JPS6124694B2 - - Google Patents

Info

Publication number
JPS6124694B2
JPS6124694B2 JP51124186A JP12418676A JPS6124694B2 JP S6124694 B2 JPS6124694 B2 JP S6124694B2 JP 51124186 A JP51124186 A JP 51124186A JP 12418676 A JP12418676 A JP 12418676A JP S6124694 B2 JPS6124694 B2 JP S6124694B2
Authority
JP
Japan
Prior art keywords
electrolyte
acid
decoloring
heteropolyacids
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51124186A
Other languages
Japanese (ja)
Other versions
JPS5348986A (en
Inventor
Kenichi Nakamura
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12418676A priority Critical patent/JPS5348986A/en
Publication of JPS5348986A publication Critical patent/JPS5348986A/en
Publication of JPS6124694B2 publication Critical patent/JPS6124694B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、電気化学的酸化還元により消色発色
をさせる像表示素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an image display element that performs decoloring and coloring by electrochemical redox.

従来、三酸化タングステンWO3、三酸化モリ
ブデンMoO3、二酸化チタンTiO2等電気化学的酸
化還元により消色発色可能な金属酸化物を、酸化
スズ又は酸化インジウムの透明電極上に蒸着し、
対極に白金、金等の不活性金属あるいはカーボン
等を用いたいわゆるエレクトロクロミツク像表示
素子が知られている。
Conventionally, metal oxides such as tungsten trioxide WO 3 , molybdenum trioxide MoO 3 , and titanium dioxide TiO 2 that can be decolorized and colored by electrochemical redox are deposited on a transparent electrode of tin oxide or indium oxide.
So-called electrochromic image display elements are known in which an inert metal such as platinum, gold, or carbon or the like is used as a counter electrode.

この種素子の電解質としては、硫酸を主成分と
した、例えば硫酸水溶液、硫酸のグリセリン溶液
が、印加電圧が比較的低く、又応答速度が速いこ
とから、一般的に使用されている。
As the electrolyte for this type of element, a sulfuric acid aqueous solution or a sulfuric acid glycerin solution containing sulfuric acid as a main component is generally used because the applied voltage is relatively low and the response speed is fast.

上記の素子において、消色発色可能な金属酸化
物としてWO3を用いた場合、透明電極を対極に
対して負電位(還元)にすれば青色に発色する。
そして印加電圧の極性を逆にすればWO3膜は元
に戻る。この発色消色の機構については、まだ十
分に解明されていないが、次のような硫酸水溶液
との間で起こる電気化学的酸化還元反応によるも
のと考えられている。
In the above element, when WO 3 is used as a metal oxide capable of decoloring and developing color, a blue color develops when the transparent electrode is set at a negative potential (reduction) with respect to the counter electrode.
Then, by reversing the polarity of the applied voltage, the WO 3 film returns to its original state. Although the mechanism of color development and decolorization has not yet been fully elucidated, it is thought to be due to the following electrochemical redox reaction that occurs with an aqueous sulfuric acid solution.

即ち、発色はWO3中への硫酸溶液からのH+
オンの注入と電極からの電子の注入によるタング
ステンブロンズの生成によるものである。この機
構からすると、酸素引き抜きには硫酸からのプロ
トンの供与が必要であり、電解質は一般にプロト
ン供与体、即ち酸でなければならない。
That is, the color development is due to the formation of tungsten bronze due to the injection of H + ions from the sulfuric acid solution into WO 3 and the injection of electrons from the electrodes. According to this mechanism, oxygen abstraction requires proton donation from sulfuric acid, and the electrolyte must generally be a proton donor, ie, an acid.

本発明は、プロトン導電性固体電解質として、
比較的低い抵抗値(10-2〜10-3Ω-1・Cm-120
℃)を有するものとして知られているヘテロポリ
酸で総称される化合物を非水溶媒に溶解した液状
電解質を用いることにより、硫酸溶液を用いる場
合以上の速い応答速度を得るとともに、発色消色
に伴う寿命の改善を図るものである。
The present invention provides, as a proton conductive solid electrolyte,
Relatively low resistance value (10 -2 ~ 10 -3 Ω -1・Cm -1 20
By using a liquid electrolyte in which compounds collectively known as heteropolyacids, which are known to have a The aim is to improve lifespan.

