JPS612438A - Photodetecting circuit - Google Patents

Photodetecting circuit

Info

Publication number
JPS612438A
JPS612438A JP59121707A JP12170784A JPS612438A JP S612438 A JPS612438 A JP S612438A JP 59121707 A JP59121707 A JP 59121707A JP 12170784 A JP12170784 A JP 12170784A JP S612438 A JPS612438 A JP S612438A
Authority
JP
Japan
Prior art keywords
signal
distortion
apd
optical
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121707A
Other languages
Japanese (ja)
Inventor
Masahiko Takase
晶彦 高瀬
Katsuyuki Imoto
克之 井本
Akihiro Hori
明宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59121707A priority Critical patent/JPS612438A/en
Publication of JPS612438A publication Critical patent/JPS612438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To constitute a photodetecting circuit low in distortion by detecting a distortion component generated from an avalanche photodiode (APD) and controlling an APD bias so that the distortion component is minimized. CONSTITUTION:An optical signal from an optical fiber F is converted into an electric signal by the APD1. The electric signal is amplified by an amplifier 2 and the amplified signal is inputted to an LPF5 passing a video signal up to fv, a BPF6 for fp and a BPF for 2fp. A pilot signal passing through the BPF6 is converted into a DC signal corresponding to the pilot signal level and a variable gain amplifier 8 is controlled by the DC signal to perform AGC. On the other hand, a secondary harmonic distortion component passed through a band filter 7 is converted into a DC signal corresponding to the distortion level by a detection smoothing part 10 and an APD bias voltage is controlled by a bias control part 3' so that the DC signal is minimized. The variation of a signal output due to the change of the APD bias is compensated by said AGC.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信用受信回路に係り、特に信号伝送に好適
な低歪光受信回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a receiving circuit for optical communications, and particularly to a low distortion optical receiving circuit suitable for signal transmission.

〔発明の背景〕[Background of the invention]

光通信装置の受信機には従来から光−電気変換素子とし
てアバランシェフォトダイオード(以下APDと略称す
る。)がよく使用されている。第1図にAPDを用いた
光受信機の光−電気変換部の構成を示す。第1図(a)
では、光ファイバFから入射した光信号はAPDlによ
り電気信号に変換される。この電気信号は増幅器2によ
り増幅され復調部等へ送出される。このような受信機で
は、受信信号の信号対雑音比はAPDの増倍率と密接な
関係があり、一定の受光電力に対して信号対雑音比が最
良となる最適増倍率が存在する。第1図(a)ではAP
Dバイアス制御部3によりAPD増倍率が最適増倍率と
なるようにAPDバイアスが制御されている。
2. Description of the Related Art Conventionally, an avalanche photodiode (hereinafter abbreviated as APD) has often been used as an optical-to-electrical conversion element in a receiver of an optical communication device. FIG. 1 shows the configuration of an optical-to-electrical converter of an optical receiver using an APD. Figure 1(a)
Here, the optical signal input from the optical fiber F is converted into an electrical signal by the APDl. This electrical signal is amplified by an amplifier 2 and sent to a demodulator or the like. In such a receiver, the signal-to-noise ratio of the received signal is closely related to the multiplication factor of the APD, and there is an optimal multiplication factor that provides the best signal-to-noise ratio for a constant received light power. In Figure 1(a), AP
The APD bias is controlled by the D bias control unit 3 so that the APD multiplication factor becomes the optimum multiplication factor.

一方、第1図(b)の構成では増幅器2の出力の一部を
取り出し検波平滑部4で信号レベルに対応する直流信号
とする。この直流信号を一定とするようにAPDlのバ
イアスをバイアス制御部3で制御している。すなわちA
PD増幅率のバイアス依存性を利用して自動利得調整(
Automatic Ga1nControl 、以下
AGCと略称する)を行なっている。
On the other hand, in the configuration shown in FIG. 1(b), a part of the output of the amplifier 2 is taken out and converted into a DC signal corresponding to the signal level by the detection smoothing section 4. A bias controller 3 controls the bias of APDl so as to keep this DC signal constant. That is, A
Automatic gain adjustment (
Automatic Galn Control (hereinafter abbreviated as AGC) is performed.

