JPS61245698A - Acoustic characteristic measuring instrument - Google Patents

Acoustic characteristic measuring instrument

Info

Publication number
JPS61245698A
JPS61245698A JP8729085A JP8729085A JPS61245698A JP S61245698 A JPS61245698 A JP S61245698A JP 8729085 A JP8729085 A JP 8729085A JP 8729085 A JP8729085 A JP 8729085A JP S61245698 A JPS61245698 A JP S61245698A
Authority
JP
Japan
Prior art keywords
sound
acoustic
measuring device
microphone
characteristic measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8729085A
Other languages
Japanese (ja)
Other versions
JPH0455039B2 (en
Inventor
Akio Tokuge
徳毛 昭夫
Toshikazu Yoshimi
好美 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP8729085A priority Critical patent/JPS61245698A/en
Publication of JPS61245698A publication Critical patent/JPS61245698A/en
Publication of JPH0455039B2 publication Critical patent/JPH0455039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/40Visual indication of stereophonic sound image

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Stereophonic Arrangements (AREA)

Abstract

PURPOSE:To execute a correct sound field evaluation which has coincided with an aural sense, by measuring an acoustic characteristic, based on output of a microphone which has been installed to an actual human body or a dummy ear part. CONSTITUTION:A dummy mannequin 12 is placed at a listening point for listening to a reproducing sound from loudspeakers 11L, 11R which have been placed as a pair of right and left sound sources in a room A, and microphones 13L, 13R are installed to both ear holes. From signal generators 14L, 14R, a random noise such as a pink noise, a white noise, etc., having no correlation to each other is generated, and becomes a source signal of the loudspeakers 11L, 11R through transmission characteristic correcting devices 15L, 15R of a graphic equalizer, etc., and amplifiers 16L, 16R. An output of the microphones 13L, 13R becomes a power addition value of an acoustic signal from the loudspeakers 11L, 11R, and by deriving an addition or a power addition average by an arithmetic unit 17, a sound field can be handled as one transfer function, and a result of the operation is displayed on a display device 18.

Description

【発明の詳細な説明】 技術分野 本発明は、音響特性測定装置に関し、特に複数のチャン
ネル信号に対応して設けられた複数の音源とこれら音源
からの再生音を聴取する聴取点との間の音響特性を測定
する測定装置に関する。
Detailed Description of the Invention Technical Field The present invention relates to an acoustic characteristic measuring device, and in particular to an acoustic characteristic measuring device that measures the distance between a plurality of sound sources provided corresponding to a plurality of channel signals and a listening point for listening to the reproduced sounds from these sound sources. The present invention relates to a measuring device for measuring acoustic characteristics.

背景技術 従来この種の装置として第5図に示すものがあった。図
に卦いて、所定の室A内には左右一対のスピーカ1 、
L 、 I Rが設けられており、これらスピーカIL
、’tRには、信号発生器2から出力される信号が切換
スイッチ3による切換えによって、グラフィック・イコ
ライザー等の伝送特性補正装置4Lおよびアンプ5L又
は補正装置4Rおよびアンプ5Rを介して供給される。
BACKGROUND ART Conventionally, there has been a device of this type as shown in FIG. In the figure, in a predetermined room A, there are a pair of left and right speakers 1,
L, IR are provided, and these speakers IL
, 'tR, the signal output from the signal generator 2 is supplied via a transmission characteristic correction device 4L such as a graphic equalizer and an amplifier 5L or a correction device 4R and an amplifier 5R by switching with a changeover switch 3.

信号発生器2かラバ、ピンクノイズ、インパルス、ホワ
イトノイズ、ワーブルトーン、サイン波等の信号が出力
される。
The signal generator 2 outputs signals such as rubber, pink noise, impulse, white noise, warble tone, and sine wave.

スピーカ]、 L 、 I Rからの再生音によって成
立する音場内における伝達関数の測定、あるいはその測
定結果に基づいて電気的手段等により音場特性の補正を
行なうために、音場内にある点(例えば、スピーカIL
’、IRからの一生音を聴取する聴取点)に無指向性の
マイクロホン6が設置されている。このマイクロホン6
の出力を表示装置7にて表示することにより、音圧周波
数特性の測定が行なわれる。
In order to measure the transfer function in the sound field established by the reproduced sounds from the speakers], L, and IR, or to correct the sound field characteristics by electrical means based on the measurement results, a point in the sound field ( For example, speaker IL
An omnidirectional microphone 6 is installed at the listening point where the sound from the IR is heard. This microphone 6
By displaying the output on the display device 7, the sound pressure frequency characteristics are measured.

ここで、実際に音響特性を測定する方法としては、2チ
ャンネル以上のステレオ音響再生系にお、いては、2つ
以上のスピーカが存在するため、この2つ以上の信号源
に同相信号を印加して測定する方法と、各々単独に測定
評価する方法とが一般的である。前者の方法では、各々
のスピーカからの信号がマイクポイントでベクトル加算
された結果がマイクロホンの受音音圧として出力される
ことになる。後者の方法では□、2つの単独なスピーカ
からのマイクロホンの受音音圧として出力されることに
なる。
Here, as a method to actually measure the acoustic characteristics, since there are two or more speakers in a stereo sound reproduction system with two or more channels, the in-phase signal is sent to these two or more signal sources. Generally, there is a method of applying and measuring, and a method of measuring and evaluating each independently. In the former method, signals from each speaker are vector-added at a microphone point, and the result is output as the sound pressure received by the microphone. In the latter method, □ is output as the sound pressure received by the microphone from two independent speakers.