ヘテロポリ酸としては、リンモリブデン酸H3
〔PMo12O40〕・30H2O、リンタングステン酸H3
〔PW12O40〕・29H2Oが一般的であり、それぞれ
〔PMo12O403-、〔PW12O403-る巨大アニオンと、
H+イオンを水素結合を介してその中心にとり込
んだ水分子クラスターから構成されたイオン結晶
であり、H+イオンは、この水分子クラスター中
を移動する。
As a heteropolyacid, phosphomolybdic acid H3
[PMo 12 O 40 ]・30H 2 O, phosphotungstic acid H 3
[PW 12 O 40 ]・29H 2 O is common, and the giant anions are [PMo 12 O 40 ] 3- and [PW 12 O 40 ] 3- , respectively.
It is an ionic crystal composed of a water molecule cluster that incorporates H + ions into its center through hydrogen bonds, and H + ions move within this water molecule cluster.

巨大アニオンの中心には上記の例ではヘテロ原
子であるPが存在しているが、中心ヘテロ原子と
なりうるものとして、他にB、Al、Si、S、
As、Cr、Ce、Bi、Ti等各種のものがあり、又ヘ
テロポリ酸をつくる能力のある金属としてMo、
W以外にV、Nb、Taが知られている。巨大アニ
オン中の中心ヘテロ原子と隣接金属原子との比
は、上記例の1:12以外に1:11、1:10、1:
9、1:6、2:18、2:17、2:13、2:5、
4:12のものが知られている。又結晶中の水分子
の量は、結晶の作製条件、保存条件等により変動
する。
In the above example, the heteroatom P exists at the center of the giant anion, but other possible central heteroatoms include B, Al, Si, S,
There are various metals such as As, Cr, Ce, Bi, and Ti, and metals that have the ability to create heteropolyacids include Mo,
In addition to W, V, Nb, and Ta are also known. The ratio of the central heteroatom to the adjacent metal atom in the giant anion is 1:11, 1:10, 1: in addition to the 1:12 in the above example.
9, 1:6, 2:18, 2:17, 2:13, 2:5,
4:12 is known. Further, the amount of water molecules in the crystal varies depending on the crystal production conditions, storage conditions, etc.

以上のように各種のヘテロポリ酸が知られてい
るが、つくり易さ、安定性等の点から中心ヘテロ
原子がB、P、Si、Ge、中心ヘテロ原子と隣接
金属原子との比が1:12のものが最も好ましい。
As mentioned above, various heteropolyacids are known, but from the viewpoint of ease of production and stability, the central heteroatom is B, P, Si, Ge, and the ratio of the central heteroatom to the adjacent metal atom is 1: 12 is most preferred.

以下本発明を、消色発色する物質にWO3、電
解質にケイタングステン酸H4〔SiW12O40〕・
30H2Oをγ−ブチロラクトン又は1・2−ジメト
キシエタンに溶解したものを用いた実施例により
説明する。
Hereinafter, the present invention will be described using WO 3 as a color-decoloring substance and silicotungstic acid H 4 [SiW 12 O 40 ] as an electrolyte.
This will be explained by an example using 30H 2 O dissolved in γ-butyrolactone or 1,2-dimethoxyethane.

