JPS61245494A - Discharge lamp lighting apparatus - Google Patents

Discharge lamp lighting apparatus

Info

Publication number
JPS61245494A
JPS61245494A JP8840585A JP8840585A JPS61245494A JP S61245494 A JPS61245494 A JP S61245494A JP 8840585 A JP8840585 A JP 8840585A JP 8840585 A JP8840585 A JP 8840585A JP S61245494 A JPS61245494 A JP S61245494A
Authority
JP
Japan
Prior art keywords
current
output
circuit
voltage
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8840585A
Other languages
Japanese (ja)
Inventor
平伴 喜光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8840585A priority Critical patent/JPS61245494A/en
Publication of JPS61245494A publication Critical patent/JPS61245494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高周波電源回路部と放電灯を含む照明器具
とを別置してなり、高周波電源回路部に接続される器具
数が変化した場合にも各照明器具の放電灯に常に定格電
流が流れるように制御する放電灯点灯装置に関するもの
である。
[Detailed Description of the Invention] [Technical Field] The present invention has a high-frequency power circuit unit and a lighting fixture including a discharge lamp installed separately, so that even when the number of fixtures connected to the high-frequency power circuit unit changes, The present invention relates to a discharge lamp lighting device that controls so that a rated current always flows through the discharge lamp of each lighting device.

〔背景技術〕[Background technology]

放電灯、特に蛍光灯などの低圧放電灯は、数十KHzの
高周波で点灯すれば、放電灯の発光効率が最大となり、
点灯装置効率が向上するとともに装置の小型・軽量化が
図れることは周知であり、加えて器具組込回路を導く、
かつ短くして器具ブナインの自由度を増すために高周波
電源回路部を別置し、照明器具内に放電灯と安定要素と
予熱回路とのみを収納し、それを並列に複数個接続して
一つの高周波電源回路部から給電して多灯点灯する方式
があるが、この方式においては、波形歪があると高調波
が流れて配線での電力損が増えるために、それを除去す
る目的で高周波変換回路(インバータ回路)の出力側に
リアクタンス素子とキャパシタンス素子の直列回路を設
けて高調波を取り除いている。また、このキャパシタン
ス素子は、フィルタ効果を果たすと同時に、力率改善効
果も兼ねているため、すなわち、最大数の照明器具が高
周波電源部に接続され、かつすべての照明器具に放電灯
が装着された状態において各照明器具に流れる(放電灯
に流れる電流および予熱トランスの1次巻線に流れる電
流)遅相電流を補償する進相電流を流す機能を兼ねてい
るために、多灯点灯で負荷ランプ数が変った場合に、そ
の変化したランプ電流分に応じてキャパシタンス素子の
容量も変化しなくては出力電圧が変化し、その結果ラン
プ電流が変化するという問題があり、この問題に関して
は、各灯数時の出力電圧・電流を検出して入力電流の導
通位相角を制御したり、前記キャパシタンス素子と並列
に可変インダクタンス素子を設けてそのインダクタンス
を制御して出力電圧が定格電圧になるようにしている。
Discharge lamps, especially low-pressure discharge lamps such as fluorescent lamps, reach their maximum luminous efficiency when lit at a high frequency of several tens of KHz.
It is well known that the efficiency of lighting devices can be improved and the devices can be made smaller and lighter.
In order to shorten the length and increase the flexibility of the fixture, the high-frequency power circuit section is placed separately, and only the discharge lamp, stabilizing element, and preheating circuit are housed in the lighting fixture, and multiple units are connected in parallel to form a single unit. There is a method of lighting multiple lights by supplying power from one high-frequency power supply circuit, but in this method, harmonics flow when there is waveform distortion, increasing power loss in the wiring. A series circuit of a reactance element and a capacitance element is provided on the output side of the conversion circuit (inverter circuit) to remove harmonics. In addition, this capacitance element has a filter effect and also has a power factor improvement effect, which means that the maximum number of lighting fixtures can be connected to the high-frequency power supply, and all lighting fixtures can be equipped with discharge lamps. It also has the function of passing a leading phase current that compensates for the slow phase current that flows through each lighting device (the current flowing to the discharge lamp and the current flowing to the primary winding of the preheating transformer) in a state where multiple lights are lit. When the number of lamps changes, the capacitance of the capacitance element must also change according to the changed lamp current, otherwise the output voltage will change, and as a result, the lamp current will change.Regarding this problem, The output voltage and current at each number of lamps are detected to control the conduction phase angle of the input current, or a variable inductance element is provided in parallel with the capacitance element and the inductance is controlled so that the output voltage becomes the rated voltage. I have to.

しかし、この方法は、ランプ灯数変化時のみに定格電圧
になるように設定されており、照明器具を外した時の予
熱トランスの一次電流の影響は考慮されておらず、その
影響で器具を外した時にランプ電流が定格電流にならな
いという問題点がある。
However, this method is set so that the rated voltage is reached only when the number of lamps changes, and does not take into account the effect of the primary current of the preheating transformer when the lighting equipment is removed. There is a problem that the lamp current does not reach the rated current when the lamp is removed.