以上のように構成された従来の装置では、人間のいない
音場において1つのマイクロホンによるいわゆる1ポイ
ント測定となっているが、実際の音場では人間がおシ、
人間の身体が音場内に入れば音場が乱され、又実写は人
間特有の指向特性を有しているので、聴感と一致した測
定は困難であった。捷だ、2チャンネル以上のステレオ
再生装置では、総合的外特性を測定することが困難であ
る等の欠点を有していた。更に、車載用音響装置の如く
聴取点が非対称となる場合には、各々のスピーカから受
音点までの2つの伝達関数を1つに置き換えて考える上
で、総合的に評価する場合、著しく材困難を来す等の欠
点があった。
In the conventional device configured as described above, so-called one-point measurement is performed using one microphone in a sound field where no humans are present, but in an actual sound field, humans are
If the human body enters the sound field, the sound field will be disturbed, and since real images have directional characteristics unique to humans, it has been difficult to make measurements consistent with the auditory sense. Unfortunately, stereo playback devices with two or more channels have the disadvantage that it is difficult to measure overall external characteristics. Furthermore, in cases where the listening point is asymmetric, such as in a car-mounted audio system, the two transfer functions from each speaker to the sound receiving point are replaced with one, and when comprehensively evaluated, the material becomes significantly smaller. There were drawbacks such as difficulties.

発明の概要 本発明は、上記のような従来のものの欠点を除去すべく
なされたもので、聴感と一致した正確な音場評価を行な
い得る音響特性測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to eliminate the drawbacks of the conventional devices as described above, and an object of the present invention is to provide an acoustic characteristic measuring device that can perform accurate sound field evaluation consistent with auditory sensation.

本発明による音響特性測定装置は、複数のチャンネル信
号に対応して設けられた複数の音源を含むステレオ音響
再生系において、前記複数の音源からの再生音を聴取す
る聴取点に位置する実人体、タミーマネキン又はダミー
ヘッドの耳部に装着されたマイクロホンを有する測定系
を備え、前記マイクロホンの出力に基づいて音響特性の
測定をなすことを特徴としている。
The acoustic characteristic measuring device according to the present invention includes, in a stereo sound reproduction system including a plurality of sound sources provided corresponding to a plurality of channel signals, a real human body located at a listening point that listens to reproduced sounds from the plurality of sound sources; The apparatus is characterized in that it includes a measurement system having a microphone attached to the ear of a tummy mannequin or dummy head, and measures acoustic characteristics based on the output of the microphone.

実施例 以下、本発明の実施例を図に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

図において、所定の室A内には左右一対のスピーカ]、
 L L 、 11 Rが音源として配置され、これら
スピーカから発せられる再生音によって音場が形成され
る。
In the figure, there are a pair of left and right speakers in a predetermined room A],
L L and 11 R are arranged as sound sources, and a sound field is formed by reproduced sounds emitted from these speakers.

スピーカ11. L 、 11 Ftからの再生音を聴
取する聴取点にはダミーマネキン(ヘッド部分のみ図示
)12が配置され、このダミーマネキン150両耳孔に
はマイクロホンi 3 L 、 13 Rが装着されて
いる。ダミーマネキン12は胴体、脚部等をも備えだ実
人体構成となっておシ、その表面の音響吸音力が衣服を
着用した人間の平均的吸音力に略等しくなるように設定
されている。第2図には、成人した実人体の衣類着用時
の吸音力が示されており、残響法に基づいた方法によシ
求められたものである。吸音力は着衣の種類によって変
化し、矢印範囲がそのバラツキの範囲を示している。
Speaker 11. A dummy mannequin (only the head part is shown) 12 is placed at the listening point where the reproduced sound from the Fts is heard, and microphones i3L and 13R are attached to both ear holes of this dummy mannequin 150. The dummy mannequin 12 has a real human body structure, including a torso, legs, etc., and is set so that the sound absorbing power of its surface is approximately equal to the average sound absorbing power of a human wearing clothes. FIG. 2 shows the sound absorption power of a real adult human body when wearing clothing, which was determined using a method based on the reverberation method. Sound absorption power changes depending on the type of clothing, and the arrow range shows the range of variation.

なお、ダミーマネキン12に衣類等を着せ、実人体と同
様の服装とすることにより、衣類着用時の実人体とほぼ
等価な音響吸音力をもたせるようにしても良い。また、
ダミーマネキン12に代えて、実人体又はダミーヘッド
を聴取点に位置せしめ、その両耳の耳介内又耳孔内にマ
イクロホン13L、13Rを装着するようにしても良い
Note that the dummy mannequin 12 may be dressed in clothing similar to that of a real human body, so that it has almost the same sound absorption power as a real human body when wearing clothing. Also,
Instead of the dummy mannequin 12, a real human body or a dummy head may be positioned at the listening point, and the microphones 13L and 13R may be attached to the auricles or ear canals of both ears.