しかし、これらの構成においては受信機の歪については
なんの考慮も払われていない。これは、従来の光通信装
置の歪特性は発光素子の歪特性が支配的であったためで
ある。しかし、近年発光素子は低歪化しており、また光
−電気負帰還等の方法により光送信部は従来よりも大幅
に低歪化している。これに伴ない、受光素子による光−
電気変換時の歪発生が問題となってきた。これは特に映
像信号等広帯域信号のベースバンド伝送、あるいは周波
数多重信号の伝送においては大きな問題点となっている
。しかし、これに対する明確な解決策はまだ見い出され
ていない。
However, in these configurations, no consideration is given to receiver distortion. This is because the distortion characteristics of conventional optical communication devices are dominated by the distortion characteristics of the light emitting element. However, in recent years, the distortion of light emitting elements has been reduced, and the distortion of optical transmitters has been significantly reduced compared to conventional ones by methods such as opto-electrical negative feedback. Along with this, the light from the light receiving element -
Distortion during electrical conversion has become a problem. This is a major problem particularly in baseband transmission of wideband signals such as video signals or transmission of frequency multiplexed signals. However, a clear solution to this problem has not yet been found.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来の光受信回路における前記のような
欠点を改善し、信号の伝送に好適な低歪光受信回路を提
供することにある。
An object of the present invention is to improve the above-mentioned drawbacks of conventional optical receiving circuits and to provide a low distortion optical receiving circuit suitable for signal transmission.

〔発明の概要〕[Summary of the invention]

第2図はAPDの2次高調歪抑圧比と平均受光電力との
関係を増倍率Mをパラメータとして表わしたものである
。図のように、APDで発生する歪は増倍率と密接な関
係にある。図においてM=10の場合とM=50の場合
との差が小さいのは発光素子の歪が支配的であるためで
ある。発光素子の歪が小さい場合には、歪特性は第2図
とは多少異なる増倍率依存性となる。しかし増倍率をむ
やみに高くすると歪特性はむしろ劣化し、またAPDの
ショット雑音の影響も大きくなるため好ましくない。以
上の点から考えて、歪量が最低となるような増倍率が存
在するということができる。
FIG. 2 shows the relationship between the second harmonic distortion suppression ratio of the APD and the average received light power using the multiplication factor M as a parameter. As shown in the figure, the distortion generated by APD is closely related to the multiplication factor. In the figure, the difference between the case of M=10 and the case of M=50 is small because the distortion of the light emitting element is dominant. When the strain of the light emitting element is small, the strain characteristics have a dependence on the multiplication factor that is somewhat different from that shown in FIG. However, if the multiplication factor is increased unnecessarily, the distortion characteristics will deteriorate and the influence of shot noise of the APD will increase, which is not preferable. Considering the above points, it can be said that there is a multiplication factor that minimizes the amount of distortion.

これから明らかなように、APDのバイアスを制御する
ことにより、常に歪が最小となるような増倍率とすれば
、従来に較べはるかに低歪の光受信回路を構成すること
ができる。また、受光電力が変化した場合にも、歪量を
最低とするようにAPDバイアスを制御すれば、より安
定な低歪受信が可能である。
As is clear from this, if the bias of the APD is controlled so that the multiplication factor always minimizes distortion, it is possible to construct an optical receiving circuit with much lower distortion than in the past. Further, even when the received light power changes, more stable low-distortion reception is possible by controlling the APD bias so as to minimize the amount of distortion.

本発明においては、伝送信号の歪レベルを常に監視し、
これを最低とするようにAPDのバイアスを制御するこ
とにより低歪の光受信回路を構成するものである。
In the present invention, the distortion level of the transmission signal is constantly monitored,
By controlling the bias of the APD so as to minimize this, a low distortion optical receiving circuit is constructed.

