JPS61246591A - Method of controlling flow rate of feed water - Google Patents
Method of controlling flow rate of feed waterInfo
- Publication number
- JPS61246591A JPS61246591A JP8643285A JP8643285A JPS61246591A JP S61246591 A JPS61246591 A JP S61246591A JP 8643285 A JP8643285 A JP 8643285A JP 8643285 A JP8643285 A JP 8643285A JP S61246591 A JPS61246591 A JP S61246591A
- Authority
- JP
- Japan
- Prior art keywords
- water supply
- feed water
- loading
- rfp
- nuclear reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は発電プラントの復水吸水系統に係シ、特に、蒸
気発生器に安定した給水を供給するための給水制呻方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a condensate water absorption system of a power plant, and more particularly to a water supply control method for supplying stable water supply to a steam generator.
特開昭52−57403号公報に開示されるように従来
の復水給水系統の問題点について、一般的な発電プラン
トを例にと〕、第9図及び第10図により説明する。従
来、発電プラントの系統電源のトラブルにより発電機負
荷しゃ断後、所内単独負荷運転に移行する場合、原子炉
(または蒸気発生器)の必要給水量は定格流量の約10
4となるため給水ポンプの吐出流量を急速に低減する必
要がある。しかし、一般に給水ポンプは回転数制御によ
シ給水流量の制御を行っておシ、二台運転で低流量を確
保する場合は、第1図に示すように、給水ポンプ(RF
’P)二台運転の回転数変化51は低回転数の制限値、
すなわち、危険速度52を下−廻るため、危険回転数5
2以上に保たれる。結果として、原子炉1への過大送水
により原子炉lの水位上昇及びプラントスクラムとなる
。 。The problems of the conventional condensate water supply system as disclosed in Japanese Patent Application Laid-Open No. 52-57403 will be explained using FIGS. 9 and 10 using a general power generation plant as an example. Conventionally, when a power plant shifts to isolated load operation after the generator load is cut off due to a problem with the system power supply, the required amount of water to be supplied to the reactor (or steam generator) is approximately 10% of the rated flow rate.
4, so it is necessary to rapidly reduce the discharge flow rate of the water supply pump. However, in general, water supply pumps control the water supply flow rate by controlling the rotational speed.When operating two pumps to ensure a low flow rate, as shown in Figure 1, the water supply pump (RF
'P) The rotation speed change 51 in two-unit operation is the low rotation speed limit value,
In other words, in order to go below the critical speed 52, the critical rotation speed is 5.
Maintained at 2 or higher. As a result, excessive water supply to the reactor 1 causes a rise in the water level of the reactor 1 and a plant scram. .
本発明の目的は、信頼性の高い安定性に優れた給水装置
を提供することにある。An object of the present invention is to provide a water supply device with high reliability and excellent stability.
本発明の原理を第11図によシ説明する。第11図は回
転数制御を行う給水ポンプの流量と揚程をyしたもので
回転数を小さくすると曲線1ON→5Nに移行し、曲線
52Nは危険回転数である。The principle of the present invention will be explained with reference to FIG. FIG. 11 shows the flow rate and head of the water supply pump that controls the rotation speed as y. When the rotation speed is decreased, the curve changes from 1ON to 5N, and the curve 52N is the critical rotation speed.
一方、原子炉1の圧力及び復水給水系の圧力損失から決
まる必要な揚程(システムヘッド)曲線は給水ポンプ(
RFP)運台で復水ボンプニ系列運転では曲線538の
ように変化し、所要給水量(例えば56Q)では運転点
Pとなり、RFPは回転数5Nとなる。ここでRFP二
台運台運転流量(点57Q以下)K移行した場合は、R
FP回転数は危険回転数52NK達するため流量点57
Q以下には下げることが出来ず、全給水量としては流量
57Qの二倍が流れることになる。On the other hand, the necessary head (system head) curve determined from the pressure of reactor 1 and the pressure loss of the condensate water supply system is the water pump (
In the condensate bonpuni series operation at RFP) platform, the curve changes as shown by curve 538, and at the required water supply amount (for example, 56Q), the operating point is P, and RFP becomes 5N in rotation speed. Here, if the RFP two-car operation flow rate (below point 57Q) shifts to K, R
The FP rotation speed reaches the critical rotation speed of 52NK, so the flow point is 57.
It cannot be lowered below Q, and the total amount of water supplied will be twice the flow rate of 57Q.
一方、R,FPを一台とした場合のシステムヘッド曲線
は、
・R,FPXI、復水ボンダニ系列:曲線558・RF
PXI、復水ポンプ1系列:曲線548のように低流量
における回転数が増加する。On the other hand, the system head curve when R and FP are one unit is: ・R, FPXI, condensate Bondani series: Curve 558・RF
PXI, condensate pump 1 series: As shown by curve 548, the rotation speed increases at low flow rates.
さらに、給水ポンプ10の吐出から分岐し復水器4に戻
る再循環弁12を開くことによシ、R,FP10自体の
流量が増加するためRFPの回転数が増加することにな
シ、低流量でも安定した流量を確保出来る。Furthermore, by opening the recirculation valve 12 that branches off from the discharge of the water supply pump 10 and returns to the condenser 4, the flow rate of the RFP 10 itself increases, so the rotational speed of the RFP increases. A stable flow rate can be ensured even at low flow rates.
