes, a predetermined gas is introduced between these electrodes, and a discharge is generated between the electrodes to remove the etching mask. In a taper etching method for etching a treated substrate into a tapered shape, the gas is a mixed gas of an etching gas containing a halogen atom, a deposition gas that generates a deposited film by electric discharge, and an oxidizing gas containing oxygen. A taper etching method characterized by:
(2)前記エッチング用ガスとして、塩素を用いたこと
を特徴とする特許請求の範囲第1項記載のテーパエッチ
ング方法。
(2) The taper etching method according to claim 1, wherein chlorine is used as the etching gas.
(3)前記堆積用ガスとして、炭化水素或いは炭化水素
化合物を用いたことを特徴とする特許請求の範囲第1項
記載のテーパエッチング方法。
(3) The taper etching method according to claim 1, wherein a hydrocarbon or a hydrocarbon compound is used as the deposition gas.
(4)前記酸化性ガスとして、酸素、一酸化炭素、二酸
化炭素、亜酸化窒素、二酸化窒素、二酸化イオウ、三酸
化イオウ、水蒸気のいずれか一つ、或いはこれらの複数
種の混合ガスを用いたことを特徴とする特許請求の範囲
第1項記載のテーパエッチング方法。
(4) As the oxidizing gas, any one of oxygen, carbon monoxide, carbon dioxide, nitrous oxide, nitrogen dioxide, sulfur dioxide, sulfur trioxide, and water vapor, or a mixture of multiple types thereof was used. The taper etching method according to claim 1, characterized in that:
(5)前記一対の電極は、平行平板電極であることを特
徴とする特許請求の範囲第1項記載のテーパエッチング
方法。
(5) The taper etching method according to claim 1, wherein the pair of electrodes are parallel plate electrodes.
JP8775385A 1985-04-24 1985-04-24 Taper etching method Pending JPS61247033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8775385A JPS61247033A (en) 1985-04-24 1985-04-24 Taper etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8775385A JPS61247033A (en) 1985-04-24 1985-04-24 Taper etching method

Publications (1)

Publication Number Publication Date
JPS61247033A true JPS61247033A (en) 1986-11-04

Family

ID=13923699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8775385A Pending JPS61247033A (en) 1985-04-24 1985-04-24 Taper etching method

Country Status (1)

Country Link
JP (1) JPS61247033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239950A (en) * 1987-03-27 1988-10-05 Sony Corp Etching
JPH01127687A (en) * 1987-11-10 1989-05-19 Nippon Motoroola Kk Taper etching method for oxide layer
JP2011142306A (en) * 2009-11-30 2011-07-21 Soonwoo Cha Keyhole-free sloped heater for phase change memory
JP2011187988A (en) * 2003-06-13 2011-09-22 Sumitomo Precision Prod Co Ltd Method and apparatus for etching silicon and etched silicon body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239950A (en) * 1987-03-27 1988-10-05 Sony Corp Etching
JPH01127687A (en) * 1987-11-10 1989-05-19 Nippon Motoroola Kk Taper etching method for oxide layer
JP2011187988A (en) * 2003-06-13 2011-09-22 Sumitomo Precision Prod Co Ltd Method and apparatus for etching silicon and etched silicon body
JP2011142306A (en) * 2009-11-30 2011-07-21 Soonwoo Cha Keyhole-free sloped heater for phase change memory
US9082969B2 (en) 2009-11-30 2015-07-14 Micron Technology, Inc. Keyhole-free sloped heater for phase change memory

Similar Documents

Publication Publication Date Title
US4473435A (en) Plasma etchant mixture
US6569774B1 (en) Method to eliminate striations and surface roughness caused by dry etch
KR101144022B1 (en) Method for stripping photoresist from etched wafer
US6660644B2 (en) Plasma etching methods
US4615764A (en) SF6/nitriding gas/oxidizer plasma etch system
JP4648900B2 (en) Method for removing photoresist from a substrate
KR920010775B1 (en) Method of cleaning silicon surface
WO1995002076A1 (en) Method for forming thin film
US6465159B1 (en) Method and apparatus for side wall passivation for organic etch
JP2008135534A (en) Manufacturing method of semiconductor substrate comprising bottomed slot
WO2005055303A1 (en) Plasma etching method
US7183220B1 (en) Plasma etching methods
JPS61247033A (en) Taper etching method
JP2004111958A (en) Method of removing carbon from tera layer provided on substrate
JPS61247032A (en) Taper etching method
US6455232B1 (en) Method of reducing stop layer loss in a photoresist stripping process using a fluorine scavenger
JP2690860B2 (en) Method for anisotropic etching of semiconductor material
JPH0992640A (en) Plasma etching method
JP3865323B2 (en) Etching method and semiconductor device manufacturing method
JPH031825B2 (en)
JPH03196623A (en) Dry etching
JPH0467777B2 (en)
KR900006020B1 (en) Etching method for insulating film
JPH05217965A (en) Manufacture of semiconductor device
JPH0360032A (en) Dryetching