第4A図および第4B図はこの発明の基礎となる放電灯
点灯装置の回路図を示している。この放電灯点灯装置は
、交流電源1に全波整流器2を接続し、全波整流器2の
正の出力端子にサイリスク5CR2を介して、定電流チ
ラークコイルCH。
FIGS. 4A and 4B show circuit diagrams of a discharge lamp lighting device that is the basis of the present invention. This discharge lamp lighting device connects a full-wave rectifier 2 to an AC power supply 1, and connects a constant current chiller coil CH to the positive output terminal of the full-wave rectifier 2 via a Cyrisk 5CR2.

の一端を接続している。このサイリスタ5CR2の両端
に抵抗R1とサイリスタSCR,の直列回路を接続し、
前記サイリスタ5CR2のアノードを抵抗R2を介して
サイリスタSCR,のゲートに接続している。前記定電
流チョークコイルCH。
One end of the is connected. A series circuit of resistor R1 and thyristor SCR is connected to both ends of this thyristor 5CR2,
The anode of the thyristor 5CR2 is connected to the gate of the thyristor SCR via a resistor R2. The constant current choke coil CH.

の他端は、発振トランスTlの1次巻線n1の中間端子
に接続し、発振トランスT1の1次巻線n1の両端子を
互いにコンデンサC1を介して接続するとともに、各々
スイッチングトランジスタQl。
The other end is connected to the intermediate terminal of the primary winding n1 of the oscillation transformer Tl, and both terminals of the primary winding n1 of the oscillation transformer T1 are connected to each other via a capacitor C1, and each is connected to a switching transistor Ql.

Q2のコレクタに接続してあり、スイッチングトランジ
スタQl、Q2の各エミッタを互いに接続して全波整流
器2の負極端子に接続している0発振トランスTIの3
次巻線n3の両端は、各々スイッチングトランジスタQ
l、Q2の各ベースに接続し、そのベースは互いに抵抗
R3,R,を介して接続してあり、両抵抗R3,R4の
接続点と金波整流器2の負の出力端子の間には直流電源
Eを接続している0発振トランスT、の2次巻線n2の
両端には、リアクタンス素子CH2とキャパシタンス素
子C2の直列回路を接続し、キャパシタンス素子C2の
両出力端に並列に出力電圧検知用トランスT2の一次巻
線n1を接続し、この出力電圧検知用トランスT2の一
次巻線n1の一端には出力電流検知用カレントトランス
CTの一次巻線n1の一端を接続している。ここまでの
回路は、後述する灯数制御回路CRと合わせて高周波電
源回路部lを構成している。また、一点鎖線で囲んだ回
路INは高周波変換回路INを構成し、一点鎖線で囲ん
だ回路DTは出力電圧・電流検知回路を構成し、二点鎖
線で囲んだ回路IVはインバータを構成している。出力
電圧検知用トランスT2の一次巻線n1の他端の端子T
M、と出力電流検知用カレントトランスCTの一次巻線
n1の他端の端子TM2とには、限流チラークコイルな
どの安定要素3.3′と放電灯4,4′の直列回路(照
明器具■、■′)を複数並列に接続してあり、各放電灯
4.4′の両端には予熱トランスT3゜Ta2の1次巻
線nlを接続し、その2次巻線n2は各々放電灯4.4
′のフィラメントに接続している。前記出力電圧検出用
トランスT2の2次巻線n2はランプ灯数制御回路CR
の全波整流器6に接続し、その両出力端に抵抗R13,
R11の直列回路を接続し、抵抗R11の両端に平滑コ
ンデンサC5を接続している。出力電流検知用カレント
トランスCTの2次巻線n2は全波整流器5に接続し、
その出力端には抵抗 R12,RIGの直列回路を接続
し、抵抗RIOの両端に平滑コンデンサC4が接続して
いる。そして、出力電圧検知電圧vRに対して、出力電
流検知電圧VRIOの電圧の向きが逆になるように抵抗
 RII +  R10を直列接続し、抵抗R11,R
IOによる合成電圧を抵抗R9を介してプログラマブル
ユニジャンクショントランジスタPUTのゲートに与え
る。また、サイリスタSCR,の両端に抵抗 R6,R
6の直列回路を接続し、抵抗R5,R6の接続点をトラ
ンジスタQ3のベースに接続し、そのエミッタをサイリ
スタSCR,のカソードに接続し、コレクタをトランジ
スタQ4のベースに接続し、トランジスタQ4のコレク
タとエミッタとの間にはコンデンサC3を接続し、トラ
ンジスタQ4のコレクタはプログラマブルユニジャンク
ショントランジスタPUTのアノードに接続している。
3 of the zero oscillation transformer TI which is connected to the collector of Q2, and which connects the emitters of the switching transistors Ql and Q2 to each other and connects to the negative terminal of the full-wave rectifier 2.
Both ends of the next winding n3 are connected to switching transistors Q
The bases are connected to each other through resistors R3 and R, and a DC power supply is connected between the connection point of both resistors R3 and R4 and the negative output terminal of the gold wave rectifier 2. A series circuit of a reactance element CH2 and a capacitance element C2 is connected to both ends of the secondary winding n2 of the zero oscillation transformer T connected to E, and a series circuit of a reactance element CH2 and a capacitance element C2 is connected in parallel to both output ends of the capacitance element C2 for output voltage detection. A primary winding n1 of the transformer T2 is connected, and one end of the primary winding n1 of the output current detecting current transformer CT is connected to one end of the primary winding n1 of the output voltage detecting transformer T2. The circuits up to this point together with the number of lights control circuit CR, which will be described later, constitute a high frequency power supply circuit section l. In addition, the circuit IN surrounded by a dashed-dotted line constitutes a high frequency conversion circuit IN, the circuit DT surrounded by a dashed-dotted line constitutes an output voltage/current detection circuit, and the circuit IV surrounded by a dashed-double line constitutes an inverter. There is. Terminal T at the other end of the primary winding n1 of the output voltage detection transformer T2
M, and the terminal TM2 at the other end of the primary winding n1 of the current transformer CT for detecting the output current are connected to a series circuit (lighting equipment , ■') are connected in parallel, and the primary winding nl of the preheating transformer T3゜Ta2 is connected to both ends of each discharge lamp 4. .4
′ is connected to the filament. The secondary winding n2 of the output voltage detection transformer T2 is a lamp number control circuit CR.
connected to the full-wave rectifier 6, with resistors R13,
A series circuit of R11 is connected, and a smoothing capacitor C5 is connected to both ends of the resistor R11. The secondary winding n2 of the current transformer CT for output current detection is connected to the full-wave rectifier 5,
A series circuit of resistors R12 and RIG is connected to its output terminal, and a smoothing capacitor C4 is connected to both ends of the resistor RIO. Then, resistors RII + R10 are connected in series so that the voltage direction of the output current detection voltage VRIO is opposite to the output voltage detection voltage vR, and the resistors R11 and R10 are connected in series.
The combined voltage from IO is applied to the gate of programmable unijunction transistor PUT via resistor R9. In addition, there are resistors R6 and R at both ends of the thyristor SCR.
6 in series, connect the connection point of resistors R5 and R6 to the base of transistor Q3, connect its emitter to the cathode of thyristor SCR, connect its collector to the base of transistor Q4, and connect the collector of transistor Q4. A capacitor C3 is connected between the transistor Q4 and the emitter, and the collector of the transistor Q4 is connected to the anode of the programmable unijunction transistor PUT.