特に、歪量を監視する方法として、従来からパイロット
AGC用として用いられているパイロット信号の歪成分
を監視することとすれば、従来の光送信部等に変更を加
えることなく、光受信部の改良のみで低歪伝送が可能と
なり好都合である。
In particular, as a method for monitoring the amount of distortion, if the distortion component of the pilot signal conventionally used for pilot AGC is to be monitored, the optical receiver can be This is advantageous because low-distortion transmission can be achieved with only improvements.

その例を第3図に示す。(a)はベースバンド広帯域信
号の場合、(b)は周波数多重信号の場合である。fP
がパイロット信号であり、2fPがfpの2次高調波歪
である。この2fP信号レベルを監視し、これを最小と
するようにAPDバイアスレベルを制御すれば前記のよ
うな低歪受信回路を構成することができる。
An example is shown in FIG. (a) is a case of a baseband wideband signal, and (b) is a case of a frequency multiplexed signal. fP
is the pilot signal, and 2fP is the second harmonic distortion of fp. By monitoring this 2fP signal level and controlling the APD bias level to minimize it, a low distortion receiving circuit as described above can be constructed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例をもとにさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on examples.

伝送信号は第3図(a)のようなビデオ信号とする。た
だし他の信号であっても可能であることはいうまでもな
い。
The transmission signal is a video signal as shown in FIG. 3(a). However, it goes without saying that other signals are also possible.

第4図に本発明の一実施例の回路ブロック構成を示す。FIG. 4 shows a circuit block configuration of an embodiment of the present invention.

光ファイバFからの光信号はAPDIにより電気信号に
変換される。この電気信、号を増幅器2により増幅した
後、fvまでのビデオ信号を通過させる低域通過フィル
タ5.fpの帯域通過フォルタロ、2fpの帯域通過フ
ィルタ7に入力する。これによりそれぞれビデオ信号、
パイロット信号、パイロット信号の2次高調波歪成分に
俗信を分離する。ビデオ信号は可変利得増幅器8に入力
される。fPの帯域通過フィルタ6を通ったパイロット
信号は検波平滑部9によりパイロット信号レベルに対応
する直流信号に変換される。この直流信号により前記可
変利得増幅器8を制御しAGCをかける。
The optical signal from the optical fiber F is converted into an electrical signal by APDI. After this electrical signal is amplified by an amplifier 2, a low-pass filter 5.passes the video signal up to fv. It is input to the fp bandpass fortalo and the 2fp bandpass filter 7. This allows the video signal,
Separate popular beliefs into the pilot signal and the second harmonic distortion component of the pilot signal. The video signal is input to variable gain amplifier 8. The pilot signal that has passed through the fP bandpass filter 6 is converted by the detection smoothing section 9 into a DC signal corresponding to the pilot signal level. This DC signal controls the variable gain amplifier 8 and applies AGC.

一方、2次高調波歪成分は検波平滑部10により歪レベ
ルに応じた直流信号に変換され、これを最小とするよう
にAPDバイアス電圧をバイアス制御部3′により制御
する。APDバイアス変化による信号出力の変動は、前
記AGCにより補償する。以上のように、本実施例によ
れば、従来のパイロットAGC方式光受信回路にわずか
な部分回路を付加するだけで低歪受信回路とすることが
可能である。
On the other hand, the second harmonic distortion component is converted into a DC signal according to the distortion level by the detection smoothing section 10, and the APD bias voltage is controlled by the bias control section 3' so as to minimize this. Fluctuations in signal output due to changes in APD bias are compensated for by the AGC. As described above, according to this embodiment, it is possible to provide a low distortion receiving circuit by simply adding a few partial circuits to the conventional pilot AGC type optical receiving circuit.

本発明による別の実施例を第5図に示す。Another embodiment according to the invention is shown in FIG.