第1図は像表示素子の構成例を示すもので、1
はガラス基板2に酸化スズSnO2膜3を付着させ
た透明電極であり、その表面にはWO3を電子ビ
ーム蒸着して厚さ1μmの円形のやや青みがかつ
た透明な膜4を付着させている。5は白金円板よ
りなる対極、6は電解質である。7は絶縁物質よ
りなるリング状のスペーサで、両電極間の距離を
1mmに保持する。なお両電極の作用面の大きさは
直径10mmの円形である。
Figure 1 shows an example of the configuration of an image display element.
is a transparent electrode in which a tin oxide SnO 2 film 3 is attached to a glass substrate 2, and a 1 μm thick circular slightly bluish transparent film 4 is attached to its surface by electron beam evaporation of WO 3 . ing. 5 is a counter electrode made of a platinum disk, and 6 is an electrolyte. Reference numeral 7 denotes a ring-shaped spacer made of an insulating material, which maintains the distance between both electrodes at 1 mm. The size of the working surface of both electrodes is circular with a diameter of 10 mm.

次に上記の構成において、電解質にケイタング
ステン酸を4g/10c.c.の割合で溶解したγ−ブチ
ロラトンを用いた素子A、同じくケイタングステ
ン酸を4g/12c.c.の割合で溶解した1・2−ジメ
トキシエタンを用いた素子B及び7NH2SO4を用
いた素子Cについての特性の比較結果を示す。
Next, in the above configuration, element A uses γ-butyrolatone in which tungstic acid is dissolved in the electrolyte at a rate of 4 g/10 c.c.; - Comparison results of characteristics of element B using 2-dimethoxyethane and element C using 7NH 2 SO 4 are shown.

WO3の発色を行わせるには、透明電極側が負
になるように定電圧の短形波(1.5V、1秒)を
与え、消色させるには極性を逆にして同じ短形波
を与える。第2図、第3図、第4図はそれぞれ素
子A、B、Cについて、20℃において上記の条件
で発色消色を行わせた場合の素子に流れる電流の
時間変化を示す。
To color WO 3 , apply a constant voltage rectangular wave (1.5V, 1 second) so that the transparent electrode side is negative, and to decolor, apply the same rectangular wave with the polarity reversed. . FIGS. 2, 3, and 4 show changes over time in the current flowing through the elements A, B, and C, respectively, when coloring and decoloring were performed under the above conditions at 20°C.

エレクトロクロミツク素子では、一般に流れる
電気量と着色濃度は比例するので、できるだけ短
い時間に大電流が流れるほど、濃い着色が短時間
で起こることになる。即ち応答速度が速い。消色
の場合にも同様のことが言える。第2〜4図を比
較すると、素子A、BはCに比較して応答特性が
改良されていることがわかる。なお、興味深いこ
とであるが、ケイタングステン酸の水溶液(濃度
4g/10c.c.)では同じ構造の素子で同一条件では
WO3の発色が認められなかつた。さらに電圧を
2Vにすると水の電解が明らかにみられ、水素ガ
ス、酸素ガスの発生が観察された。これに対して
素子A、Bの場合には電圧を2.0Vまで高めても
溶媒の分解は起こらず、発色消色の応答速度をさ
らに高めることができた。素子Cの場合には
2.0Vではやはり溶媒である水の分解が起こつ
た。
In an electrochromic device, the amount of electricity that flows and the coloring density are generally proportional, so the more current that flows in the shortest possible time, the more intense coloring will occur in a shorter time. In other words, the response speed is fast. The same thing can be said in the case of decolorization. Comparing FIGS. 2 to 4, it can be seen that the response characteristics of elements A and B are improved compared to element C. It is interesting to note that in an aqueous solution of silicotungstic acid (concentration 4 g/10 c.c.), under the same conditions with the same structure,
No color development of WO 3 was observed. more voltage
When the voltage was set to 2V, water electrolysis was clearly observed, and the generation of hydrogen gas and oxygen gas was observed. On the other hand, in the case of elements A and B, the solvent did not decompose even when the voltage was increased to 2.0 V, and the response speed for coloring and decoloring could be further increased. In the case of element C
At 2.0V, decomposition of the solvent water still occurred.