そして、プログラマブルユニジャンクショントランジス
タPUTのカソードをパルストランスPTの1次巻線n
1を介しでトランジスタQ3.Q4のエミッタに接続し
ている。以下、これらのトランジスタQ3.Q。
Then, the cathode of the programmable unijunction transistor PUT is connected to the primary winding n of the pulse transformer PT.
1 through transistor Q3. Connected to the emitter of Q4. Below, these transistors Q3. Q.

のエミッタの電位をマイナスラインとする。Let the potential of the emitter of be the negative line.

前記全波整流器6の負の出力端をマイナスラインに接続
するとともに、全波整流器6の正の出力端から抵抗R1
4を介してツェナーダイオードZD。
The negative output end of the full wave rectifier 6 is connected to the minus line, and a resistor R1 is connected from the positive output end of the full wave rectifier 6.
4 through the Zener diode ZD.

のカソードに接続し、そのアノードをトランジスタQ5
のベースに接続し、トランジスタQものエミッタはマイ
ナスラインに接続するとともに抵抗R16を介してベー
スに接続する。トランジスタQものコレクタはサイリス
タSCR+のゲートに接続している。また、ツェナーダ
イオードZDIのカソードはコンデンサC6を介してマ
イナスラインに接続し、またそれぞれ抵抗R?、R,を
介してトランジスタQ3.Q、のコレクタに接続してい
る。
and connect its anode to the cathode of transistor Q5.
The emitter of transistor Q is connected to the negative line and connected to the base via resistor R16. The collector of transistor Q is connected to the gate of thyristor SCR+. Also, the cathode of the Zener diode ZDI is connected to the negative line via a capacitor C6, and each resistor R? , R, and the transistor Q3. It is connected to the collector of Q.

つぎに、この放電灯点灯装置の動作について説明する。Next, the operation of this discharge lamp lighting device will be explained.