一対のスピーカ11 L 、 11 Rを各々独立して
駆動するだめの信号発生器14 T、 、 ]、’4 
Bが設けられており、これら信号発生器14L、1’4
Rからはそれぞれ、互いに無相関のピンクノイズ、ホワ
イトノイズ等のランダムノイズ(又は擬似ランダムノイ
ズ)が発生される。これら無相関のソース信号は各々、
グラフィック・イコライザ等の伝送特性補正装置1.5
L’、15R,およびアンプ16L。
A signal generator 14 T, , ], '4 for independently driving the pair of speakers 11 L and 11 R.
B is provided, and these signal generators 14L, 1'4
Random noise (or pseudo-random noise) such as pink noise and white noise, which are uncorrelated with each other, is generated from each R. Each of these uncorrelated source signals is
Transmission characteristic correction device such as graphic equalizer 1.5
L', 15R, and amplifier 16L.

16Rを介してスピーカ1 ]、 L 、 1.1 R
のソース信号となる。
Speaker 1 ], L, 1.1 R via 16R
becomes the source signal.

スピーカIIL、IIRのソース信号が無相関であるこ
とにより、音場内においては、スピーカ11L、IIR
から出力される音響信号の各々のパワー加算が得られる
ことになる。従って、マイクロホン13 L 、 13
 Rの出力も、その位置におけるスピーカ11 L 、
 11 R,からの音響信号のパワー加算値となる。こ
のマイクロホン13L、13Rの出力を更に、演算装置
17で加算もしくはパワー加算平均を求めることにより
、音場を1つの伝達関数として扱うことができる。演算
装置17の演算結果は表示装置18に表示される。
Since the source signals of speakers IIL and IIR are uncorrelated, in the sound field, speakers 11L and IIR
The power summation of each of the acoustic signals output from the . Therefore, the microphones 13L, 13
The output of R is also output from the speaker 11 L at that position,
This is the power addition value of the acoustic signal from 11R. By further adding or averaging the outputs of the microphones 13L and 13R in the arithmetic unit 17, the sound field can be treated as one transfer function. The calculation results of the calculation device 17 are displayed on the display device 18.

次に、本発明の作用について説明する。Next, the operation of the present invention will be explained.

まず、幾何音響的表現を用いて、実写の受音特性ト無指
向性マイクロホンのそれとを比較する。
First, using geometric acoustic expression, we will compare the sound reception characteristics of a real photograph with those of an omnidirectional microphone.

実写の受音特性を、鼓膜面上でのインパルス応答B、D
として表わし、片耳に対してインパルスPrL(t)を
、入射角θ〆n(nは音源の数、θ、ダは′各々水平、
垂直角度)で与えれば、これを取り囲む4π空間の全て
の方向からの和として、 FtD−ΣPj(t)・DM(θれ)・Gなる式が得ら
れる(なお、tは音源の番号であり、例えばt番目の音
源となる)。ここで、DM eft(flSに対するe
ftでの実写の外部伝達関数、Gは耳内音響インピーダ
ンスに相当する内部伝達関数とする。
The sound reception characteristics of a live photograph are shown as impulse responses B and D on the eardrum surface.
The impulse PrL(t) for one ear is expressed as θ〆n (n is the number of sound sources, θ is horizontal,
(perpendicular angle), the formula FtD-ΣPj(t)・DM(θre)・G can be obtained as the sum from all directions in the 4π space surrounding this (t is the number of the sound source. , for example, becomes the t-th sound source). Here, DM eft(e for flS
ft is the actual external transfer function, and G is the internal transfer function corresponding to the acoustic impedance in the ear.

例えば、車室内では、音源、壁面、座席および聴取点の
位置が互いに接近しているため、聴取者の着座位置によ
って音波の自由行程の一部に変化が生じることになる。
For example, in a vehicle interior, the sound source, wall surface, seat, and listening point are located close to each other, so that a part of the free path of the sound wave changes depending on the seating position of the listener.

この変化分を音響擾乱度Dn (θ〆2)と定義する。This change is defined as the acoustic disturbance degree Dn (θ〆2).

まだ、耳の指向特性を頭部伝達関数DR(θ〆句とおけ
ば、 DM(θy’ i ) −’Da (θ$i)・Dn(
θり、)となり、これを含んだインパルス応答は、ap
−ΣPL(t)・DR(θグア)・DD(eft)・G
 ・・・(1)で表わされる。
Still, if we define the ear's directional characteristics as the head-related transfer function DR (θ〆phrase), then we can write DM(θy' i ) −'Da (θ$i)・Dn(
θri, ), and the impulse response including this is ap
-ΣPL(t)・DR(θgua)・DD(eft)・G
...It is expressed as (1).

一方、無指向性マイクロホンの場合を考えれば、音響擾
乱度が無視きれるほど小さいので、同様の考え方でその
振動系に生ずるインパルス応答をRMとすると、 〜=ΣPi(t)            °用゛印°
(2)と表われる。
On the other hand, if we consider the case of an omnidirectional microphone, the degree of acoustic disturbance is so small that it can be ignored, so in the same way, if we take the impulse response generated in the vibration system as RM, ~=ΣPi(t)
(2) appears.

