JPS6124350B2 - - Google Patents
Info
- Publication number
- JPS6124350B2 JPS6124350B2 JP56050559A JP5055981A JPS6124350B2 JP S6124350 B2 JPS6124350 B2 JP S6124350B2 JP 56050559 A JP56050559 A JP 56050559A JP 5055981 A JP5055981 A JP 5055981A JP S6124350 B2 JPS6124350 B2 JP S6124350B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mol
- zrf
- baf
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 25
- 239000003365 glass fiber Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000011521 glass Substances 0.000 description 38
- 239000013307 optical fiber Substances 0.000 description 16
- 229910016036 BaF 2 Inorganic materials 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 239000005383 fluoride glass Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 229910005690 GdF 3 Inorganic materials 0.000 description 6
- 229910017855 NH 4 F Inorganic materials 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- -1 halide compounds Chemical class 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910005693 GdF3 Inorganic materials 0.000 description 3
- 101000929049 Xenopus tropicalis Derriere protein Proteins 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920006356 Teflon™ FEP Polymers 0.000 description 1
- 229910007992 ZrF Inorganic materials 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/041—Non-oxide glass compositions
- C03C13/042—Fluoride glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
- C03C3/325—Fluoride glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
本発明は0.3μm〜4μmの光を透過すること
ができるフツ化物ガラスフアイバ素材に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluoride glass fiber material capable of transmitting light between 0.3 μm and 4 μm.
従来、この種のガラスフアイバは酸化ケイ素
(SiO2)系ガラスを主構成素材としているが、こ
のガラス素材はSi−O結合の振動に起因する赤外
吸収性を有するため、レーリー散乱損失と赤外吸
収損失との谷間に存在する低損失の波長領域は可
視域から近赤外域(波長0.6〜1.7μm)に限ら
れ、それより長波長の波長領域においては低損失
の光フアイバを得ることができなかつた。一方、
これまでの技術知識によれば、レーリー散乱は波
長の4乗に逆比例して低減するので、酸化ケイ素
に比べて赤外吸収端が長波長側に位置するガラス
素材でガラスフアイバを作製することにより、一
層低損失化を図ることができ、このようなガラス
フアイバ用ガラス素材の出現が要望されている。 Conventionally, this type of glass fiber has been mainly composed of silicon oxide (SiO 2 ) glass, but this glass material has infrared absorption caused by the vibration of Si-O bonds, so Rayleigh scattering loss and infrared The low-loss wavelength range that exists between the external absorption loss and the external absorption loss is limited to the visible range to the near-infrared range (wavelengths of 0.6 to 1.7 μm), and it is not possible to obtain low-loss optical fibers in longer wavelength ranges. I couldn't do it. on the other hand,
According to existing technical knowledge, Rayleigh scattering decreases in inverse proportion to the fourth power of the wavelength, so it is recommended to fabricate a glass fiber from a glass material whose infrared absorption edge is located on the longer wavelength side compared to silicon oxide. As a result, it is possible to achieve even lower loss, and there is a desire for the emergence of such a glass material for glass fibers.
ところで、フツ化物等のハライド化合物を主成
分とするガラス素材は酸化ケイ素系ガラス素材に
比べて一般に赤外吸収端が長波長に位置し、2μ
m以上の長波長領域でも光を透過することが知ら
れているが、このようなハライド化合物を主成分
とするガラス素材はBeF2系ガラスを除くとガラ
ス状で得ることが困難であり、まして光フアイバ
を作製することは、結晶化が障害となつて極めて
困難である。又、BeF2を主成分とするガラスは
潮解性が高いので高信頼性光フアイバ用ガラス素
材には適さない。 By the way, glass materials whose main components are halide compounds such as fluorides generally have an infrared absorption edge located at a longer wavelength than silicon oxide glass materials,
It is known that light can be transmitted even in the long wavelength range of m or more, but it is difficult to obtain glass materials whose main component is such a halide compound except for BeF 2 glass, and even more so. Making optical fibers is extremely difficult due to crystallization. Furthermore, glass containing BeF 2 as a main component has a high deliquescent property, so it is not suitable as a glass material for highly reliable optical fibers.
このため、ハライド化合物系光フアイバ用ガラ
ス素材としては、多結晶性フアイバ用以外には
ZnCl2で光フアイバを構成する可能性があること
が報告されているにすぎない。しかしながら、
ZnCl2も潮解性があつて湿気による経時劣化が予
想され、又、赤外域におけるOH基の伸縮振動の
影響により、2〜6μmの長波長領域における極
低損失化が困難であるという欠点がある。 For this reason, glass materials for halide compound-based optical fibers are not suitable for use other than polycrystalline fibers.
It has only been reported that ZnCl 2 may be used to construct optical fibers. however,
ZnCl 2 is also deliquescent and is expected to deteriorate over time due to moisture, and it also has the disadvantage that it is difficult to achieve extremely low loss in the long wavelength region of 2 to 6 μm due to the effect of stretching vibration of OH groups in the infrared region. .
