JPS61245489A - Electric field luminous element - Google Patents

Electric field luminous element

Info

Publication number
JPS61245489A
JPS61245489A JP60087925A JP8792585A JPS61245489A JP S61245489 A JPS61245489 A JP S61245489A JP 60087925 A JP60087925 A JP 60087925A JP 8792585 A JP8792585 A JP 8792585A JP S61245489 A JPS61245489 A JP S61245489A
Authority
JP
Japan
Prior art keywords
light
aging
emitting layer
layer
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60087925A
Other languages
Japanese (ja)
Inventor
雅康 石子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60087925A priority Critical patent/JPS61245489A/en
Publication of JPS61245489A publication Critical patent/JPS61245489A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンビーータの端末装置における平面型表示
装置等として使用される交流駆動の電場発光素子(以下
BL素子と略す)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an AC-driven electroluminescent element (hereinafter abbreviated as BL element) used as a flat display device in a terminal device of a converter.

(従来技術とその問題点) 第3因に一般的なEL素子の断面構造の概略図を示す。(Prior art and its problems) As the third factor, a schematic diagram of the cross-sectional structure of a general EL element is shown.

ガラス基板31上にITO等からなる透明電極32.第
1絶縁層339発光層34.第2絶縁層35および)k
l等の背面電極36が順次積層された構造である。発光
層34はZaSやZn8e等の化合物あるいはこれらの
混晶を母体とし、鳩やTbFs * 8fnFs等が発
光中心物質として添加さ猷螢光体薄膜である。この発光
層34に106ボルト/cIL以上の高電界が印加され
ると電子なだれが生じ、その結果多数の熱電子が発光中
心を衝突励起し1発光を生じさせるものである。この時
に、絶縁層33.35は、発光層34を流れる電流を制
限し、KL素子が絶縁破壊に至ることを防止し、素子を
安定に動作させるものである。
A transparent electrode 32 made of ITO or the like is disposed on a glass substrate 31. First insulating layer 339 light emitting layer 34. second insulating layer 35 and)k
It has a structure in which back electrodes 36 such as 1 are sequentially laminated. The light-emitting layer 34 is a phosphor thin film made of a compound such as ZaS or Zn8e or a mixed crystal thereof, and doped with dope, TbFs*8fnFs, etc. as a luminescent center substance. When a high electric field of 106 volts/cIL or more is applied to the light-emitting layer 34, an electron avalanche occurs, and as a result, a large number of thermoelectrons collide and excite the light-emitting center, causing one light emission. At this time, the insulating layers 33 and 35 limit the current flowing through the light emitting layer 34, prevent the KL element from dielectric breakdown, and operate the element stably.

第3図に示すのは所謂、2重絶縁構造の交流駆動薄膜E
L素子であるが、このような構造とすることで始めて実
用的な輝度特性と信頼性が得られた。しかしながら、従
来の2重絶縁構造の交流駆動薄膜IL素子では、電圧印
加後数十時間から300時間に渡り発光開始電圧が10
ボルトから数10ボルト上昇してゆく、所謂エージング
特性がある為、発光開始電圧がほぼ一定となり発光特性
が安定化するまで最低数十時間のエージング工程が必要
不可欠であった。このエージング工程は高周波・高電圧
駆動でエージングすれはいくらか時間を短縮できるもの
の、この場合EL累子の絶縁破壊が激しくなる傾向があ
った。又、動作周囲温度を100〜200℃とすること
でもエージング工程の時間をいくらか短縮できるが、こ
の場合もまたEL素子の絶縁破壊が激しくなる。
Figure 3 shows a so-called AC driven thin film E with a double insulation structure.
Although it is an L element, practical luminance characteristics and reliability were obtained for the first time by adopting such a structure. However, in a conventional AC-driven thin film IL device with a double insulation structure, the emission starting voltage is 1000 for a period of several tens of hours to 300 hours after voltage application.
Since there is a so-called aging characteristic in which the voltage increases from volt to several tens of volts, an aging process of at least several tens of hours is essential until the luminescence starting voltage becomes approximately constant and the luminescence characteristics are stabilized. Although this aging process is driven by high frequency and high voltage, the aging time can be somewhat shortened, but in this case, dielectric breakdown of the EL element tends to become severe. Further, although the aging process time can be somewhat shortened by setting the operating ambient temperature to 100 to 200°C, in this case too, dielectric breakdown of the EL element becomes severe.