上記(1)、(2)式の差が、これらの受音系での特性
差を表わしている0(1)式のパラメータの中で、内部
伝達関数Gは、音の入射方向によらずほぼ一定であるか
ら、逆伝達関数は一次元の電気系で正□規化することか
できる。しかし、指向特性DBと音響擾乱度DDについ
ては、三次元の空間的な受音特性に基づくため、単に、
電気系での一次元処理で置き換えることができない。す
なわち、これらの2つの受音系の間の特性差について互
いにデータ間の換算を行なうことは困難である。
The difference between equations (1) and (2) above represents the difference in characteristics in these sound receiving systems.Among the parameters of equation (1), the internal transfer function G is independent of the direction of sound incidence. Since it is almost constant, the inverse transfer function can be normalized in a one-dimensional electrical system. However, since the directional characteristics DB and the acoustic disturbance degree DD are based on three-dimensional spatial sound receiving characteristics, they are simply
It cannot be replaced by one-dimensional processing in an electrical system. That is, it is difficult to convert the data of the difference in characteristics between these two sound receiving systems.

以上から明らかなように、音場測定の測定系の基本とな
るマイクロホンは、実人体と等価な指向特性(頭部伝達
関数)および音響擾乱度を受音特性として備えているこ
とが必要となる。従って、本実施例のように、実人体構
成のダミーマネキン12の耳に装着されたマイクロホン
13L、13Rを用いるのが有効となるのである。
As is clear from the above, the microphone, which is the basis of the measurement system for sound field measurement, needs to have a directivity characteristic (head-related transfer function) and acoustic disturbance degree equivalent to those of a real human body as sound receiving characteristics. . Therefore, it is effective to use the microphones 13L and 13R attached to the ears of the dummy mannequin 12 having a real human body structure, as in this embodiment.

上述した受音系において、左右の耳は、一般の音場(ヘ
ッドホン受音の場合を除く)内では、互いに一定の相関
を有する。このため、音場補正の指標となる伝送特性は
、左右の耳に対して独立して制御することが困難である
。そこで、左右の耳での伝送特性の加算により得られた
特性が、その受音系1の伝送特性7あると0判F?(7
)門、 −vイクロホン13 L、 13 Rの出力の
パワー加算平均を演算装置17で求め、これにより得ら
iる特性を音場評価の対象としているのである。
In the sound receiving system described above, the left and right ears have a certain correlation with each other in a general sound field (excluding the case of headphone sound reception). For this reason, it is difficult to control the transmission characteristics, which serve as an index for sound field correction, independently for the left and right ears. Therefore, if the characteristics obtained by adding the transmission characteristics of the left and right ears are the transmission characteristics 7 of the sound receiving system 1, then 0 size F? (7
), -v The power summation average of the outputs of the microphones 13L and 13R is determined by the arithmetic unit 17, and the resulting characteristics are used for sound field evaluation.

捷だ、演算装置17では、両耳に発生する信号を互いに
独立した平均レベルとしてとらえるために、ベクトル(
位相を含む)成分を消去したパワーのスペクトル(各周
波数での音圧の絶対値)を求め、これを両耳間で加算し
ている。更に、加算した伝送特性を各々1/3octバ
ンドの平均レベルに変換し、これを伝送特性として評価
するようにしている。これは、173octバンドが人
の臨界帯域幅にほぼ相当するため、これを用いた分析デ
ータが聴感印象と良く一致し、このバンド内の狭帯域ス
ペクトルの変化は聴感印象への影響が少ないためである
In order to capture the signals generated in both ears as mutually independent average levels, the arithmetic unit 17 calculates the vector (
The power spectrum (absolute value of sound pressure at each frequency) is obtained by eliminating components (including phase), and these are added between both ears. Further, each of the added transmission characteristics is converted to an average level of the 1/3 oct band, and this is evaluated as the transmission characteristic. This is because the 173 oct band roughly corresponds to the human critical bandwidth, so analysis data using this band matches the auditory impression well, and changes in the narrow band spectrum within this band have little effect on the auditory impression. be.

ところで、各チャンネルのスピーカを同時に駆動して測
定を行なう場合、スピーカIIL、IIRのソース信号
として各チャンネル間で無相関の信号、例えばランダム
ノイズを用いているが、これは上述した測定条件(各チ
ャンネル間のパワー加算)を満足させるためには、音源
側の測定用信号は各チャンネル間で発生確率が互いに無
相関であることか必要となるからである。これによシ、
各チャンネルの信号が聴取点近傍にて互いに干渉し合う
ことを防止でき、測定上での伝送特性の位置分布を少な
くすることができる。
By the way, when measuring by driving the speakers of each channel simultaneously, an uncorrelated signal between each channel, such as random noise, is used as the source signal for the speakers IIL and IIR, but this is not possible under the measurement conditions described above (each This is because, in order to satisfy the requirement (power addition between channels), it is necessary that the measurement signals on the sound source side have occurrence probabilities that are uncorrelated between each channel. For this,
It is possible to prevent the signals of each channel from interfering with each other near the listening point, and it is possible to reduce the positional distribution of transmission characteristics during measurement.

