JPS60130233A - Fdm signal optical transmitter - Google Patents

Fdm signal optical transmitter

Info

Publication number
JPS60130233A
JPS60130233A JP58238104A JP23810483A JPS60130233A JP S60130233 A JPS60130233 A JP S60130233A JP 58238104 A JP58238104 A JP 58238104A JP 23810483 A JP23810483 A JP 23810483A JP S60130233 A JPS60130233 A JP S60130233A
Authority
JP
Japan
Prior art keywords
output
signal
light emitting
emitting element
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238104A
Other languages
Japanese (ja)
Other versions
JPH0329211B2 (en
Inventor
Katsuyuki Fujito
藤戸 克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58238104A priority Critical patent/JPS60130233A/en
Publication of JPS60130233A publication Critical patent/JPS60130233A/en
Publication of JPH0329211B2 publication Critical patent/JPH0329211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Abstract

PURPOSE:To keep the modulation rate of a light emitting element to an optimum value by extracting the level of distortion at the outside of a signal band includeding an output light from the light emitting element and controlling the level of an FDM signal to make the level constant. CONSTITUTION:An output of a generating source 8 of the FDM signal is subject to level change by an AGC amplifier 9, then amplified by a main amplifier 10, added with a bias current generated from a constant current source 11 and the result is fed to the light emitting element 13. The output of the light emitting element 13 is led to an optical fiber, through which the output is transmitted, and a part of it is detected and amplified by a photo diode 14, the distortion component is detected by a filter 15 extracting a signal at the outside of the transmission signal band, detected and amplified by a detection amplifier 16 and fed back to the AGC amplifier 9. In this case, since the amplifier 16 has a function comparing the input with a predetermined reference value and outputting a compared voltage in addition to the detection and amplification, the amplifier 16 controls the output distortion of the element 13 to a constant value at all times.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源の強度変調した信号を周波数多重した信
号(FDM信号)として伝送する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for transmitting an intensity-modulated signal from a light source as a frequency multiplexed signal (FDM signal).

従来例の構成とその問題点 FDM光伝送装置の従来例をブロック図として第1図に
示す。1は伝送すべき信号発生源であり、図では伝送す
るチャネル数に対応して周波数f1〜f の発信器をも
つように図示しである。これらの信号を加算器2で加算
し、nチャネルの周波数4董信号(FDM信号)が得ら
れる。この信号は、VHF帯のTV信号でも良い。これ
を増巾器3で増幅した後、可変電流源7から供給される
レーザダイオード(LD)5のバイアス電流と第2の加
算器4で加えあわせて、発光素子としてのし一ザダイオ
ード(LD)5に印加する。LD5の出射光は光ファイ
バに導かれ伝送される。LD出力光の一部をフォトディ
テクタ(PD)eで受光しその出力電流で可変定電流源
7を制御し、LDの光出力を一定にする。
Configuration of a conventional example and its problems A conventional example of an FDM optical transmission device is shown in a block diagram in FIG. Reference numeral 1 denotes a signal generation source to be transmitted, which is shown to have oscillators of frequencies f1 to f corresponding to the number of channels to be transmitted. These signals are added by an adder 2 to obtain an n-channel frequency 4 signal (FDM signal). This signal may be a VHF band TV signal. After this is amplified by the amplifier 3, it is added to the bias current of the laser diode (LD) 5 supplied from the variable current source 7 and the second adder 4, and then the bias current of the laser diode (LD) is added as a light emitting element. )5. The light emitted from the LD 5 is guided to an optical fiber and transmitted. A portion of the LD output light is received by a photodetector (PD) e, and the output current controls a variable constant current source 7 to keep the light output of the LD constant.

このような、FDM光伝送装置においては、発光素子(
この例ではLD5 )の変調度の設定が重要となる。
In such an FDM optical transmission device, a light emitting element (
In this example, the setting of the modulation degree of LD5) is important.