したがって従来技術においては、室温において数10時
間以上の長いエージング工程が必要であり、生産性を非
常に悪くしていた。
Therefore, in the prior art, a long aging process of several tens of hours or more is required at room temperature, which greatly impairs productivity.

(発明が解決しようとする問題点) 本発明の目的は1発光特性を安定化するためのエージン
グ工程を必要としない高輝度で安定性と信頼性を有する
FiL素子を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a high-luminance, stable, and reliable FiL element that does not require an aging process to stabilize light emission characteristics.

(問題点を解決するための手段) 本発明によれば、少なくとも一方が透明電極である一対
の電極間に発光層と少なくとも1層以上の絶縁層がサン
ドイッチ状に挾まれてなる電場発光素子において、該発
光層が熱処理した発光層と熱処理しない発光層との積層
構造よりなることを特徴とする前記電場発光素子が得ら
れる。
(Means for Solving the Problems) According to the present invention, in an electroluminescent device in which a light-emitting layer and at least one insulating layer are sandwiched between a pair of electrodes, at least one of which is a transparent electrode. , the above-mentioned electroluminescent device is obtained, wherein the light emitting layer has a laminated structure of a heat-treated light-emitting layer and a non-heat-treated light-emitting layer.

(作用) 薄膜BL素子は電圧印加後数十時間以上の長い期間にわ
たって、発光閾値電圧が上昇してゆくため1発光特性の
安定化のため、数十時間以上の長いエージングが必要で
あった。このエージングによる発光閾値電圧の上昇とい
う現象は薄膜IL素子を構成する絶縁膜にほとんど依存
せず、従来技術で作製された二重絶縁型薄膜FiL素子
の一般的な性質であり、発光特性安定化のため、長時間
のエージングが必要不可欠であると考えられていた。
(Function) Since the emission threshold voltage of a thin film BL element increases over a long period of several tens of hours or more after voltage application, a long aging of several tens of hours or more is required to stabilize the emission characteristics. This phenomenon of an increase in the emission threshold voltage due to aging is almost independent of the insulating film constituting the thin-film IL element, and is a common property of double-insulated thin-film FiL elements fabricated using conventional techniques, and is a phenomenon that stabilizes the emission characteristics. Therefore, long-term aging was considered essential.

このようなエージングによる発光閾値電圧の上昇は、真
空蒸着法などの薄膜形成時や、発光層の結晶性改善およ
び発光中心物質の均−分布化のために導入される熱処理
工程等により、膜の界面あるいは膜中に誘起する欠陥、
あるいは発光層を流れるホットエレクトロンで誘起され
る欠陥等による現象であろうと考えられているが、詳細
は不明である。
This increase in the luminescence threshold voltage due to aging is caused by the film formation process using vacuum evaporation methods, heat treatment steps introduced to improve the crystallinity of the luminescent layer and uniformly distribute the luminescent center substance, etc. Defects induced at the interface or in the film,
Alternatively, it is thought that this phenomenon may be caused by defects induced by hot electrons flowing through the light emitting layer, but the details are unknown.