捷た、先述したパワー加算処理を行なう過程では、複数
(2チヤンネルのステレオ)の音源と2つの受音系(両
耳)とが各々独立した伝達関数をもち、これらの全ての
伝達関数の和か受音系と音源との1つの伝達関数となる
。これらの伝達関数を各々独立して取シ扱うためには、
音源からの信号が各チャンネル間で無相関であることが
必要である。これは以下のように説明される。
In the process of performing the above-mentioned power addition process, the multiple (two-channel stereo) sound sources and the two sound receiving systems (binaural) each have independent transfer functions, and the sum of all these transfer functions is It becomes one transfer function between the sound receiving system and the sound source. In order to treat each of these transfer functions independently,
It is necessary that the signals from the sound source be uncorrelated between each channel. This is explained as follows.

第1図において、2つの音源(スピーカ11L。In FIG. 1, there are two sound sources (speaker 11L).

11R)の出力をSL、5R12つの受音系(マイクロ
ホン13L、13Jの出力をML、Mや、音源から各受
音系までの伝達関数をGLL * (3LR+ GRL
 + GRRとすると、受音系の各マイクロホンの出力
ML、MRは、 と表わされる。伝送特性をM ”” MR+ MLとし
た判断する場合、このパワー加算値はM2であるから、
M” −(S R−GRR) ”+ (S L −GL
R)2+(SL 4LI、)2+ (SR−Gru、)
2+2(j■可5百【厄7.I記孟踊隔扉J)この中で
、第2項は 2((Sx−G拙)2・(Sb−GJ2−1−(Su・
G皿)2・(SR・GRJ、)2+ (81,・Gr、
R)2・(SL−GLL)2−1−(SL−GLR,)
2+−(SR・GRL)乍−2(’5R2(G皿・GR
I、)+ 5L2(GLR−GLL) )関の値の積は
0に収束) 、’、 M2= 5R2(GRR+GRL)”+5L2
(Gr、L+GLR)”= (SR(GRR十GRL)
+5L(GLL十〇L剖”−8R8L(G皿+GRL>
・(GLI、十GLR)=lsR−a皿+5a−(3B
L+ SL・鄭r、+SL・GLRl’−’ (GRR
十GRL ) ・(Gu、十〇LR) = 0として算
出できる。
11R) is SL, the output of the 5R12 sound receiving systems (microphones 13L and 13J is ML, M, and the transfer function from the sound source to each sound receiving system is GLL * (3LR + GRL).
+GRR, the outputs ML and MR of each microphone in the sound receiving system are expressed as follows. When determining the transmission characteristic as M "" MR + ML, this power addition value is M2, so
M”-(S R-GRR) ”+ (S L-GL
R)2+ (SL 4LI,)2+ (SR-Gru,)
2 + 2 (j■possible 500 [Yaku 7.
G plate)2・(SR・GRJ,)2+ (81,・Gr,
R)2・(SL-GLL)2-1-(SL-GLR,)
2+-(SR/GRL) -2('5R2(G plate/GR
I, ) + 5L2 (GLR - GLL) ) The product of the function values converges to 0) ,', M2 = 5R2 (GRR + GRL)'' + 5L2
(Gr, L+GLR)”= (SR(GRR×GRL)
+5L (GLL 10L autopsy) -8R8L (G plate + GRL>
・(GLI, 10 GLR) = lsR-a plate + 5a-(3B
L+ SL・Jungr, +SL・GLRl'-' (GRR
It can be calculated as 10GRL) ・(Gu, 10LR) = 0.

なお、上記実施例では、複数の音源を同時に駆動し測定
する場合、ソース信号が各チャンネル間で無相関であ□
るとしたが、各々の音源の駆動に時間的処理を用いれば
、必ずしもソース信号が無相関である必要はなく、要は
、音源から発せられる信号が各チャンネル間で結果的に
無相関であれば良いのである。
In addition, in the above embodiment, when driving and measuring multiple sound sources at the same time, the source signals are uncorrelated between each channel.
However, if temporal processing is used to drive each sound source, the source signals do not necessarily have to be uncorrelated; in short, the signals emitted from the sound sources do not necessarily have to be uncorrelated between each channel. That's fine.

第3図は、本発明の他の実施例を示すブロック図であシ
、図中第1図と同等部分は同一符号にょし示されている
。本実施例においては、スピーカ11L、11Rの信号
源として単一の信号発生器14が設けられ、この信号発
生器14がら発せられたソース信号は切換スイッチ19
の切換えによって各々のスピーカに単独に印加される。
FIG. 3 is a block diagram showing another embodiment of the present invention, in which parts equivalent to those in FIG. 1 are designated by the same reference numerals. In this embodiment, a single signal generator 14 is provided as a signal source for the speakers 11L and 11R, and the source signal emitted from this signal generator 14 is transmitted to a selector switch 19.
is applied independently to each speaker by switching.