本発明の一実施例を第1図ないし第3図によシ説明する
。従来と異なる点は発電機3での負荷しゃ断信号(例え
ば、パワー・ロード・アンバランスリレー)によって給
水ポンプの一台を停止させるR、FP停止装置15を設
けたことである。An embodiment of the present invention will be explained with reference to FIGS. 1 to 3. The difference from the conventional method is that an R and FP stop device 15 is provided to stop one water pump in response to a load cutoff signal from the generator 3 (for example, a power load unbalance relay).
原子炉1からの発生蒸気はタービンで仕事をし、その排
気は復水器4で復水となる。復水器4からの復水は低圧
復水ポンプ5、高圧復水ポンプ7、給水ポンプ(以下R
FP)9により昇圧されて原子炉1へ戻る。The steam generated from the nuclear reactor 1 works in a turbine, and its exhaust gas becomes condensed water in a condenser 4. Condensate from the condenser 4 is pumped through a low pressure condensate pump 5, a high pressure condensate pump 7, and a water supply pump (hereinafter referred to as R).
FP) 9 and returns to the reactor 1.
ここで、発電機負荷しゃ断が発生すると原子炉1からの
発生蒸気量は急減する。このため、第2図に示すように
給水量を急速に低下させる必要がある。そこで第3図に
示すインターロックによシ、RFP9aの一台を停止さ
せることによシ、第4図に示す曲線58に沿って給水の
変化に従って運転中のRFP9bの回転数は低下するが
従来の給水系統よりも低い流量を確保することが可能と
なる。Here, when a generator load cutoff occurs, the amount of steam generated from the reactor 1 rapidly decreases. Therefore, as shown in FIG. 2, it is necessary to rapidly reduce the amount of water supplied. Therefore, by using the interlock shown in FIG. 3 and stopping one of the RFPs 9a, the rotational speed of the RFP 9b during operation decreases as the water supply changes along the curve 58 shown in FIG. This makes it possible to secure a flow rate lower than that of other water supply systems.
本発明の第二の実施例を第5図、1g6図に示す。A second embodiment of the present invention is shown in FIG. 5 and FIG. 1g6.
第1図と異なる点は負荷しゃ断信号によって給水ポンプ
9の再循環弁12を開く再循環弁開装置を設けたことで
ある。The difference from FIG. 1 is that a recirculation valve opening device is provided to open the recirculation valve 12 of the water supply pump 9 in response to a load cutoff signal.
本実施例では第6図に示すように第4図での回転数変化
曲線58よシ高い回転数曲線59となるため、さらに安
定した給水が可能である。In this embodiment, as shown in FIG. 6, the rotation speed curve 59 is higher than the rotation speed change curve 58 in FIG. 4, so that more stable water supply is possible.
本発明の第三の実施例を第7図、第8図に示す。A third embodiment of the present invention is shown in FIGS. 7 and 8.
第5図と異なる点は、負荷しゃ断信号によって、給水ポ
ンプ9及び前流側の復水ポンプ5,7の一系列を停止さ
せるポンプ系停止装置17を設けたことである。本例で
は低給水量時上記の二つの実施例よりもさらに高い回転
数で運転可能であシ、危険回転数に低下せずに低出力運
転が可能である。The difference from FIG. 5 is that a pump system stop device 17 is provided that stops the water supply pump 9 and one series of condensate pumps 5 and 7 on the upstream side in response to a load cutoff signal. In this example, when the amount of water supplied is low, it is possible to operate at a higher rotation speed than in the above two embodiments, and low output operation is possible without dropping to a dangerous rotation speed.
このように、低流量での給水ポンプの回転数を高くする
設計法として■給水ポンプの台数低減、■給水ポンプ再
循環弁開、■上流側ポンプの台数低減の手法があり、シ
ステム条件、ポンプ特性、危険回転数の制限値によって
必要に応じてその対応が可能である。In this way, the design methods for increasing the rotation speed of the water supply pump at low flow rates include: ■reducing the number of water supply pumps, ■opening the water pump recirculation valve, and ■reducing the number of upstream pumps. It is possible to take measures as necessary depending on the characteristics and limit value of critical rotation speed.
本発明によれば、発電プラ/トの負荷しゃ断後所内単独
負荷運転時に少量の給水流量を安定して送水することが
可能であ夛、稼働率が向上する。According to the present invention, it is possible to stably supply a small amount of water during single-load operation within the plant after the load of the power generation plant is cut off, and the operating rate is improved.
第1.欅ないし第4図は本発明の一実施例図、第5図、
′h、第−6図は本発明の第二の実施例図、第7図第8
図はその他の実施例図、第9図、第10図は従来の問題
点の説明図、第11図は本発明の原理説明図である。
1・・・原子炉、2・・・タービン、3・・・発電機、
4・・・復水器、5・・・低圧復水ポンプ、7・・・高
圧復水ポンプ、9・・・給水ポンプ、12・・・RFP
再循環弁、14・・・負荷しゃ断検出器、15・・・R
,FP停止装置。1st. Figures 4 to 4 are diagrams of one embodiment of the present invention; Figure 5;
'h, Figure-6 is the second embodiment of the present invention, Figure 7, Figure 8.