現実のFDM光信号伝送装置で社、受信した時の10h
当りのC/Nが大きい方が望ましく、そのためには変調
度を大きくとる方が都合が良いが、あまり大きくすると
発光素子の歪の発生が大きくなり、歪ノイズを発生する
。つまシ変調度が小さくなるとC/Nが悪くなり、変調
度が大きくなると歪成分が増大し、結果的には伝送特性
が劣化する。特に発光素子としてLDを用いた時には、
LDの閾特性により、変調度が1に近くなると急激に歪
が増大する。このような現象をさけるため、従来はLD
の発光出力を一定とするAPC(自動出力制御装置)を
施し、FDM信号の大きさを一定とするためAGC回路
を用いたり、出力の安定な発振器や変調器を用いて、各
チャネルの変調度を一定にするようにしている。しかし
、このような方法でも、やはり各部の経年変化があるた
め、常に変調度を一定に保つ事は困難である。またFD
M信号の変調深さくAMの場合)によっても実質的に発
光素子の変調度が変化するため常に最適の変調度に設定
するのは難しい。また、この装置をTV倍信号再送信用
として使用する場合、入力信号はアンテナで受信した信
号となるので、そのレベルは天候等でかなシ変動をうけ
る事になり、そのような場合にも変調度が変動する事に
なる。
10 hours when received using an actual FDM optical signal transmission device
It is desirable for the C/N ratio to be large, and for this purpose it is convenient to make the modulation degree large, but if it is too large, the distortion of the light emitting element will increase, causing distortion noise. As the modulation degree decreases, the C/N deteriorates, and as the modulation degree increases, distortion components increase, resulting in deterioration of transmission characteristics. Especially when using an LD as a light emitting element,
Due to the threshold characteristics of the LD, when the degree of modulation approaches 1, distortion increases rapidly. In order to avoid this phenomenon, conventionally the LD
APC (automatic output control device) is applied to keep the light emission output constant, an AGC circuit is used to keep the FDM signal size constant, and an oscillator or modulator with stable output is used to control the modulation degree of each channel. I am trying to keep it constant. However, even with this method, it is difficult to always keep the modulation degree constant because each part changes over time. Also FD
Since the modulation degree of the light emitting element substantially changes depending on the modulation depth of the M signal (in the case of AM), it is difficult to always set the modulation degree to the optimum value. In addition, when this device is used for retransmitting TV double signals, the input signal is the signal received by the antenna, so its level may fluctuate considerably due to weather etc. will change.

発明の目的 本発明の目的は、FDM信号のレベル変動の影響を受け
ず、常に発光素子の変調度を最適に設定する事により、
高品質の伝送特性を持つFDM信号の光伝送装置を提供
する事にある。
Purpose of the Invention The purpose of the present invention is to constantly set the modulation degree of the light emitting element to the optimum level without being affected by level fluctuations of the FDM signal.
The object of the present invention is to provide an optical transmission device for FDM signals having high quality transmission characteristics.

発明の構成 本発明は、発光素子からの出力光の一部を検出し、その
出力に含まれる信号帯域外の歪のレベルを抽出し、その
レベルが一定となるように、FDM信号の大きさ、又は
発光素子のノ(イアスミ流を制御する事により、発光素
子の変調度を最適に保とうとするものである。
Structure of the Invention The present invention detects a part of the output light from a light emitting element, extracts the level of distortion outside the signal band included in the output, and adjusts the magnitude of the FDM signal so that the level is constant. Alternatively, the modulation degree of the light emitting element is maintained at an optimum level by controlling the IA flow of the light emitting element.

実施例の説明 第2図は本発明の一実施例のFDM信号光伝送装置の構
成図である。信号源8はFDM信号の発生源である。そ
の出力はAGCアンプ9により、レベル変化を受けた後
主増巾器10により増巾され、定電流源11から発生ず
るバイアス電流と加算器12で加算され発光素子13に
印加される。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a block diagram of an FDM signal optical transmission apparatus according to an embodiment of the present invention. Signal source 8 is a source of FDM signals. After the output is subjected to a level change by the AGC amplifier 9, it is amplified by the main amplifier 10, added to the bias current generated from the constant current source 11 by the adder 12, and applied to the light emitting element 13.

発光素子13の出力は光ファイ・くに導かれ伝送される
が、一部を)Aトダイオード(PD)14で検出・増巾
され、伝送信号帯域外を取り出すフィルタ15により、
歪成分が検出され、検波増巾器16により検波増巾され
て、AGCアニ7プ9にフィードバックされる。
The output of the light emitting element 13 is guided to an optical fiber and transmitted, but a portion of it is detected and amplified by an A-to-diode (PD) 14, and a filter 15 extracts signals outside the transmission signal band.
The distortion component is detected, amplified by the detection amplifier 16, and fed back to the AGC amplifier 9.