一方、マイクロホン13L又は13ELの出力は、マイ
クアンプ2OL又は2ORおよび切換スイッチ21を介
して記憶演算装置22に供給されて一時記憶され、左右
のスピーカIIL、IIBおよびマイクロホン13L、
13Rに対して測定が完了した時点で、マイクロホン1
3L 、 13Rの各々の出力値の二乗平均値を記憶演
算装置22で算出する。
On the other hand, the output of the microphone 13L or 13EL is supplied to the storage/arithmetic unit 22 via the microphone amplifier 2OL or 2OR and the changeover switch 21 and is temporarily stored, and the output of the left and right speakers IIL, IIB and the microphone 13L,
When the measurement is completed for 13R, microphone 1
The storage/arithmetic unit 22 calculates the root mean square value of each of the output values of 3L and 13R.

これにより、再スピーカ1. I L 、 11 Rか
らのパワー加算平均を1つの伝達関数として求めた事と
等価となる。
As a result, the second speaker 1. This is equivalent to calculating the average power from I L and 11 R as one transfer function.

第4図は、本発明の更に他の実施例を示すブロック図で
あシ、図中第1図と同等部分は同一符号により示されて
いる。本実施例においては、スピーカ11L、11Rの
ソース信号として、ワープルトーン、ピュアトーンスイ
ープ、インパルス等の振幅周波数特性が明らかが信号を
用い、スピーカILL、111%を各チャンネル間で時
間差を持って駆動することによシ、音響特性の測定を行
なう構成となっている。
FIG. 4 is a block diagram showing still another embodiment of the present invention, in which parts equivalent to those in FIG. 1 are designated by the same reference numerals. In this embodiment, signals with clear amplitude frequency characteristics such as warp tone, pure tone sweep, and impulse are used as the source signals for the speakers 11L and 11R, and the speakers ILL and 111% are driven with a time difference between each channel. In particular, it is configured to measure acoustic characteristics.

すなわち、信号発生器14から出力される例えばインパ
ルスは、伝達関数補正装置15で伝達関数が補正され、
アンプ16および切換スイッチ19を介して、まず、ス
ピーカ1. I Lに印加され当該スピーカを駆動する
。このスピーカ11Lから発せられた音は、音場の影響
を受けつつ伝搬し、マイクロホン13L、13Rにて受
音される。マイクロホン13T、、、13Rの各出力は
演算装置17で加算処理された後記憶装置23に一旦記
憶される。次に、切換スイッチ19のRチャンネル側へ
の切換えにより、Rチャンネル側も同様の手順によって
スピーカ11. Rが駆動され、かつマイクロホン13
 L 、 13 Rの各出力が加算処理後記憶装置23
に記憶される。
That is, for example, the impulse output from the signal generator 14 has its transfer function corrected by the transfer function correction device 15, and
First, the speaker 1. It is applied to IL to drive the speaker. The sound emitted from the speaker 11L propagates while being influenced by the sound field, and is received by the microphones 13L and 13R. The respective outputs of the microphones 13T, . Next, by switching the selector switch 19 to the R channel side, the R channel side is also connected to the speaker 11. R is driven, and the microphone 13
Each output of L and 13 R is added to the storage device 23 after addition processing.
is memorized.

ここで、スピーカIIL、IIRのソース信号は駆動時
に時間差を持っているため、前述した各実施例の場合と
同様に、各チャンネル間で無相関となる。記憶装置23
に記憶された2つの信号は演算装置17で加算され、そ
の加算結果は表示装置18で表示される。
Here, since the source signals of the speakers IIL and IIR have a time difference when they are driven, there is no correlation between each channel, as in each of the embodiments described above. Storage device 23
The two signals stored in are added by the arithmetic device 17, and the result of the addition is displayed on the display device 18.

以上のように、上記各実施例によれば、実人体構成のダ
ミーマネキン12の両耳に装着されたマイクロホンl 
3 L 、 13 Rの出力の加算平均もしくはパワー
加算平均を求めることにより、音場の特性を1つの伝達
関数として取シ扱うことができる。従って、再生系の電
気回路に挿入された伝達関数補正装置15,15T、、
15Rにより、上記1つの伝達関数に対して音場補正す
ることで、聴感と一致性の良い補正が可能となる。
As described above, according to each of the embodiments described above, the microphone l attached to both ears of the dummy mannequin 12 having a real human body configuration.
By calculating the average or power average of the outputs of 3 L and 13 R, the characteristics of the sound field can be treated as one transfer function. Therefore, the transfer function correction devices 15, 15T, inserted into the electric circuit of the reproduction system,
15R, by performing sound field correction on the one transfer function described above, it becomes possible to perform correction that is highly consistent with auditory sensation.

なお、上記各実施例では、2チヤンネルの信号を用いた
ステレオ音響装置について説明したが、フロント、リア
ーに各々スピーカを設置した4スピーカ再生装置におい
て、フロント、リアー各々Lチャンネル、R1チャンネ
ルの単独のノくワー加算を得ることも、又Lチャンネル
のフロント、リアー間、R−F−ヤンネルのフロント、
リアー間は同相信号を印加して測定しても、実ソースの
再生を考慮した場合、同等の効果が得られることは明白
である。
In each of the above embodiments, a stereo sound device using two-channel signals has been described. However, in a four-speaker playback device in which speakers are installed in the front and rear, single channels of L channel and R1 channel are respectively installed in the front and rear. It is also possible to obtain a signal addition between the front and rear of the L channel, the front of the R-F channel,
It is clear that even if an in-phase signal is applied between the rears and measured, the same effect can be obtained when the reproduction of the actual source is considered.