一方、発光層形成後の熱処理工程を除去して作製した2
重絶縁型薄膜IL素子は熱処理とした素子と比較して発
光輝度がいくぶん低く、発光閾値電圧も10〜15チ高
くなっていた。しかし、本発明者が各種実験より、発光
層形成時に発光中心物質が均一となるように例えば二元
蒸着法で作製したFILL素子は熱処理工程を除去して
も、熱処理をした素子と同程度の発光輝度及び発光閾値
電圧を得られるばかりでなく、エージングにより発光閾
値電圧が低下するという特性を有していることが明らか
となった・ そこで、発光層を熱処理された層と本処理な層を積層し
てEL素子を作製したところエージングによる変動が非
常に小さなりL素子を得ることができ、本発明となった
。まず、第2図に発光層が熱処理されているF3L素子
と未処理のBL素子単体のエージング前とエージング後
の特性を示す。熱処理された素子はエージングにより発
光閾値電圧が上昇するだけで、発光輝度の変化はない。
On the other hand, 2 was fabricated by removing the heat treatment step after forming the light emitting layer.
The heavily insulated thin film IL device had somewhat lower luminance and emission threshold voltage 10 to 15 inches higher than the heat-treated device. However, the present inventor has found through various experiments that even if the heat treatment step is removed, a FILL element produced by, for example, a binary evaporation method so that the luminescent center substance is uniform during the formation of the luminescent layer, has the same level of performance as a heat-treated element. It has become clear that not only can luminance and luminescence threshold voltage be obtained, but also that the luminescence threshold voltage decreases with aging. Therefore, the luminescent layer is divided into a heat-treated layer and a main-treated layer. When an EL element was produced by laminating the layers, an L element with very small variation due to aging could be obtained, resulting in the present invention. First, FIG. 2 shows the characteristics before and after aging of the F3L element whose light-emitting layer has been heat-treated and the untreated BL element alone. In a heat-treated element, only the emission threshold voltage increases due to aging, but the emission brightness does not change.

一方熱処理されていない素子は、エージングにより発光
閾値電圧が減少し、かつ発光輝度がわずかに上昇した。
On the other hand, in the element that was not heat-treated, the emission threshold voltage decreased and the emission brightness slightly increased due to aging.

発光の立ち上り部の傾きは熱処理の有無にかかわらず変
化しない。熱処理された発光層と未処理の発光層を適当
な厚さに積層してEL素子を構成したところ、エージン
グによる発光閾値電圧の変動がほとんどない素子が実現
された。その詳細については、実施例で示す。
The slope of the rising part of the light emission does not change regardless of whether heat treatment is performed or not. When an EL device was constructed by laminating a heat-treated light-emitting layer and an untreated light-emitting layer to an appropriate thickness, a device with almost no fluctuation in light-emission threshold voltage due to aging was realized. The details will be shown in Examples.

(実施例) 以下1本発明の一実施例によるWL素子の構造断面図を
示す第1図を基に、詳細に説明する。
(Example) Hereinafter, a detailed explanation will be given based on FIG. 1 showing a cross-sectional view of the structure of a WL element according to an example of the present invention.

ガラス基板1上lこITOなど透明電極2を2000λ
程度形成し、その後kl*OB 、 TiO2および8
i3N4の粉体をそれぞれ1:2:1の割合で混合し焼
結されたターゲットを用い、マグネトロンスパッタ装置
により、絶縁層3を3000〜4000^程度形成する
。発光層4は基板温度200℃、真空度10””Tor
r以下で高純度Zn8と金属Mnを別々のルツボより抵
抗加熱し、Mn濃度が0.7〜1.0モルチになるよう
に制御し、3000λ程度形成する。その後550℃〜
600℃、真空度1O−6Torr前後で2時間熱処理
し、ひきつづき、前記と同様な条件で第2発光層5を2
000λ程度形成する。その後Y、Osを同じ真空槽で
500〜1000λ形成し、接着層6を形成する。その
後Ta、Si、Oの化合物をターゲットとしたマグネト
ロンスパッタ装置でTa−8i−0よりなる第2絶縁層
7を形成する。膜厚は3000^程度である。最後にh
l裏面電極8を500〜1000又形成する。
A transparent electrode 2 such as ITO is placed on the glass substrate 1 at a thickness of 2000λ.
degree and then kl*OB, TiO2 and 8
The insulating layer 3 is formed to a thickness of approximately 3000 to 4000^ using a magnetron sputtering device using a target obtained by mixing i3N4 powders at a ratio of 1:2:1 and sintering them. The light emitting layer 4 has a substrate temperature of 200°C and a vacuum level of 10"" Tor.
High-purity Zn8 and metal Mn are resistance-heated from separate crucibles at a temperature below r, the Mn concentration is controlled to be 0.7 to 1.0 molt, and a thickness of about 3000 λ is formed. After that, 550℃~
Heat treatment was performed for 2 hours at 600°C and a vacuum level of around 1O-6 Torr, and then the second light-emitting layer 5 was heated for 2 hours under the same conditions as above.
000λ is formed. Thereafter, Y and Os are formed to a thickness of 500 to 1000 λ in the same vacuum chamber to form the adhesive layer 6. Thereafter, a second insulating layer 7 made of Ta-8i-0 is formed using a magnetron sputtering device using a compound of Ta, Si, and O as a target. The film thickness is about 3000^. Finally h
1. 500 to 1000 back electrodes 8 are formed.