光ファイバFからの入射光信号はAPDlにより電気信
号に変換され、前置増幅器2で後段の信号処理に必要な
レベルまで増幅される。増幅された電気信号をビデオ信
号用低域通過フィルタ5゜パイロット信号用帯域通過フ
ィルタ6、パイロット信号2次高調波歪成分用帯域通過
フィルタフにより各信号成分に分離する。パイロット信
号は検波平滑部9でその信号レベルに応じた直流信号に
変換され、可変利得増幅器8用の制御信号となる。
The incident optical signal from the optical fiber F is converted into an electrical signal by the APDl, and is amplified by the preamplifier 2 to a level required for subsequent signal processing. The amplified electrical signal is separated into signal components by a low-pass filter 5 for video signals, a band-pass filter 6 for pilot signals, and a band-pass filter for second-order harmonic distortion components of pilot signals. The pilot signal is converted into a DC signal according to the signal level by the detection smoothing section 9, and becomes a control signal for the variable gain amplifier 8.

この直流信号を一定とするように可変利得増幅器8を制
御しAGCをかける。
AGC is applied by controlling the variable gain amplifier 8 to keep this DC signal constant.

パイロット信号の一部分は、位相比較器11゜低域通過
フィルタ12.直流増幅器13.電圧制御発振器14,
2分の1分周器15から成る位相同期ループ(以下PL
Lと略称する)に入力される。このPLL部分により、
電圧制御発振器14の出力をパイロット信号の2倍波に
位相同期させる。この信号はパイロット信号の2次高調
波歪成分とも位相同期している。
A portion of the pilot signal is passed through a phase comparator 11° and a low pass filter 12 . DC amplifier 13. voltage controlled oscillator 14,
A phase-locked loop (hereinafter referred to as PL) consisting of a 1/2 frequency divider 15
(abbreviated as L). With this PLL part,
The output of the voltage controlled oscillator 14 is phase-synchronized with the double wave of the pilot signal. This signal is also phase synchronized with the second harmonic distortion component of the pilot signal.

一方、2fPの帯域通過フィルタ7により分離された歪
成分は増幅器16で増幅された後、電圧制御発振器14
の出力と同位相となるように移相器17により位相が調
整される。その出力は位相弁別検波器18に入力され、
電圧制御発振器14の出力と同相の信号成分のみが抽出
される。抽出された歪成分は検波平滑部10により歪レ
ベルに対応する直流信号に変換され、これを最小とする
ようにバイアス制御部3′によりAPDバイアスを制御
する。
On the other hand, the distortion component separated by the 2fP bandpass filter 7 is amplified by the amplifier 16, and then the voltage controlled oscillator 14
The phase is adjusted by the phase shifter 17 so that it is in the same phase as the output of. The output is input to the phase discrimination detector 18,
Only signal components in phase with the output of the voltage controlled oscillator 14 are extracted. The extracted distortion component is converted into a DC signal corresponding to the distortion level by the detection smoothing section 10, and the APD bias is controlled by the bias control section 3' so as to minimize this.

本実施例の方法によれば、歪成分レベルが雑音と同程度
であっても、位相検波によりS/N良く歪成分を抽出で
きるため、耐雑音性の大きな低歪受信回路とすることが
可能である。
According to the method of this embodiment, even if the distortion component level is at the same level as noise, the distortion component can be extracted with a good S/N ratio by phase detection, so it is possible to create a low distortion receiving circuit with high noise resistance. It is.

上記実施例では移相器17を歪信号側に入れである。こ
れを位相弁別検波器18の電圧制御発振器側の入力に挿
入したとしても全く同一の効果を得ることができる。
In the above embodiment, the phase shifter 17 is placed on the distortion signal side. Even if this is inserted into the input of the voltage controlled oscillator side of the phase discrimination detector 18, exactly the same effect can be obtained.