電源投入後、抵抗R2を介してサイリスタ5CRIにゲ
ート電流が与えられ、サイリスタ5CR1が導通し、抵
抗R1を介して入力電圧がインバータIVに与えられ、
インバータIVが発振を開始する。インバータ■vが発
振すると出力電圧検知用トランスT2の2次巻線n2に
検知電圧が発生し、それが全波整流器6で整流され\抵
抗R14とコンデンサC6の時定数でコンデンサC6に
充電され、その充電電圧がツェナーダイオードZD、の
ツェナー電圧を越えるとトランジスタQ5にベース電流
が流れ、トランジスタQ5が導通し、サイリスタSCR
,のゲート電流がバイアスされてサイリスタSCR,は
オフする。サイリスタS’ CR、をオフさせることで
、サイリスタSCR。
After the power is turned on, a gate current is applied to thyristor 5CRI via resistor R2, thyristor 5CR1 becomes conductive, and an input voltage is applied to inverter IV via resistor R1.
Inverter IV starts oscillating. When the inverter v oscillates, a detection voltage is generated in the secondary winding n2 of the output voltage detection transformer T2, which is rectified by the full-wave rectifier 6 and charged to the capacitor C6 by the time constant of the resistor R14 and capacitor C6. When the charging voltage exceeds the Zener voltage of the Zener diode ZD, a base current flows through the transistor Q5, which becomes conductive, and the thyristor SCR
, and the thyristor SCR is turned off. By turning off thyristor S'CR, thyristor SCR.

の両端に毎半サイクル電圧が生じ、この電圧を抵抗Rs
、R6で分圧検出して、トランジスタQ3がオン、トラ
ンジスタQ4がオフとなり、コンデンサC3を一定時定
数(商用半サイクル以内)で充電させる。一方、プログ
ラマブルユニジャンクショントランジスタPUTのゲー
トには、出力電圧および出力電流から検知した電圧の合
成電圧が抵抗R9を介して与えられ、これに対してコン
デンサC3の充電電圧が高くなるとプログラマブルユニ
ジャンクショントランジスタPUTが導通して、パルス
トランスPTの一次巻線n1に電流が流れてサイリスタ
5CR2のゲートにパルス信号を与え、導通させる。
A voltage is generated every half cycle across the resistor Rs.
, R6 detect the partial voltage, transistor Q3 is turned on, transistor Q4 is turned off, and capacitor C3 is charged at a constant time constant (within half a commercial cycle). On the other hand, a composite voltage of the voltage detected from the output voltage and the output current is applied to the gate of the programmable unijunction transistor PUT via the resistor R9, and on the other hand, when the charging voltage of the capacitor C3 becomes high, the programmable unijunction transistor PUT becomes conductive, current flows through the primary winding n1 of the pulse transformer PT, and a pulse signal is applied to the gate of the thyristor 5CR2, making it conductive.

この従来例においては、プログラマブルユニジャンクシ
ョントランジスタPUTのゲート電圧として、与える検
知電圧VRIIとVRIOの差電圧を各ランプ灯数での
出力電流、出力電圧から最適な電圧が得られるように調
整し、ランプ灯数の変化に応じて一対の端子TM、、T
M2間に現われる電圧を制御して各放電灯4,4′に常
に定格電流を流すようにしているだけであり、各ランプ
灯数時に器具の有無による予熱トランスT3の一次巻線
n1の電流(遅相電流)の変化によるランプ電流の補償
はされていないという問題があった。
In this conventional example, the difference voltage between the applied detection voltages VRII and VRIO is adjusted as the gate voltage of the programmable unijunction transistor PUT so that the optimum voltage can be obtained from the output current and output voltage for each number of lamps. A pair of terminals TM,,T depending on the change in the number of lights.
The voltage appearing between M2 is simply controlled so that the rated current always flows through each discharge lamp 4, 4', and the current in the primary winding n1 of the preheating transformer T3 ( There was a problem in that the lamp current was not compensated for due to changes in the slow phase current.

なお、ランプ灯数の変化によってランプ電流が変化する
のは、つぎの理由による。すなわち、インバータIVの
発振周期はコンデンサC1と発振トランスT!の1次巻
線+11側から見た負荷のインダクタンス成分との共振
周波数で決定されるため、間引き点灯や放電灯寿命末期
での不点等による灯数低減により負荷のインダクタンス
成分が増え、周波数が低下し、また出力電流低減により
リアクタンス素子CH2での電圧降下が低減するため、
インバータ■vの出力電圧が増加するためである。
The reason why the lamp current changes as the number of lamps changes is as follows. That is, the oscillation period of inverter IV is determined by capacitor C1 and oscillation transformer T! It is determined by the resonant frequency with the inductance component of the load as seen from the primary winding +11 side, so if the number of lamps is reduced due to thinning lighting or failure at the end of the discharge lamp life, the inductance component of the load increases and the frequency increases. Since the output current decreases and the voltage drop at reactance element CH2 decreases,
This is because the output voltage of the inverter v increases.

〔発明の目的〕[Purpose of the invention]

この発明は、高周波電源部に接続される放電灯数に変化
にかかわらず各放電灯に所定のランプ電流を流すことが
できるとともに、高周波電源部に接続される照明器具数
にかかわらず各放電灯に所定のランプ電流を流すことが
できる放電灯点灯装置を提供することを目的とする。
This invention allows a predetermined lamp current to flow through each discharge lamp regardless of the number of discharge lamps connected to the high-frequency power source, and also allows each discharge lamp to flow regardless of the number of lighting devices connected to the high-frequency power source. An object of the present invention is to provide a discharge lamp lighting device that can flow a predetermined lamp current.