接着1f!j 6は第2絶縁層7と裏面電極8との接着
力を強化する役割を果すもので、必ずしも必要ではない
Adhesive 1f! j 6 serves to strengthen the adhesive force between the second insulating layer 7 and the back electrode 8, and is not necessarily necessary.

このようにして作製された二重絶縁型薄膜FiL素子は
エージングによる発光層11iiL框圧の変化はみられ
ず2000時間以上非常に安定な動作をした。
The double-insulated thin film FiL device fabricated in this way operated very stably for more than 2000 hours without any change in the wall pressure of the light emitting layer 11iiL due to aging.

又、発光輝度は初期の輝度より10チ以上改善された。In addition, the luminance of light emission was improved by more than 10 degrees compared to the initial luminance.

従来の薄膜FiL素子は発光崎形成後、熱処理をしてい
るが1本発明のgL素子と比較すると初期特性では発光
輝度が2.0層程度高いが、エージングにより発光閾値
電圧が数10時間以上に渡り20〜40V増加して安定
化してゆくため、エージング工程が不可欠であった。更
に絶縁層が熱処理により、その絶縁電圧がやや低下する
傾向もあったO 本発明のように発光層を熱処理された層と未処理の層と
することでエージングによる特性変化を防止でき、この
ことは絶縁層3、第2絶縁層7を、8isN* p k
l*os e YtOs e T’i0t t Tat
O+ * Smass epb’rtos、 BcTi
(% 、 8i01等と変化させても発光閾値電圧のド
リフトはみられなかった。又、発光層に添加する発光中
心物質をiのかわりにTbF3とすれば縁、8mF7に
すれば赤色が得られる。
Conventional thin-film FiL elements are heat-treated after the formation of a luminescent layer, but compared to the gL element of the present invention, the initial characteristics show that the luminance is about 2.0 layers higher, but due to aging, the luminescence threshold voltage increases by several tens of hours or more. The aging process was essential because the voltage increased by 20 to 40 V over the period of time and stabilized. Furthermore, when the insulating layer is heat-treated, its insulating voltage tends to decrease somewhat. By making the light-emitting layer into a heat-treated layer and an untreated layer as in the present invention, changes in characteristics due to aging can be prevented. is the insulating layer 3 and the second insulating layer 7, 8isN* p k
l*os e YtOs e T'i0t t Tat
O+ * Smass epb'rtos, BcTi
(%, 8i01, etc.), no drift in the emission threshold voltage was observed.Also, if the luminescent center substance added to the luminescent layer is TbF3 instead of i, an edge color can be obtained, and if it is 8mF7, a red color can be obtained. .

発光層または第2発光層母体をZn8の他、Zn8xS
e1−X 、 Zn8eとしても同様な効果を得ること
ができた。
The light-emitting layer or the second light-emitting layer matrix is made of Zn8xS in addition to Zn8.
Similar effects could be obtained using e1-X and Zn8e.

(発明の効果) 上述したように1発光層を熱処理した層と熱処理されて
いない層の2層とすることで、エージングによる発光閾
値電圧の変化がなく、高い信頼性と高輝度特性を持った
薄膜EL素子が得られる。
(Effects of the invention) As described above, by forming one light-emitting layer into two layers: a heat-treated layer and a non-heat-treated layer, there is no change in the light-emission threshold voltage due to aging, and the device has high reliability and high brightness characteristics. A thin film EL device is obtained.