上記のように非水溶媒を用いた場合駆動電圧を
さらに高めることによつて応答速度を一層速くで
きるという効果が生じる。又ヘテロポリ酸を単独
で、即ち固体電解質として用いた場合に比較し
て、非水溶媒に溶解することによつて、特にエレ
クトロクロミツク像表示素子の低温における動作
特性を改善できる特長がある。
As mentioned above, when a non-aqueous solvent is used, the response speed can be further increased by further increasing the driving voltage. Furthermore, compared to when a heteropolyacid is used alone, that is, as a solid electrolyte, by dissolving it in a non-aqueous solvent, it has the advantage that the operating characteristics of an electrochromic image display element can be particularly improved at low temperatures.

第5図は電解質として、ヘテロポリ酸の1つで
ある固体状のケイタングステン酸の結晶を1ト
ン/cm2の圧力で成型した直径10mm、厚さ1mmのペ
レツトを用いた素子の−20℃における応答特性を
示す。又第6〜8図はそれぞれ前記素子A、B、
Cの−20℃における応答特性を示す。これらの図
からわかるように、ケイタングステン酸を固体状
で固体電解質として用いた場合は、−20℃におい
て特性劣化が著しい。又水溶液系電解質を用いた
素子Cも、劣化が大きい。これに対して素子A、
Bは固体電解質系、硫酸水溶液系に比較して低温
応答特性が改良されていることがわかる。
Figure 5 shows a device at -20°C using pellets with a diameter of 10 mm and a thickness of 1 mm formed by molding solid tungstic acid crystals, which are one of the heteropolyacids, at a pressure of 1 ton/cm 2 as the electrolyte. Indicates response characteristics. Further, FIGS. 6 to 8 respectively show the elements A, B,
The response characteristics of C at -20°C are shown. As can be seen from these figures, when silicotungstic acid is used in solid form as a solid electrolyte, the characteristics deteriorate significantly at -20°C. Element C using an aqueous electrolyte also suffers from significant deterioration. On the other hand, element A,
It can be seen that B has improved low temperature response characteristics compared to the solid electrolyte type and the sulfuric acid aqueous solution type.

なお素子A、Bの比較ではBの方が低温特性で
はすぐれている。これはγ−ブチロラクトン、
1・2−ジメトキシエタンの凝固点(それぞれ−
43.5℃、−71℃)と関係があるものと考えられ
る。即ち、凝固点の低い溶媒の方が低温での粘度
の増加がより少なくH+イオンの移動を妨げるこ
とが少ないことによるものと考えられる。
Note that when comparing elements A and B, element B has better low-temperature characteristics. This is γ-butyrolactone,
Freezing point of 1,2-dimethoxyethane (respectively -
43.5℃, -71℃). In other words, this is thought to be due to the fact that a solvent with a lower freezing point increases less in viscosity at low temperatures and is less likely to impede the movement of H + ions.

次に硫酸を上記非水溶媒に溶解することによつ
ても同様の効果を生じるようにも思われるが、こ
の場合には硫酸の溶媒に対する反応性が大きく実
用素子とはならない。一方ヘテロポリ酸は各種の
溶媒に対して比較的不活性でしかも溶媒中で十分
にH+イオンを遊離する能力を有するものと考え
られる。以下にケイタングステン酸の各種非水溶
媒に対する溶解性を調べた結果を示す。
Next, it seems that the same effect can be produced by dissolving sulfuric acid in the above-mentioned non-aqueous solvent, but in this case, the reactivity of sulfuric acid with the solvent is large and it cannot be used as a practical device. On the other hand, heteropolyacids are considered to be relatively inert to various solvents and have the ability to sufficiently liberate H + ions in the solvent. The results of investigating the solubility of silicotungstic acid in various non-aqueous solvents are shown below.

(1) テトラヒドロフラン、ジオキサン、ジエチル
エーテル、1・2−ジメトキシエタン、ジエチ
レングリコール、ジメチルエーテル等のエーテ
ル類にはいずれも8g/10c.c.以上の溶解性を示
した。
(1) All showed a solubility of 8 g/10 c.c. or higher in ethers such as tetrahydrofuran, dioxane, diethyl ether, 1,2-dimethoxyethane, diethylene glycol, and dimethyl ether.