第3図に、発光素子光出力のノーワースベクトルを示す
。図の11〜fnが伝送されるべき複数チャネルのFD
M信号である。このような信号により発生した歪成分を
fa−f9に図示する。歪の成分され、歪の周波数成分
は、各チャネルの周波数の整数倍高調波および各チャネ
ル周波数の和、差成分(相互変調)に生じる。次に、発
光素子がLDとした時の歪について第4図を基に説明す
る。LDのシーム特性を第4図イに示す。LDにはバイ
アス電流(より)と高周波信号が重畳されて印加される
。この波形を第4図下部に示す。図では簡単のため1つ
の正弦波信号のみで示されているが、FDM信号でも同
様の事が起る。図では変調度が1に近い時の波形を少し
誇張して表わしである。この時光出力波形は第4図に示
すように光出力が” O”に近い所で大きく歪む事にな
る。この時には大きな歪が発生する。この時変調度を少
し小さくするか、又はバイアス電流を少し増大すれは歪
成分は急激に減少する事になる。
FIG. 3 shows the Norworth vector of the light output of the light emitting element. FD of multiple channels to which 11 to fn in the figure are to be transmitted
It is an M signal. Distortion components generated by such a signal are illustrated in fa-f9. The frequency component of distortion occurs in integral multiple harmonics of the frequency of each channel, the sum of each channel frequency, and the difference component (intermodulation). Next, distortion when the light emitting element is an LD will be explained based on FIG. 4. The seam characteristics of the LD are shown in Figure 4A. A bias current and a high frequency signal are applied to the LD in a superimposed manner. This waveform is shown at the bottom of FIG. In the figure, only one sine wave signal is shown for simplicity, but the same thing occurs with FDM signals. In the figure, the waveform when the modulation degree is close to 1 is slightly exaggerated. At this time, the optical output waveform is greatly distorted at a point where the optical output is close to "O" as shown in FIG. At this time, large distortion occurs. At this time, if the modulation degree is slightly reduced or the bias current is slightly increased, the distortion component will decrease rapidly.

つまム第3図に示した歪成分子a−fgを検出しその値
が一定値となるように制御すれば、LDの変調度は最適
に制御される事になる。原理的にはどの歪成分を検出し
ても同様の事が可能となる。
If the distortion components a-fg shown in FIG. 3 are detected and controlled so that their values are constant, the modulation degree of the LD can be optimally controlled. In principle, the same thing is possible no matter which distortion component is detected.

次に、検出する最適の歪成分について考えてみる。通常
、FDM信号の各チャネルの周波数差は一定の事が多い
。この時には、その周波数差に等しい周波数の部分に、
多くの歪成分があられれる事になる。そのだめ、この周
波数成分をバンド巾の狭いフィルタ(B、P、F ) 
15で抽出すれば歪成分が大きいので、PD141フィ
ルタ15.検波増巾16から構成されるフィードバック
系のゲインが小さくても良く、設計上有利になる。また
実際の系では、歪成分の最大値をスペクトルアナライザ
等でめて、その周波数成分を抽出して制御すれば良い。
Next, let's consider the optimal distortion component to detect. Usually, the frequency difference between each channel of an FDM signal is often constant. At this time, in the part of the frequency equal to the frequency difference,
This results in many distortion components. Therefore, this frequency component is filtered by a narrow band filter (B, P, F).
Since the distortion component is large if extracted with PD141 filter 15. The gain of the feedback system constituted by the detection amplification 16 may be small, which is advantageous in terms of design. In an actual system, the maximum value of the distortion component may be determined using a spectrum analyzer or the like, and the frequency component thereof may be extracted and controlled.

このように抽出された歪成分は、高周波の信号であるた
め、検波・増巾器16で検波してそのDC成分を取り出
しそれで、AGCアンプ9を制御する。そのためこの検
波増巾器16には、歪成分の検波増巾と同時に、その値
をある定められた基準値と比較して電圧を出力する比較
器を有している。こうする事によシ、LDの発光出力の
歪成分が常に一定となるように信号の大きさが制御され
る。AGCアンプ9は、電気的に制御される可変減衰器
であっても良い。
Since the distortion component extracted in this way is a high frequency signal, it is detected by the detection/amplifier 16 and its DC component is extracted, and the AGC amplifier 9 is controlled using it. Therefore, the detection amplifier 16 includes a comparator that detects and amplifies the distortion component and at the same time compares the value with a predetermined reference value and outputs a voltage. By doing this, the magnitude of the signal is controlled so that the distortion component of the light emission output of the LD is always constant. The AGC amplifier 9 may be an electrically controlled variable attenuator.