このように、ハライド化合物系ガラス素材を構
成物質とする耐水性の良好なガラスフアイバは全
く知られていない状況にある。わずかに、光学ガ
ラスとしてはZrF4−BaF2−NaF系、ZrF4−BaF2
−ThF4系、ZrF4−BaF2−UF4系及びZrF4−BaF2
−LnF3(Ln=希土類フツ化物)系のBeF2を含ま
ないフツ化物ガラスが報告されているが、これら
のガラスは光フアイバ用ガラス素材として使用で
きるような線引き時の結晶化に対し安定なガラス
ではなく、かつガラスフアイバ用ガラス素材にな
り得る組成範囲及びガラスフアイバ化する方法は
全く知られていない状況にある。 As described above, a glass fiber with good water resistance that is composed of a halide compound glass material is completely unknown. Slightly, as optical glasses, ZrF 4 −BaF 2 −NaF series and ZrF 4 −BaF 2
-ThF 4 series, ZrF 4 -BaF 2 -UF 4 series and ZrF 4 -BaF 2
-LnF 3 (Ln = rare earth fluoride)-based fluoride glasses that do not contain BeF 2 have been reported, but these glasses are stable against crystallization during drawing so that they can be used as glass materials for optical fibers. The composition range that can be used as a glass material for glass fibers, which is not glass, and the method for converting it into glass fibers are completely unknown.
本発明はこのような現状に鑑みてなされたもの
であり、その目的は、上記従来技術の欠点を解決
し、波長0.3〜4μmの波長の光を伝送しかつOH
基の影響が少なく耐水性の優れた、さらに通常の
ロツド線引きでフアイバ化できるような線引時の
結晶化に対して安定なフツ化物ガラスフアイバ素
材を提供することである。 The present invention was made in view of the current situation, and its purpose is to solve the drawbacks of the above-mentioned prior art, to transmit light with a wavelength of 0.3 to 4 μm, and to provide an over-the-air system.
To provide a fluoride glass fiber material which is less affected by groups, has excellent water resistance, and is stable against crystallization during drawing so that it can be made into a fiber by ordinary rod drawing.
本発明は上記の目的を達成するために次の構成
をとるものである。すなわち本発明の赤外線透過
用ガラスフアイバ素材は一般式
wBaF2−xGdF3−yZrF4−zBeF2
(式中w、x、y、zはモル%を示し、w+x+
y+z=100としてw=28〜38、x=3〜7、y
=58〜69、z=2〜10の数値を示す)で表わされ
る組成を有することを特徴とする。 The present invention has the following configuration to achieve the above object. That is, the infrared transmitting glass fiber material of the present invention has the general formula wBaF 2 −xGdF 3 −yZrF 4 −zBeF 2 (where w, x, y, and z represent mol%, and w+x+
y+z=100, w=28~38, x=3~7, y
= 58 to 69, z = 2 to 10).
本発明による光透過性光フアイバ素材は、それ
自体では潮解性はないが、フアイバ化のための線
引き中に結晶化が生ずるBaF2−GdF3−ZrF4系ガ
ラスを母体とし、このガラスの結晶化に対する不
安定性を2〜10モル%のBeF2を添加することに
より改善しているために、潮解性がなく、又線引
き時に結晶化しない光フアイバ素材が得られ、
0.3μm〜6μmの光を透過することから、従来
不可能であつた1.7μmより長波長の赤外線伝送
光フアイバ素材として利用できる。 The light-transmitting optical fiber material according to the present invention is based on BaF 2 −GdF 3 −ZrF 4 glass, which is not deliquescent by itself, but crystallizes during drawing to form a fiber. Since the instability against oxidation is improved by adding 2 to 10 mol% of BeF 2 , an optical fiber material that is not deliquescent and does not crystallize during drawing can be obtained.
Since it transmits light of 0.3 μm to 6 μm, it can be used as an optical fiber material for transmitting infrared rays with wavelengths longer than 1.7 μm, which was previously impossible.
前記組成においてBaF2が28モル%未満又は38
モル%を超えた場合、又GdF3が3モル未満又は
7モル%を超えた場合、更にZrF4が58モル%未
満又は69モル%を超えた場合には、いずれもガラ
スロツドを作製する際にガラス内部に結晶が発生
し、ガラスフアイバ素材として適さなくなる。
BeF2についても2モル%未満又は10モル%を超
えた場合にはガラスロツドを作製した際に結晶が
発生し、母体ガラスの結晶化に対する不安定性を
改善する効果を達成しない。 In said composition BaF2 is less than 28 mol% or 38
If the amount of GdF 3 is less than 3 mol % or more than 7 mol %, and if the amount of ZrF 4 is less than 58 mol % or more than 69 mol %, in any case, when producing the glass rod. Crystals form inside the glass, making it unsuitable as a glass fiber material.