また、歪特性が最適となるAPD増倍率が雑音特性最適
増倍率と大巾に異なっていて、歪成分を最小にしようと
すると雑音が極端に増加する場合があり得る。このよう
な場合には、APDバイアスの変化範囲を許容できる雑
音の範囲内で定めておき、この変化範囲内で歪最小とな
るようにAPDバイアスを制御すれば、低歪かつ低雑音
の光受信回路とすることができる。
Furthermore, the APD multiplication factor that provides the optimum distortion characteristic is significantly different from the optimum multiplication factor for the noise characteristic, and there may be cases in which noise increases extremely when trying to minimize the distortion component. In such cases, if the APD bias variation range is determined within the allowable noise range and the APD bias is controlled to minimize distortion within this variation range, low distortion and low noise optical reception can be achieved. It can be a circuit.

さらに、帯域通過フィルタ7の中心周波数を2fPから
3fpに変え、PLL部分の2分の1分周器15を3分
の1分周器に変えることにより、3次高調波歪を抑圧す
る構成とすることも可能である。またPLLのS/Nを
改善するためにPLL内に積分回路を入れてもよい。
Furthermore, the center frequency of the bandpass filter 7 is changed from 2fP to 3fp, and the 1/2 frequency divider 15 of the PLL section is changed to a 1/3 frequency divider, thereby suppressing third harmonic distortion. It is also possible to do so. Furthermore, an integrating circuit may be included in the PLL in order to improve the S/N ratio of the PLL.

本発明はアナログ、ディジタル伝送のいずれにも適用で
きる。
The present invention can be applied to both analog and digital transmission.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればAPDで発生する歪
成分を検知し、これを最小とするようにAPDバイアス
を制御することにより低歪な光受信回路を構成すること
ができる。これはAPDの歪特性がAPDの増倍率に依
存し、歪が最小となる増倍率が存在するという事実に基
づいており、APDのバイアスを制御することによりA
PDの増倍率を変化させている。
As described above, according to the present invention, a low-distortion optical receiving circuit can be constructed by detecting the distortion component generated by the APD and controlling the APD bias so as to minimize it. This is based on the fact that the distortion characteristics of the APD depend on the multiplication factor of the APD, and that there is a multiplication factor that minimizes the distortion.
The PD multiplication factor is changed.

この方法によればAPDで発生する歪を制御できると同
時に、APD出力が大きすぎるために生じる前置増幅器
の歪も抑圧することができる。
According to this method, it is possible to control the distortion generated by the APD, and at the same time, it is also possible to suppress the distortion of the preamplifier that occurs due to the APD output being too large.

また、この方法によれば光受信回路にわずかの部品を付
は加えるだけで歪特性を改良することができ、他の光送
信部等は従来と全く同じもので良いため、容易に性能の
向上が計れるという特長を持っている。
In addition, with this method, distortion characteristics can be improved by simply adding a few parts to the optical receiving circuit, and other optical transmitting parts can be the same as before, making it easy to improve performance. It has the advantage of being able to measure

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は従来の光受信回路、第2図は受
信信号歪特性のAPD増倍率依存性を示すグラフ、第3
図は本発明の原理を示す説明図、第4および第5図は本
発明の実施例を示す回路ブロック構成図である。 1・・・APD、2・・・前置増幅器、3,3′・・・
APDバイアス制御部、4・・・検波平滑部、5・・・
低域通過フィルタ、6,7・・・帯域通過フィルタ、8
・・・可変利得増幅器、9,10・・・検波平滑部、1
1・・・位相比較器、12・・・低域通過フィルタ、1
3・・・直流増幅器、14・・・電圧制御発振器、15
・・・分胸器、16・・−増幅器、17・・・移相器、
18・・・位相弁別検′% 3 図 (L) (b)
Figures 1 (a) and (b) are conventional optical receiver circuits, Figure 2 is a graph showing the dependence of received signal distortion characteristics on APD multiplication factor, and Figure 3 is a graph showing the dependence of received signal distortion characteristics on APD multiplication factor.
The figure is an explanatory diagram showing the principle of the invention, and FIGS. 4 and 5 are circuit block configuration diagrams showing embodiments of the invention. 1...APD, 2...Preamplifier, 3,3'...
APD bias control section, 4...detection smoothing section, 5...
Low-pass filter, 6, 7...Band-pass filter, 8
...Variable gain amplifier, 9, 10...Detection smoothing section, 1
1... Phase comparator, 12... Low pass filter, 1
3... DC amplifier, 14... Voltage controlled oscillator, 15
...Thorax divider, 16...-amplifier, 17... Phase shifter,
18...Phase discrimination detection'% 3 Figure (L) (b)