また、この検波増巾器16の出力をAGCアンプでなく
、定電流源11にフィードバックしても同様な効果が得
られる事は明白である。
Furthermore, it is clear that the same effect can be obtained even if the output of the detection amplifier 16 is fed back to the constant current source 11 instead of the AGC amplifier.

各Chの搬送波の振巾が一定と考えられる場合(例えば
FM信号や平均値が一定の信号をAM変調した場合)に
は、上述の方法で充分であるが、TV信号などのように
、搬送波の振巾が平均値としても一定でないような信号
の場合には、検波増巾した後のレベルが変動するため、
この寸までは瞬時的に過変調になったりするため、良好
な画像伝送ができない。
The above method is sufficient when the amplitude of the carrier wave of each channel is considered to be constant (for example, when an FM signal or a signal with a constant average value is AM modulated). In the case of a signal whose amplitude is not constant even as an average value, the level after detection amplification will fluctuate, so
At this level, overmodulation may occur instantaneously, and good image transmission cannot be achieved.

この歪成分には、各チャネルの信号成分が混入するため
、非常に複雑な波形となっている。そこで、この歪成分
を包絡線検波し、時定数の長いピークホールド回路でピ
ークを検出し、その値によってAGCアンプを制御する
ようにすると、非常に安定な伝送が可能になる。
This distortion component contains signal components of each channel, resulting in a very complex waveform. Therefore, if this distortion component is envelope-detected, the peak is detected by a peak hold circuit with a long time constant, and the AGC amplifier is controlled based on the detected value, extremely stable transmission becomes possible.

発明の効果 以上、本発明によると、発光素子出力に生じる歪成分が
一定になるように制御されるために、入力信号のレベル
変動や、全体系の経年変化、温度変動に関して変調度が
常に最適に保たれるため、非常に安定、かつ良好な光伝
送装置が構成可能となる。
In addition to the effects of the invention, according to the present invention, since the distortion component generated in the light emitting element output is controlled to be constant, the modulation degree is always optimal with respect to input signal level fluctuations, aging changes of the entire system, and temperature fluctuations. Therefore, a very stable and good optical transmission device can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のFDM信号光伝送装置の構成図、第2
図は本発明の一実施例のFDM信号光伝送装置の構成図
、第3図は第2図における信号スペクトル図、第4図は
第2図におけるLDの電流−光出力特性図である。 8−−信号源、9・・・・・・AGCアンプ、1o・・
・・・・主増幅器、11・・・・・・定電流源、12・
・・・・・加算器、13・・・・・・発光素子、14・
・・・・フォトダイオード、15・・・・・・フィルタ
、16・・・・・検波増幅器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 7 第 2 図 第 41!lI
Figure 1 is a configuration diagram of a conventional FDM signal optical transmission device, Figure 2
3 is a block diagram of an FDM signal optical transmission device according to an embodiment of the present invention, FIG. 3 is a signal spectrum diagram in FIG. 2, and FIG. 4 is a current-optical output characteristic diagram of the LD in FIG. 2. 8--signal source, 9...AGC amplifier, 1o...
...Main amplifier, 11... Constant current source, 12.
... Adder, 13 ... Light emitting element, 14.
... Photodiode, 15 ... Filter, 16 ... Detection amplifier. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 7 Figure 2 Figure 41! lI

Claims (1)