(2) γ−ブチロラクトン、プロピレンカーボネー
ト、エチレンカーボネート、ギ酸メチル、酢酸
メチル、酢酸エチル等のエステル類にはいずれ
も7g/10c.c.以上の溶解性を示した。
(2) All esters such as γ-butyrolactone, propylene carbonate, ethylene carbonate, methyl formate, methyl acetate, and ethyl acetate showed a solubility of 7 g/10 c.c. or more.

(3) アセトニトリル、プロピオニトリル、バレロ
ニトリル、イソブチロンニトリル等のニトリル
類には5g/10c.c.以上の溶解性を示した。
(3) It showed a solubility of 5 g/10 c.c. or more in nitriles such as acetonitrile, propionitrile, valeronitrile, and isobutyrone nitrile.

(4) ジメチルホルムアミド、ジメチルアセトアミ
ド等のアミド類には8g/10c.c.以上の溶解性を
示した。
(4) It showed a solubility of 8 g/10 c.c. or higher in amides such as dimethylformamide and dimethylacetamide.

(5) メタノール、エタノール、イソプロパノール
等のアルコール類には7g/10c.c.以上の溶解性
を示した。
(5) It showed a solubility of 7 g/10 c.c. or more in alcohols such as methanol, ethanol, and isopropanol.

(6) シクロペンタン、シクロヘキサン、ヘキサ
ン、ヘプタン等の炭化水素類に対しては0.1
g/10c.c.を溶解させることはできなかつた。
(6) 0.1 for hydrocarbons such as cyclopentane, cyclohexane, hexane, heptane, etc.
g/10 c.c. could not be dissolved.

(7) スルホラン、ジメチル硫酸、ジメチル亜硫酸
等の含イオウ溶媒に対しては6g/10c.c.以上の
溶解性を示した。
(7) It showed a solubility of 6 g/10 c.c. or more in sulfur-containing solvents such as sulfolane, dimethyl sulfate, and dimethyl sulfite.

以上のことから電解質溶媒として、ケイタング
ステン酸に適したものは、酸素原子、窒素原子、
硫黄原子をその構成原子上に含んだものであると
言える。ヘチロ原子を全く含まない6の炭化水素
類はケイタングステン酸をほとんど溶解しなかつ
た。これらの溶媒の溶解能力はリンモリブデン
酸、リンタングステン酸等他のヘテロポリ酸に対
しても同様の傾向がみられた。
From the above, suitable electrolyte solvents for silicotungstic acid include oxygen atoms, nitrogen atoms,
It can be said that it contains sulfur atoms on its constituent atoms. The hydrocarbons of No. 6 containing no hetyl atoms hardly dissolved tungstic silicoic acid. Similar trends were observed in the dissolving ability of these solvents for other heteropolyacids such as phosphomolybdic acid and phosphotungstic acid.