〔発明の開示〕[Disclosure of the invention]

この発明の放電灯点灯装置は、高周波電源部と、この高
周波電源部の出力端に並列的に接続された複数の照明器
具とを備え、 前記複数の照明器具の各々は、放電灯と、この放電灯に
流れるランプ電流を制限する安定要素と、前記放電灯に
予熱電流を供給する予熱回路と、この予熱回路に並列に
接続されて前記予熱回路に流れる電流を補償する第1の
キャパシタンス素子とで構成し、 前記高周波電源部は、直流電圧を高周波電圧に変換する
高周波変換回路と、この高周波変換回路の出力端に接続
したリアクタンス素子および第2のキャパシタンス素子
の直列回路と、この第2のキャパシタンス素子の両端に
設けて前記複数の照明器具に給電する一対の出力端子と
、この一対の出力端子間に現われる出力電圧を検出する
とともに前記一対の出力端子より前記複数の照明器具に
供給される出力電流を検出する出力電圧・電流検出回路
と、この出力電圧・電流検出回路の出力にもとづき前記
一対の出力端子間に接続された放電・灯数に対応して前
記一対の出力端子間に現われる出力電圧を制御する灯数
制御回路とを備える構成にしたものである。
A discharge lamp lighting device of the present invention includes a high-frequency power supply unit and a plurality of lighting fixtures connected in parallel to an output end of the high-frequency power supply unit, and each of the plurality of lighting fixtures includes a discharge lamp and a plurality of lighting fixtures connected in parallel to an output end of the high-frequency power supply unit. a stabilizing element that limits a lamp current flowing through the discharge lamp; a preheating circuit that supplies a preheating current to the discharge lamp; and a first capacitance element that is connected in parallel to the preheating circuit and compensates for the current that flows through the preheating circuit. The high-frequency power supply section includes: a high-frequency conversion circuit that converts a DC voltage into a high-frequency voltage; a series circuit of a reactance element and a second capacitance element connected to the output end of the high-frequency conversion circuit; A pair of output terminals provided at both ends of the capacitance element to supply power to the plurality of lighting fixtures, and an output voltage appearing between the pair of output terminals is detected and supplied to the plurality of lighting fixtures from the pair of output terminals. An output voltage/current detection circuit that detects the output current, and a discharge voltage that appears between the pair of output terminals in accordance with the number of discharge lamps connected between the pair of output terminals based on the output of the output voltage/current detection circuit. This configuration includes a number-of-lights control circuit that controls the output voltage.

このように、一対の出力端子間に現われる出力電圧およ
び一対の端子から複数の照明器具へ供給される出力電流
を出力電圧・電流検出回路で検出し、この出力電圧・電
流検出回路の出力にもとづき前記一対の出力端子間に接
続された放電灯数に対応して前記一対の出力端子間に現
われる出力電圧を制御するようにしたため、一対の出力
端子間に接続される放電灯数にかかわらず各放電灯に所
定のランプ電流を流すことができ、間引き点灯が可能と
なる。
In this way, the output voltage appearing between a pair of output terminals and the output current supplied from a pair of terminals to multiple lighting fixtures are detected by an output voltage/current detection circuit, and based on the output of this output voltage/current detection circuit, Since the output voltage appearing between the pair of output terminals is controlled in accordance with the number of discharge lamps connected between the pair of output terminals, each A predetermined lamp current can be passed through the discharge lamp, making it possible to perform thinning lighting.

また、予熱回路に並列に接続されて予熱回路に流れる電
流を補償する第1のキャパシタンス素子を各照明器具に
設けているため、照明器具を外して予熱回路の電流がな
くなったときに、第1のキャパシタンス素子に流れる補
償電流もなくなることになり、予熱回路の電流の有無が
高周波電源部に影響を与えることはなく、照明器具の接
続数が変わっても、上記の放電灯数の違いに応じた電圧
の制御だけで各放電灯に所定の電流を流すことができる
。この結果、高周波電源部に対して照明器具を最大器具
数を超えない範囲で任意の数だけ接続することができる
In addition, since each lighting fixture is provided with a first capacitance element that is connected in parallel to the preheating circuit and compensates for the current flowing through the preheating circuit, when the lighting fixture is removed and the current in the preheating circuit disappears, the first capacitance element is connected in parallel to the preheating circuit. There is also no compensation current flowing through the capacitance element, so the presence or absence of current in the preheating circuit does not affect the high frequency power supply section, and even if the number of connected lighting equipment changes, it will not change depending on the difference in the number of discharge lamps mentioned above. A predetermined current can be passed through each discharge lamp simply by controlling the voltage. As a result, an arbitrary number of lighting fixtures can be connected to the high frequency power supply unit within a range that does not exceed the maximum number of lighting fixtures.