更に、上記各実施例においては、両耳に装着されたマイ
クロホンの出力の加算値を演算で求めるとしたが、アナ
ログ系の処理およびディジタル変換した後数値演算して
も得られることは明らかである。壕だ、オートマチイッ
ク・グラフィック・イコライザに応用する場合、マイク
ロコンピュータ等を介して伝達関数補正装置15 、1
5L、15Rにフィードバックするととによシ容易に実
現できる0 発明の詳細 な説明したように、本発明による音響特性測定装置によ
れば、実人体、ダミーマネキン又はダミーヘッドの耳部
に装置されたマイクロホンの出力に基づいて音響特性の
測定が行なわれるので、聴感と一致した正確な音場評価
を行なうことができる。
Furthermore, in each of the above embodiments, it was assumed that the sum of the outputs of the microphones attached to both ears was obtained by calculation, but it is clear that it can also be obtained by numerical calculation after analog processing and digital conversion. . When applied to an automatic graphic equalizer, the transfer function correction device 15, 1 is used via a microcomputer, etc.
This can be easily realized by feeding back to 5L and 15R.As described in detail of the invention, according to the acoustic characteristic measuring device according to the present invention, it is possible to easily achieve this by providing feedback to 5L and 15R. Since the acoustic characteristics are measured based on the output of the microphone, it is possible to perform accurate sound field evaluation that matches the auditory sensation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
成人した実人体の衣類着用時の吸音力を示す周波数特性
図、第3図は本発明の他の実施例を示すブロック図、第
4図は本発明の更に他の実施例を示すブロック図、第5
図は従来例を示すブロック図である。 主要部分の符号の説明
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a frequency characteristic diagram showing the sound absorption power of a real adult human body when wearing clothing, and Fig. 3 is a block diagram showing another embodiment of the present invention. Figure 4 is a block diagram showing still another embodiment of the present invention, Figure 5 is a block diagram showing still another embodiment of the present invention.
The figure is a block diagram showing a conventional example. Explanation of symbols of main parts

Claims (5)

【特許請求の範囲】[Claims] (1)複数のチャンネル信号に対応して設けられた複数
の音源を含むステレオ音響再生系における前記音源とそ
の音源からの再生音を聴取する聴取点との間の音響特性
を測定する音響特性測定装置であって、前記聴取点に位
置する実人体、ダミーマネキン又はダミーヘッドの耳部
に装着されたマイクロホンを有する測定系を備え、前記
マイクロホンの出力に基づいて音響特性の測定をなすこ
とを特徴とする音響特性測定装置。
(1) Acoustic characteristic measurement that measures the acoustic characteristics between a sound source and a listening point that listens to the reproduced sound from the sound source in a stereo sound reproduction system that includes a plurality of sound sources provided corresponding to a plurality of channel signals. The apparatus is characterized by comprising a measurement system having a microphone attached to the ear of a real human body, a dummy mannequin, or a dummy head located at the listening point, and measuring acoustic characteristics based on the output of the microphone. Acoustic characteristics measuring device.
(2)前記マイクロホンは左右一対設けられており、各
々の出力の加算平均もしくはパワー加算平均を演算する
ことにより音響特性の測定が行なわれることを特徴とす
る特許請求の範囲第1項記載の音響特性測定装置。
(2) A pair of left and right microphones are provided, and the acoustic characteristics are measured by calculating an average of the respective outputs or an average of the power. Characteristic measuring device.
(3)前記ステレオ音響再生系の電気回路に総合的伝達
関数の補正を行なう補正装置を備え、前記補正装置は音
響特性の測定結果に基づいて直接的又は間接的に制御さ
れることを特徴とする特許請求の範囲第1項又は第2項
記載の音響特性測定装置。
(3) The electric circuit of the stereo sound reproduction system is provided with a correction device for correcting the overall transfer function, and the correction device is controlled directly or indirectly based on the measurement results of the acoustic characteristics. An acoustic characteristic measuring device according to claim 1 or 2.
(4)前記複数の音源を駆動するソース信号に対して、
各チャンネル間で互いに無相関となるように信号処理を
行なう信号処理手段を備えたことを特徴とする特許請求
の範囲第1項記載の音響特性測定装置。
(4) With respect to the source signal that drives the plurality of sound sources,
2. The acoustic characteristic measuring device according to claim 1, further comprising signal processing means for performing signal processing so that each channel is uncorrelated with each other.
(5)前記信号処理手段は、測定時に時間的処理を行な
うことを特徴とする特許請求の範囲第4項記載の音響特
性測定装置。
(5) The acoustic characteristic measuring device according to claim 4, wherein the signal processing means performs temporal processing during measurement.
JP8729085A 1985-04-23 1985-04-23 Acoustic characteristic measuring instrument Granted JPS61245698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8729085A JPS61245698A (en) 1985-04-23 1985-04-23 Acoustic characteristic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8729085A JPS61245698A (en) 1985-04-23 1985-04-23 Acoustic characteristic measuring instrument

Publications (2)