Claims (1)

【特許請求の範囲】 1、アバランシエ・フォトダイオードを用いて光変調信
号を光−電気変換し電気信号を出力する光受信回路にお
いて、上記電気信号中の歪成分を検出する手段と、該検
出手段からの出力信号を用いて前記アバランシエ・フォ
トダイオードの増倍率を制御する手段とを有することを
特徴とする光受信回路。 2、特許請求の範囲第1項記載の光受信回路において、
検出信号としてAGC用パイロット信号の高調波成分を
検出することを特徴とする光受信回路。 3、特許請求の範囲第1項記載の光受信回路において、
検出信号として伝送信号の高調波に位相同期した信号成
分を検出することを特徴とする光受信回路。
[Scope of Claims] 1. In an optical receiving circuit that uses an avalanche photodiode to perform optical-to-electrical conversion of an optically modulated signal and outputs an electrical signal, means for detecting a distortion component in the electrical signal, and the detecting means and means for controlling a multiplication factor of the avalanche photodiode using an output signal from the avalanche photodiode. 2. In the optical receiving circuit according to claim 1,
An optical receiving circuit characterized in that a harmonic component of an AGC pilot signal is detected as a detection signal. 3. In the optical receiving circuit according to claim 1,
An optical receiving circuit characterized in that a signal component phase-synchronized with a harmonic of a transmission signal is detected as a detection signal.
JP59121707A 1984-06-15 1984-06-15 Photodetecting circuit Pending JPS612438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121707A JPS612438A (en) 1984-06-15 1984-06-15 Photodetecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121707A JPS612438A (en) 1984-06-15 1984-06-15 Photodetecting circuit

Publications (1)

Publication Number Publication Date
JPS612438A true JPS612438A (en) 1986-01-08

Family

ID=14817887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121707A Pending JPS612438A (en) 1984-06-15 1984-06-15 Photodetecting circuit

Country Status (1)

Country Link
JP (1) JPS612438A (en)

Similar Documents

Publication Publication Date Title
JP3434806B2 (en) Receiver for processing an input data signal in an optical network system and method for determining a data transmission rate of an input data signal in an optical network
US5253298A (en) Reducing audible noise in stereo receiving
EP1006666B1 (en) Method for noise reduction in the reception of RF FM signals
US4096360A (en) Multichannel record disc reproducing system
US5617240A (en) Automatic gain control method and device for receiving circuits
US7443574B2 (en) Optical transmission system
KR100419423B1 (en) Bit rate independent optical receiver
FR2518341A1 (en) TELEVISION RECEIVER WITH SOUND DETECTOR WITH INTERPORTER
EP0081413B1 (en) Television signal retransmission equipment with combined amplification of vision and sound signals and automatic control of the picture/sound ratio
EP2171842B1 (en) Amplifier automatic gain control circuit for QAM modulated and continuous wave signals
JPS612438A (en) Photodetecting circuit
US5568305A (en) Heterodyne receiver provided with a frequency discriminator for coherent lightwave communications
JP2501319B2 (en) Optical receiver circuit for angle modulation signal
EP0509725B1 (en) Reducing audible noise in stereo receiving
JPS59110232A (en) Light receiving signal controller
JPH04364617A (en) Light receiver
JPS60130233A (en) Fdm signal optical transmitter
JPS6024606B2 (en) Automatic gain control method
JPH0133058B2 (en)
JPH05267766A (en) Light transmission device
JPS59165538A (en) Optical wave detection receiver
JP2000031914A (en) Optical receiver
SU263687A1 (en) RECEIVER OF FREQUENCY MODULATED SIGNALS
JPS6040223B2 (en) Automatic threshold control method for optical communication receiving system
JPS61163780A (en) Television receiver