なお、予熱回路に並列に第1のキャパシタンス素子を設
けたことにより、第2のキャパシタンス素子の容量は小
さくする。
Note that by providing the first capacitance element in parallel with the preheating circuit, the capacitance of the second capacitance element is reduced.

実施例 この発明の一実施例を第1図ないし第3図に基づいて説
明する。この放電灯点灯装置は、第1図に示すような構
成であって、高周波電源部I (高周波変換回路IN、
出力電圧・電流検出回路DT。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 3. This discharge lamp lighting device has a configuration as shown in FIG.
Output voltage/current detection circuit DT.

灯数制御回路CR)については第4A図、第4B図と同
じである。相違点は、限流チョークコイルなどの安定要
素3.3′と放電灯4.4′の直列回路に並列に電流補
償用のキャパシタンス素子’C7IC7′が接続されて
いることである。このキャパシタンス素子C7の容量は
、第2図に示すように安定要素3と予熱トランスT3の
1次巻線n1を流れる電流ILと、絶対値が間じで位相
が180゜異なる電流IC7を流すことができる値に設
定されているeVc2はキャパシタンス素子C2の両端
電圧であり、電圧v2と等しい。
The light number control circuit CR) is the same as in FIGS. 4A and 4B. The difference is that a capacitance element 'C7IC7' for current compensation is connected in parallel to the series circuit of a stabilizing element 3.3' such as a current limiting choke coil and a discharge lamp 4.4'. As shown in FIG. 2, the capacitance of this capacitance element C7 is such that a current IC7 whose absolute value is about the same and whose phase is 180° different from the current IL flowing through the stability element 3 and the primary winding n1 of the preheating transformer T3 flows through the current IL. eVc2, which is set to a value that allows , is the voltage across the capacitance element C2, and is equal to the voltage v2.

上記キャパシタンス素子C7の動作を第3図により説明
する。同図中、実線が全灯点灯状態を示している、vl
は高周波変換回路INの出力電圧、■2は高周波電源回
路Iの出力電圧である。vL^は放電灯4に流れるラン
プ電流、ILは予熱トランスT3に流れる電流、Icは
キャパシタンス素子C2,C?に流れる電流の和である
。Vtはリアクタンス素子CH2の両端電圧で、VL(
LA)はランプ電流IL^による電圧成分、VL  (
C)はキャパシタンス素子c2.C,を流れる電流によ
る電圧成分である。
The operation of the capacitance element C7 will be explained with reference to FIG. In the same figure, the solid line indicates the state where all the lights are on, vl
is the output voltage of the high frequency conversion circuit IN, and 2 is the output voltage of the high frequency power supply circuit I. vL^ is the lamp current flowing through the discharge lamp 4, IL is the current flowing through the preheating transformer T3, and Ic is the capacitance element C2, C? is the sum of the currents flowing in . Vt is the voltage across reactance element CH2, and VL(
LA) is the voltage component due to lamp current IL^, VL (
C) is a capacitance element c2. This is the voltage component due to the current flowing through C.

今、ランプ灯数だけが減ってランプに流れるランプ電流
がILAからILA ′に減ると、そのランプ電流IL
A ’によるリアクタンス素子CH2の両端電圧はVL
  (LA)からVL’  (LA) に下がり、その
結果電圧VL  (C)との合成電圧VtはVL ’ 
 (VL ’<VL)とナリ、電圧v2との関係で電圧
■1がVt ’  (Vt ’<Vt)となる。
Now, if only the number of lamps decreases and the lamp current flowing through the lamps decreases from ILA to ILA', then the lamp current IL
The voltage across reactance element CH2 due to A' is VL
(LA) to VL' (LA), and as a result, the composite voltage Vt with voltage VL (C) is VL'
(VL'<VL), voltage (1) becomes Vt'(Vt'<Vt) due to the relationship with voltage v2.

ここで、電圧V1は常に一定だから、電圧v2が大きく
なるわけであるが、この作用に対しては灯数制御回路C
Rが働いて位相制御などでv2を降圧して定格出力にす
る。
Here, since the voltage V1 is always constant, the voltage v2 increases, but for this effect, the number of lights control circuit C
R works to step down v2 by phase control etc. and make it the rated output.

つぎに、器具数が変わった場合には、電圧V。Next, if the number of appliances changes, the voltage V.

(LA)に至るまではランプ灯数変化時と同じであるが
、もしキャパシタンス素子C7がなければ、予熱トラン
スT3の1次巻線n1の電流ILが減うた分だけ今まで
それを補償していた進相電流rc+が増えて電流1cは
■c′となり、それによッi’ V L  (C)がV
L  (C) ’ (Vt  (C) ’>VL  (
C))に増え、その結果、電圧■L′が■L′となり、
電圧y、+がv、’ (V、“〈vl ′)となる、こ
こで、v1=一定であるから、電圧v2がさらに大きく
なってしまう。
The process up to (LA) is the same as when the number of lamps changes, but if there was no capacitance element C7, the current IL in the primary winding n1 of the preheating transformer T3 would have decreased, but this would have been compensated for. The leading phase current rc+ increases and the current 1c becomes ■c', so that i' V L (C) becomes V
L (C) ' (Vt (C) '>VL (
C)), and as a result, the voltage ■L' becomes ■L',
The voltage y,+ becomes v,' (V, "<vl ')," where v1=constant, so the voltage v2 becomes even larger.