先に述べたごとくヘテロポリ酸は多くの種類が
あり、上記実施例に限定されるものではなく、ま
た2種以上のヘテロポリ酸を混合すること、2種
以上の溶媒を混合することも可能である。また消
色発色可能な物質としては、WO3の他MoO3
TiO2等の金属酸化物あるいは水素イオンとの反
応で色変化を生じる有機化合物、例えばPH指示薬
等も用いることができる。又対極としては白金以
外にも、パラジウム、金、ステンレス鋼、チタニ
ウム、タンタル、カーボン等を用いることができ
る。
As mentioned above, there are many types of heteropolyacids, and they are not limited to the above examples, and it is also possible to mix two or more types of heteropolyacids or to mix two or more types of solvents. . In addition to WO 3 , MoO 3 ,
Metal oxides such as TiO 2 or organic compounds that change color upon reaction with hydrogen ions, such as PH indicators, can also be used. In addition to platinum, palladium, gold, stainless steel, titanium, tantalum, carbon, etc. can be used as the counter electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の像表示素子の構成例を示す縦
断面図、第2〜4図は各種電解質を用いた素子の
20℃における応答特性を示し、第5〜8図は−20
℃における応答特性を示す。 1……電極、4……消色発色可能な物質の膜、
5……対極、6……電解質。
FIG. 1 is a vertical cross-sectional view showing an example of the structure of an image display element of the present invention, and FIGS. 2 to 4 are views of elements using various electrolytes.
Figures 5 to 8 show the response characteristics at 20°C.
The response characteristics at °C are shown. 1... Electrode, 4... Film of material capable of decoloring and developing color,
5... Counter electrode, 6... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 電気化学的酸化還元により消色発色可能な物
質を有する電極と、対極と、両電極間に介在させ
た電解質とを備え、前記電解質が少なくとも1つ
のヘテロポリ酸の名で総称されるプロトン導電性
化合物を溶解した非水溶媒よりなることを特徴と
する像表示素子。
1 A proton conductive device comprising an electrode having a substance capable of decoloring and developing color by electrochemical redox, a counter electrode, and an electrolyte interposed between both electrodes, the electrolyte being collectively referred to as at least one heteropolyacid. An image display element comprising a non-aqueous solvent in which a compound is dissolved.
JP12418676A 1976-10-15 1976-10-15 Image display elements Granted JPS5348986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12418676A JPS5348986A (en) 1976-10-15 1976-10-15 Image display elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12418676A JPS5348986A (en) 1976-10-15 1976-10-15 Image display elements

Publications (2)

Publication Number Publication Date
JPS5348986A JPS5348986A (en) 1978-05-02
JPS6124694B2 true JPS6124694B2 (en) 1986-06-12

Family

ID=14879102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12418676A Granted JPS5348986A (en) 1976-10-15 1976-10-15 Image display elements

Country Status (1)

Country Link
JP (1) JPS5348986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107147U (en) * 1988-12-24 1990-08-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642890B1 (en) * 1989-02-09 1991-04-12 Saint Gobain Vitrage COLLOIDAL MATERIAL CONDUCTING ALKALINE CATIONS AND APPLICATIONS AS ELECTROLYTES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194839A (en) * 1975-02-18 1976-08-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194839A (en) * 1975-02-18 1976-08-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107147U (en) * 1988-12-24 1990-08-27

Also Published As

Publication number Publication date
JPS5348986A (en) 1978-05-02

Similar Documents

Publication Publication Date Title
Tahara et al. Electrochromism of a bipolar reversible redox-active ferrocene–viologen linked ionic liquid
JP4864983B2 (en) Electrode including lithium nickel oxide layer, manufacturing method thereof, and electrochromic device including the same
US4325611A (en) Electrochromic material and electro-optical display using same
Chang et al. An all-organic solid-state electrochromic device containing poly (vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid
Bondue et al. Gaining control over the mechanism of oxygen reduction in organic electrolytes: the effect of solvent properties
US5210638A (en) Electrolyte material and light modulation devices using the same
US4139275A (en) Electrochromic display
JPS6124694B2 (en)
KR20180034032A (en) Electrochemical mirror
JPS5814652B2 (en) electrochromic display device
KR101085268B1 (en) Electrode for electrochromic device having excellent water resistant property, and method for preparing the same
US4156559A (en) Electrolytic display cell
US4411497A (en) Electrochromic display element
JPH0143937B2 (en)
KR100882111B1 (en) Electrolyte for electrochromic device
JPS6033255B2 (en) electrochromic display device
JP5308379B2 (en) π-electron conjugated polymer composition and electrochromic display device using the same
WO2011108307A1 (en) Display element
KR20070062720A (en) Preparation method of activated metal oxide
JPS6332166B2 (en)
Liang et al. Effect of Capacitance of ITO Particle-modified Counter Electrode on Electrochromic Performance of 10-Methylphenothiazine
JPS5948789A (en) Electrochromic display
JPS6039627A (en) Electrochromic display device
JPS6039628A (en) Electrochromic display device
JPH0693066B2 (en) Electrochromic display element