【特許請求の範囲】 0)複数チャネルのFDM信号でアナログ強度変調され
る発光素子と、前記発光素子の出力光の一部を光電変換
し増巾する光電変換部と、前記光電変換部の出力信号か
ら、FDM信号の帯域以外の周波数成分を検波増巾する
検波部と、前記検波部の出力で前記発光素子に流れるF
DM信号の大きさを制御する制御部を有するFDM信号
光伝送装置・ (2)検波部用力で発光素子に流れるバイアス電流を制
御する事を特徴とする特許請求の範囲第1項記載のFD
M信号光伝送装置・ (3)検波部は、FDM信号の各チャネル間周波数差に
ほぼ等しい周波数成分のみを検波増巾することを特徴と
する特許請求の範囲第1項または第2項記載のFDM信
号光伝送装置。 (4)検波部の出力をピークホールドするピークホール
ド回路を有し、その出力で制御部を制御することを特徴
とする特許請求の範囲第1項、第2項捷たは第3項に記
載のFDM信号光伝送装置。
[Scope of Claims] 0) A light emitting element whose analog intensity is modulated by FDM signals of a plurality of channels, a photoelectric conversion section that photoelectrically converts and amplifies a part of the output light of the light emitting element, and an output of the photoelectric conversion section. A detection section that detects and amplifies frequency components other than the band of the FDM signal from the signal, and F flowing to the light emitting element with the output of the detection section.
FDM signal optical transmission device having a control section for controlling the magnitude of the DM signal; (2) FD according to claim 1, characterized in that the bias current flowing through the light emitting element is controlled by the power of the detection section.
M signal optical transmission device (3) The detection unit detects and amplifies only the frequency component that is approximately equal to the frequency difference between each channel of the FDM signal. FDM signal optical transmission equipment. (4) Claims 1, 2, or 3 include a peak hold circuit that peak-holds the output of the detection unit, and the control unit is controlled by the output of the peak hold circuit. FDM signal optical transmission equipment.
JP58238104A 1983-12-16 1983-12-16 Fdm signal optical transmitter Granted JPS60130233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238104A JPS60130233A (en) 1983-12-16 1983-12-16 Fdm signal optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238104A JPS60130233A (en) 1983-12-16 1983-12-16 Fdm signal optical transmitter

Publications (2)

Publication Number Publication Date
JPS60130233A true JPS60130233A (en) 1985-07-11
JPH0329211B2 JPH0329211B2 (en) 1991-04-23

Family

ID=17025232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238104A Granted JPS60130233A (en) 1983-12-16 1983-12-16 Fdm signal optical transmitter

Country Status (1)

Country Link
JP (1) JPS60130233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132227A (en) * 1989-10-18 1991-06-05 Matsushita Electric Ind Co Ltd Rf multiple signal light transmission system
US5077619A (en) * 1989-10-25 1991-12-31 Tacan Corporation High linearity optical transmitter
US6072616A (en) * 1997-06-23 2000-06-06 Lucent Technologies Inc. Apparatus and methods for improving linearity and noise performance of an optical source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132227A (en) * 1989-10-18 1991-06-05 Matsushita Electric Ind Co Ltd Rf multiple signal light transmission system
US5077619A (en) * 1989-10-25 1991-12-31 Tacan Corporation High linearity optical transmitter
US6072616A (en) * 1997-06-23 2000-06-06 Lucent Technologies Inc. Apparatus and methods for improving linearity and noise performance of an optical source

Also Published As

Publication number Publication date
JPH0329211B2 (en) 1991-04-23

Similar Documents

Publication Publication Date Title
US7155132B2 (en) Dynamic distortion control
US4504976A (en) Device for regulating a laser diode
KR102510313B1 (en) Optical receiving device
US7853155B2 (en) Method for adjusting bias in optical transmitter with external modulator
GB2025121A (en) Improvements in or relating to the stabilisation of injection lasers
US5563731A (en) Monitor control signal receiving apparatus for optical fiber amplifier
US4501022A (en) Optical transmission system and method
US4101847A (en) Laser control circuit
US5187713A (en) Nonlinear device control methods and apparatus
EP2434667A1 (en) Relay station and method for adjusting output optical signals of relay station
US4450564A (en) Apparatus for modulating the output signal of a converter
JP2006174474A (en) Gain-adjusting apparatus and gain-adjusting method of optical receiver in optical communications system, and optical communications system thereof
US5699081A (en) Apparatus and method for automatically provisioning power on a per channel basis in a communications transmission system
JPH09246641A (en) Clipping distortion control circuit
JPS60130233A (en) Fdm signal optical transmitter
WO2005027380A1 (en) Optical signal receiver, optical signal receiving apparatus, and optical signal transmitting system
JP3802232B2 (en) Optical receiver
JP2013255264A (en) Directly modulated or externally modulated laser optical transmission system with feed forward noise cancellation
US5448392A (en) Process for the optical transmission of a multiplex of electrical carriers and apparatus for performing such a process
JP2000295181A (en) Optical transmitter and optical communication system
JPH0133058B2 (en)
JPH0556034B2 (en)
JPH02143732A (en) Optical communication system and optical communication method
JPH05267766A (en) Light transmission device
JP2865067B2 (en) Optical transmission method and optical transmission device