しかし、この実施例では、照明器具Iを取外すと、予熱
トランスT3の1次巻線の電流ILの補償用のキャパシ
タンス素子C7も取り除かれ、電流ILを補償していた
進相電流IC+も減らすことでVL  (C)が変化し
なくなり、その結果、電圧v、Iも変化しない、そのた
め、灯数制御回路CRによる制御だけで定格出力電圧が
得られ、照明器具n、n’の接続数にかかわらずランプ
電流が定格電流に常に調整される。
However, in this embodiment, when the lighting fixture I is removed, the capacitance element C7 for compensating the current IL in the primary winding of the preheating transformer T3 is also removed, and the phase-advanced current IC+ that was compensating for the current IL is also reduced. , VL (C) does not change, and as a result, the voltages v and I also do not change. Therefore, the rated output voltage can be obtained only by controlling the number of lights control circuit CR, regardless of the number of connected lighting fixtures n and n'. The lamp current is constantly adjusted to the rated current.

〔発明の効果〕〔Effect of the invention〕

この発明の放電灯点灯装置は、一対の出力端子間に現わ
れる出力電圧および一対の端子から複数の照明器具へ供
給される出力電流を出力電圧・電流検出回路で検出し、
この出力電圧・電流検出回路に出力にもとづき前記一対
の出力端子間に接続された放電灯数に対応して前記一対
の出力端子間に現われる出力電圧を制御するようにした
ため、一対の出力端子間に接続される放電灯数にかかわ
らず各放電灯に所定のランプ電流を流すことができ、間
引き点灯が可能となる。
The discharge lamp lighting device of the present invention detects the output voltage appearing between a pair of output terminals and the output current supplied from the pair of terminals to a plurality of lighting equipment with an output voltage/current detection circuit,
This output voltage/current detection circuit controls the output voltage appearing between the pair of output terminals in accordance with the number of discharge lamps connected between the pair of output terminals based on the output. A predetermined lamp current can be passed through each discharge lamp regardless of the number of discharge lamps connected to the lamp, and thinning lighting is possible.

また、予熱回路に並列に接続されて予熱回路に流れる電
流を補償する第1のキャパシタンス素子を各照明器具に
設けているため、照明器具を外して予熱回路の電流がな
くなったときに、第1のキャパシタンス素子に流れる補
償電流もなくなることになり、予熱回路の電流の有無が
高周波電源部に影響を与えることはなく、照明器具の接
続数が変わっても、上記の放電灯数の違いに応じた電圧
の制御だけで各放電灯に所定の電流を流すことができる
。この結果、高周波電源部に対して照明器具を最大器具
数を超えない範囲で任意の数だけ接続することができる
In addition, since each lighting fixture is provided with a first capacitance element that is connected in parallel to the preheating circuit and compensates for the current flowing through the preheating circuit, when the lighting fixture is removed and the current in the preheating circuit disappears, the first capacitance element is connected in parallel to the preheating circuit. There is also no compensation current flowing through the capacitance element, so the presence or absence of current in the preheating circuit does not affect the high frequency power supply section, and even if the number of connected lighting equipment changes, it will not change depending on the difference in the number of discharge lamps mentioned above. A predetermined current can be passed through each discharge lamp simply by controlling the voltage. As a result, an arbitrary number of lighting fixtures can be connected to the high frequency power supply unit within a range that does not exceed the maximum number of lighting fixtures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の放電灯点灯装置の回路図
、第2図および第3図は各部の電圧・電流ベクトル図、
第4A図および第4B図はこの発明の基礎となる放電灯
点灯装置の回路図である。 ■・・・高周波電源部、n、n’・・・照明器具、IN
・・・高周波変換回路、CR・・・灯数制御回路、DT
・・・出力電圧・電流検出回路、CH2・・・リアクタ
ンス素子、C2・・・キャパシタンス素子(第2) 、
4゜4′・・・放電灯、3,3′・・・安定要素、T3
.T3’・・・予熱トランス、 C7,C7’・・・キ
ャパシタンス素子(第1)
FIG. 1 is a circuit diagram of a discharge lamp lighting device according to an embodiment of the present invention, FIGS. 2 and 3 are voltage and current vector diagrams of each part,
FIGS. 4A and 4B are circuit diagrams of a discharge lamp lighting device that is the basis of the present invention. ■...High frequency power supply section, n, n'...Lighting equipment, IN
...High frequency conversion circuit, CR...Light number control circuit, DT
...output voltage/current detection circuit, CH2...reactance element, C2...capacitance element (second),
4゜4'...discharge lamp, 3,3'...stability element, T3
.. T3'... Preheating transformer, C7, C7'... Capacitance element (first)