Publication Number Publication Date
JPS61245698A true JPS61245698A (en) 1986-10-31
JPH0455039B2 JPH0455039B2 (en) 1992-09-02

Family

ID=13910671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8729085A Granted JPS61245698A (en) 1985-04-23 1985-04-23 Acoustic characteristic measuring instrument

Country Status (1)

Country Link
JP (1) JPS61245698A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414999A (en) * 1990-05-08 1992-01-20 Yamaha Corp Sound image localized sense detection method and sound image localization device
JP2009194682A (en) * 2008-02-15 2009-08-27 Sony Corp Head transfer function measuring method, and head transfer function convolution method and apparatus
US8503682B2 (en) 2008-02-27 2013-08-06 Sony Corporation Head-related transfer function convolution method and head-related transfer function convolution device
US8831231B2 (en) 2010-05-20 2014-09-09 Sony Corporation Audio signal processing device and audio signal processing method
US8873761B2 (en) 2009-06-23 2014-10-28 Sony Corporation Audio signal processing device and audio signal processing method
US9232336B2 (en) 2010-06-14 2016-01-05 Sony Corporation Head related transfer function generation apparatus, head related transfer function generation method, and sound signal processing apparatus
JP2017028365A (en) * 2015-07-16 2017-02-02 株式会社Jvcケンウッド Sound field reproduction device, sound field reproduction method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119674A (en) * 1973-03-15 1974-11-15
JPS5491384A (en) * 1977-12-28 1979-07-19 Matsushita Electric Ind Co Ltd Acoustic measurement
JPS5622900U (en) * 1979-07-31 1981-02-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089912A (en) * 1976-07-28 1978-05-16 Great Lakes Chemical Corporation Stabilized flame-retardant styrenic polymer compositions and the stabilizing flame-retardant mixtures used therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119674A (en) * 1973-03-15 1974-11-15
JPS5491384A (en) * 1977-12-28 1979-07-19 Matsushita Electric Ind Co Ltd Acoustic measurement
JPS5622900U (en) * 1979-07-31 1981-02-28

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414999A (en) * 1990-05-08 1992-01-20 Yamaha Corp Sound image localized sense detection method and sound image localization device
JP2009194682A (en) * 2008-02-15 2009-08-27 Sony Corp Head transfer function measuring method, and head transfer function convolution method and apparatus
US8520857B2 (en) 2008-02-15 2013-08-27 Sony Corporation Head-related transfer function measurement method, head-related transfer function convolution method, and head-related transfer function convolution device
US8503682B2 (en) 2008-02-27 2013-08-06 Sony Corporation Head-related transfer function convolution method and head-related transfer function convolution device
US9432793B2 (en) 2008-02-27 2016-08-30 Sony Corporation Head-related transfer function convolution method and head-related transfer function convolution device
US8873761B2 (en) 2009-06-23 2014-10-28 Sony Corporation Audio signal processing device and audio signal processing method
US8831231B2 (en) 2010-05-20 2014-09-09 Sony Corporation Audio signal processing device and audio signal processing method
US9232336B2 (en) 2010-06-14 2016-01-05 Sony Corporation Head related transfer function generation apparatus, head related transfer function generation method, and sound signal processing apparatus
JP2017028365A (en) * 2015-07-16 2017-02-02 株式会社Jvcケンウッド Sound field reproduction device, sound field reproduction method, and program

Also Published As

Publication number Publication date
JPH0455039B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
US4739513A (en) Method and apparatus for measuring and correcting acoustic characteristic in sound field
JP3805786B2 (en) Binaural signal synthesis, head related transfer functions and their use
Møller Fundamentals of binaural technology
JP4584416B2 (en) Multi-channel audio playback apparatus for speaker playback using virtual sound image capable of position adjustment and method thereof
US8175292B2 (en) Audio signal processing
US5917916A (en) Audio reproduction systems
US20030190047A1 (en) Headphones with integrated microphones
JPH09505702A (en) Binaural signal processor
Masiero Individualized binaural technology: measurement, equalization and perceptual evaluation
US11962984B2 (en) Optimal crosstalk cancellation filter sets generated by using an obstructed field model and methods of use
US6990210B2 (en) System for headphone-like rear channel speaker and the method of the same
JPS61245698A (en) Acoustic characteristic measuring instrument
JP2751166B2 (en) Headphone equipment
JP2003153398A (en) Sound image localization apparatus in forward and backward direction by headphone and method therefor
JPH05199596A (en) Acoustic field reproducing device
US7050596B2 (en) System and headphone-like rear channel speaker and the method of the same
US11653163B2 (en) Headphone device for reproducing three-dimensional sound therein, and associated method
US6983054B2 (en) Means for compensating rear sound effect
WO2017081733A1 (en) Sound reproduction device
JP4037500B2 (en) 3D sound playback device
Pomberger et al. Evaluating out-of-head localization of a dry source from the front reproduced with cue-preserving headphones
JP2019071541A (en) Audio signal processing apparatus and audio signal processing method
JPS60254997A (en) Measuring method of acoustic characteristic in automobile
JPH05115098A (en) Stereophonic sound field synthesis method
JP2947235B2 (en) Headphone equipment