9 and 10 are illustrations of conventional problems, and FIG. 11 is an illustration of the principle of the present invention. 1... Nuclear reactor, 2... Turbine, 3... Generator,
4... Condenser, 5... Low pressure condensate pump, 7... High pressure condensate pump, 9... Water supply pump, 12... RFP
Recirculation valve, 14...Load cutoff detector, 15...R
, FP stop device.
Claims (1)
する二台以上の復水ポンプ及び二台以上の給水ポンプ及
び配管・弁で構成される復水給水系統において、 発電機負荷しや断時に前記給水ポンプを停止させること
を特徴とする給水流量制御方法。 2、特許請求の範囲第1項において、 発電機負荷しや断時に前記復水ポンプ及び前記給水ポン
プの二台以上を停止させることを特徴とする給水流量制
御方法。 3、特許請求の範囲第1項において、 発電機負荷しや断時に前記給水ポンプの吐出側から前記
復水器に給水の一部を戻すことを特徴とする給水流量制
御方法。[Claims] 1. In a condensate water supply system consisting of two or more condensate pumps that send water from a condenser to a steam generator in a power plant, and two or more water supply pumps, piping, and valves. . A water supply flow rate control method, characterized in that the water supply pump is stopped when the generator load is interrupted. 2. The water supply flow rate control method according to claim 1, characterized in that two or more of the condensate pump and the water supply pump are stopped when the generator load is interrupted. 3. The water supply flow rate control method according to claim 1, characterized in that a portion of the water supply is returned to the condenser from the discharge side of the water supply pump when the generator load is interrupted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8643285A JPS61246591A (en) | 1985-04-24 | 1985-04-24 | Method of controlling flow rate of feed water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8643285A JPS61246591A (en) | 1985-04-24 | 1985-04-24 | Method of controlling flow rate of feed water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61246591A true JPS61246591A (en) | 1986-11-01 |
Family
ID=13886744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8643285A Pending JPS61246591A (en) | 1985-04-24 | 1985-04-24 | Method of controlling flow rate of feed water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61246591A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014005955A (en) * | 2012-06-21 | 2014-01-16 | Toshiba Corp | Condensate feed water control apparatus and condensate feed cycle system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5257403A (en) * | 1975-11-07 | 1977-05-11 | Hitachi Ltd | Potential running control equipment for water supply pump driven by tu rbine |
JPS5737293A (en) * | 1980-08-18 | 1982-03-01 | Nippon Atomic Ind Group Co | Feedwater pump driving method |
-
1985
- 1985-04-24 JP JP8643285A patent/JPS61246591A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5257403A (en) * | 1975-11-07 | 1977-05-11 | Hitachi Ltd | Potential running control equipment for water supply pump driven by tu rbine |
JPS5737293A (en) * | 1980-08-18 | 1982-03-01 | Nippon Atomic Ind Group Co | Feedwater pump driving method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014005955A (en) * | 2012-06-21 | 2014-01-16 | Toshiba Corp | Condensate feed water control apparatus and condensate feed cycle system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6301895B1 (en) | Method for closed-loop output control of a steam power plant, and steam power plant | |
US4047005A (en) | Combined cycle electric power plant with a steam turbine having a throttle pressure limiting control | |
JPS61246591A (en) | Method of controlling flow rate of feed water | |
MXPA04000487A (en) | Turbine controls testing device. | |
JP3212895B2 (en) | Gas turbine fuel supply device and control device therefor | |
JPS63117107A (en) | Auxiliary steam device | |
WO2003046929A2 (en) | System for and method of controlling a nuclear power plant | |
RU2063521C1 (en) | Steam turbine control method | |
CN114087536B (en) | Steam pipe network interlocking control method for turbine jump | |
Lenev et al. | On the Issue of Unloading Supercritical Steam Pressure Units Used in T-250/300-240 Cogeneration Steam Turbines | |
Cushing et al. | Fast valving as an aid to power system transient stability and prompt resynchronization and rapid reload after full load rejection | |
JP2522477B2 (en) | Boiler feed pump shaft seal water control system | |
JPS59231104A (en) | Controlling system of feed water pump in power plant | |
JP2002267784A (en) | Water injection flow rate adjusting facility for nuclear reactor water injection system | |
JPH07310561A (en) | Operating method of gas turbine | |
JPS6340245B2 (en) | ||
JPS6235592B2 (en) | ||
JPS6239658B2 (en) | ||
JPS63686B2 (en) | ||
JPS59218998A (en) | Reactor feedwater device | |
JPH0222360B2 (en) | ||
JPS54117815A (en) | Exhaust gas circulation controller for engine with exhaust gas turbo charger | |
Kiscaden et al. | Field Experience With the Pace Control System | |
JPS6387501A (en) | Condenser for power plant | |
JPH0734809A (en) | Temperature control device of extraction steam turbine |