Claims (1)

【特許請求の範囲】 高周波電源部と、この高周波電源部の出力端に並列的に
接続された複数の照明器具とを備え、前記複数の照明器
具の各々は、放電灯と、この放電灯に流れるランプ電流
を制限する安定要素と、前記放電灯に予熱電流を供給す
る予熱回路と、この予熱回路に並列に接続されて前記予
熱回路に流れる電流を補償する第1のキャパシタンス素
子とで構成し、 前記高周波電源部は、直流電圧を高周波電圧に変換する
高周波変換回路と、この高周波変換回路の出力端に接続
したリアクタンス素子および第2のキャパシタンス素子
の直列回路と、この第2のキャパシタンス素子の両端に
設けて前記複数の照明器具に給電する一対の出力端子と
、この一対の出力端子間に現われる出力電圧を検出する
とともに前記一対の出力端子より前記複数の照明器具に
供給される出力電流を検出する出力電圧・電流検出回路
と、この出力電圧・電流検出回路の出力にもとづき前記
一対の出力端子間に接続された放電灯数に対応して前記
一対の出力端子間に現われる出力電圧を制御する灯数制
御回路とを備えた放電灯点灯装置。
[Scope of Claims] A high-frequency power supply unit and a plurality of lighting fixtures connected in parallel to the output end of the high-frequency power supply unit, each of the plurality of lighting fixtures including a discharge lamp and a discharge lamp connected to the discharge lamp. The lamp comprises a stabilizing element that limits the flowing lamp current, a preheating circuit that supplies a preheating current to the discharge lamp, and a first capacitance element that is connected in parallel to the preheating circuit and compensates for the current that flows through the preheating circuit. , the high-frequency power supply section includes a high-frequency conversion circuit that converts a DC voltage into a high-frequency voltage, a series circuit of a reactance element and a second capacitance element connected to the output terminal of the high-frequency conversion circuit, and a series circuit of the second capacitance element. A pair of output terminals provided at both ends to supply power to the plurality of lighting fixtures, and detecting an output voltage appearing between the pair of output terminals and detecting an output current supplied to the plurality of lighting fixtures from the pair of output terminals. An output voltage/current detection circuit to be detected, and an output voltage appearing between the pair of output terminals corresponding to the number of discharge lamps connected between the pair of output terminals based on the output of the output voltage/current detection circuit. A discharge lamp lighting device equipped with a lamp number control circuit.
JP8840585A 1985-04-23 1985-04-23 Discharge lamp lighting apparatus Pending JPS61245494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8840585A JPS61245494A (en) 1985-04-23 1985-04-23 Discharge lamp lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8840585A JPS61245494A (en) 1985-04-23 1985-04-23 Discharge lamp lighting apparatus

Publications (1)

Publication Number Publication Date
JPS61245494A true JPS61245494A (en) 1986-10-31

Family

ID=13941887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8840585A Pending JPS61245494A (en) 1985-04-23 1985-04-23 Discharge lamp lighting apparatus

Country Status (1)

Country Link
JP (1) JPS61245494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301870A (en) * 2008-06-13 2009-12-24 Toko Inc Lighting circuit of hot-cathode discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301870A (en) * 2008-06-13 2009-12-24 Toko Inc Lighting circuit of hot-cathode discharge tube

Similar Documents

Publication Publication Date Title
US5223767A (en) Low harmonic compact fluorescent lamp ballast
US5434480A (en) Electronic device for powering a gas discharge road from a low frequency source
JPH06176881A (en) Stabilizer circuit
JP2003520407A (en) Power feedback power factor correction scheme for multiple lamp operation.
US5892335A (en) Gas discharge lamp with active crest factor correction
US5801492A (en) Electronic ballast for gas discharge lamp having primary and auxiliary resonant circuits
US5448137A (en) Electronic energy converter having two resonant circuits
US5898278A (en) Series resonant lamp circuit having direct electrode connection between rectifier and AC source
US5477112A (en) Ballasting network with integral trap
KR19990083245A (en) Discharge lamp lighting equipment and illuminating apparatus
JPS58147997A (en) Device for operating discharge lamp
CN101652015A (en) High-powder factor ballast of brightness adjustable energy-saving lamp
JP2003529891A (en) Dimmable electronic ballast with single-stage feedback inverter
JPS61245494A (en) Discharge lamp lighting apparatus
JP2004527896A (en) High efficiency high power factor electronic ballast
JP3858407B2 (en) Discharge lamp lighting device
JPH09308255A (en) Discharge lamp lighting apparatus
JP3319839B2 (en) Discharge lamp lighting device
JP3261706B2 (en) Inverter device
JPH07263166A (en) Electronic lighting device for discharge lamp and its control method
JP2688418B2 (en) Discharge lamp lighting device
JP2697856B2 (en) Discharge lamp lighting device
JP2001136753A (en) Constant-current power supply
JPH0538152A (en) Inverter equipment
JPH0213264A (en) High frequency power source equipment