この薄膜BL素子は、従来数10時間から300時間必
要としていたエージング工程を必要としないため、生産
性の向上、素子の低価格化に寄与するものである。
This thin film BL element does not require an aging process, which conventionally required several tens of hours to 300 hours, and thus contributes to improved productivity and lower cost of the element.

なお、前述の実施例では2重絶縁型薄膜EL素子につい
て示したが、発光層と透明電極あるいは背面電極との間
の絶縁層を除去した構造のEL素子にも、本発明は適用
できる。
Although the above-mentioned embodiments have been described with reference to a double-insulated thin film EL device, the present invention can also be applied to an EL device having a structure in which the insulating layer between the light-emitting layer and the transparent electrode or back electrode is removed.

【図面の簡単な説明】[Brief explanation of the drawing]

いBL素子のエージングによる発光特性の変化を面を表
わす概略図である。 1.31・・・ガラス基板 2.32・・・透明電極 3.33・・・絶縁層 7.35・・・第2絶縁層 8.36・・・背面電極 6   ・・・接着層 4.34・・・発光層 5   ・・・第2発光層 オ 1 図 7I−2図 印加電圧 (v)
FIG. 2 is a schematic diagram illustrating changes in light emission characteristics due to aging of a BL element. 1.31... Glass substrate 2.32... Transparent electrode 3.33... Insulating layer 7.35... Second insulating layer 8.36... Back electrode 6... Adhesive layer 4. 34...Light emitting layer 5...Second light emitting layer O 1 Figure 7I-2 Applied voltage (v)

Claims (1)

【特許請求の範囲】[Claims]  少なくとも一方が透明電極で構成された一対の電極間
に、発光層と少なくとも一層以上の絶縁層がサンドイッ
チ状に挾まれてなる電場発光素子において、前記発光層
が熱処理した発光層と熱処理しない発光層との積層構造
よりなることを特徴とする前記電場発光素子。
In an electroluminescent device in which a luminescent layer and at least one insulating layer are sandwiched between a pair of electrodes, at least one of which is a transparent electrode, the luminescent layer is heat-treated and the luminescent layer is not heat-treated. The electroluminescent device is characterized in that it has a laminated structure with.
JP60087925A 1985-04-24 1985-04-24 Electric field luminous element Pending JPS61245489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087925A JPS61245489A (en) 1985-04-24 1985-04-24 Electric field luminous element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087925A JPS61245489A (en) 1985-04-24 1985-04-24 Electric field luminous element

Publications (1)

Publication Number Publication Date
JPS61245489A true JPS61245489A (en) 1986-10-31

Family

ID=13928493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087925A Pending JPS61245489A (en) 1985-04-24 1985-04-24 Electric field luminous element

Country Status (1)

Country Link
JP (1) JPS61245489A (en)

Similar Documents

Publication Publication Date Title
JPS59146192A (en) El element
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JPS61245489A (en) Electric field luminous element
JP2006524271A (en) Europium-doped gallium-indium oxide as a red-emitting electroluminescent phosphor material
JPS5829880A (en) Electric field luminescent element
JPS58175293A (en) Electric field light emitting element
JPS61121290A (en) Manufacture of thin film el element
JPS59143297A (en) Ac drive thin film electric field light emitting element
JPS63232296A (en) Thin film electroluminescence device
JPS6147096A (en) Method of producing thin film el element
JPS61214395A (en) Manufacture of thin film electroluminescence element
JPH0124358B2 (en)
JPS59217990A (en) Method of producing electroluminescent panel
JPS6388791A (en) Thin film electroluminescence device
JPH0878162A (en) Thin film electroluminescent element
JPS63146396A (en) Manufacture of ac electroluminescence display device
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPS61151995A (en) Thin film electroluminescence element
JPH0322392A (en) Thin film el element
JPS60202687A (en) Thin film electroluminescent element
JPH06295787A (en) Thin film luminous element
JPH04133284A (en) Manufacture of thin film phosphor
JPS63181296A (en) Method of forming dielectric film
JPH07240278A (en) Thin film el element
JPH01130496A (en) Film type electroluminescenece element