If BeF 2 is less than 2 mol % or more than 10 mol %, crystals will occur when a glass rod is produced, and the effect of improving the instability of the base glass against crystallization will not be achieved.
本発明の光透過性光フアイバ素材の製造は粉末
状のBaF2、GdF3、ZrF4及びBeF2を前記組成範囲
内の所望量で配合し、更に一般にはNH4Fを配合
して約400℃で加熱して完全なフツ素化を行なつ
た後に800℃で溶融し、鋳型に注入して光フアイ
バ素材となるガラスロツドとする。 The light-transmitting optical fiber material of the present invention is manufactured by blending powdered BaF 2 , GdF 3 , ZrF 4 and BeF 2 in desired amounts within the above composition range, and further generally blending NH 4 F to produce a powder of about 400% After being heated at ℃ to complete fluorination, it is melted at 800℃ and poured into a mold to form a glass rod that will become an optical fiber material.
次に本発明を実施例について説明するが、本発
明はこれによりなんら限定されるものではない。 Next, the present invention will be described with reference to Examples, but the present invention is not limited thereto in any way.
実施例 1
56.7モル%ZrF4(25g)−29.7モル%BaF2
(13.75g)−3.6モル%GdF3(2.04g)−10モル%
BeFe(1.24g)の組成となるように各粉末フツ
化物原料及び10gのNH4Fを秤量し、乳針で粉砕
混合した。これを金るつぼに導入し、電気炉を用
いて400℃、30分間加熱し、原料の完全なフツ素
化を行ない後に850℃、30分間加熱溶融した。こ
れを黄銅製鋳型にキヤステイングし、9φ×100
mmのガラスロツドを得た。このガラス試料の線膨
張率は、α=162×10-7、ガラス転移温度Tg=
277℃、ガラス変形温度Td=292℃、屈折率
1.5099であつた。Example 1 56.7 mol% ZrF 4 (25 g) - 29.7 mol% BaF 2
(13.75g) -3.6mol% GdF3 (2.04g) -10mol%
Each powdered fluoride raw material and 10 g of NH 4 F were weighed so as to have a composition of BeFe (1.24 g), and pulverized and mixed with a milk needle. This was introduced into a metal crucible and heated at 400°C for 30 minutes using an electric furnace to completely fluorinate the raw material, and then heated and melted at 850°C for 30 minutes. Casting this into a brass mold, 9φ×100
A glass rod of mm was obtained. The coefficient of linear expansion of this glass sample is α=162×10 -7 , the glass transition temperature Tg=
277℃, glass deformation temperature Td=292℃, refractive index
It was 1.5099.
実施例 2
59.2モル%ZrF4(25g)−31.0モル%BaF2
(13.75g)−3.8モル%GdF3(2.04g)−6モル%
BeF2(0.71g)の組成となるように各粉末フツ
化物原料及び10gのNH4Fを秤量し、乳鉢で粉砕
混合した。これを金るつぼに導入し、電気炉を用
いて400℃、30分間加熱し、原料の完全なフツ素
化を行ない後に850℃、30分間加熱溶融した。こ
れを黄銅製鋳型にキヤステイングし、9φ×100
mmのガラスロツドを得た。このガラス試料の線膨
張率は、α=173×10-7、ガラス転移温度Tg=
282、変形温度Td=300℃、屈折率1.5159であつ
た。Example 2 59.2 mol% ZrF 4 (25 g) - 31.0 mol% BaF 2
(13.75g) -3.8mol% GdF3 (2.04g) -6mol%
Each powdered fluoride raw material and 10 g of NH 4 F were weighed so as to have a composition of BeF 2 (0.71 g), and ground and mixed in a mortar. This was introduced into a metal crucible and heated at 400°C for 30 minutes using an electric furnace to completely fluorinate the raw material, and then heated and melted at 850°C for 30 minutes. Casting this into a brass mold, 9φ×100
A glass rod of mm was obtained. The coefficient of linear expansion of this glass sample is α=173×10 -7 , and the glass transition temperature Tg=
282, deformation temperature Td = 300°C, and refractive index 1.5159.
実施例 3
61.74モル%ZrF4(25g)−32.34モル%BaF2
(13.75)−3.92モル%GdF3(2.04g)−2モル%
BeF2(0.228g)の組成となるように各粉末フツ
化物原料及び10gのNH4Fを秤量し、乳鉢で粉砕
混合した。これを金るつぼに導入し、電気炉を用
いて400℃、30分間加熱し、原料の完全なフツ素
化を行ない後に850℃、30分間加熱溶融した。こ
れを黄銅製鋳型にキヤステイングし、9φ×100
mmのガラスロツドを得た。このガラス試料の線膨
張率は、α=174×10-7、ガラス転移温度Tg=
302℃、変形温度Td=319℃、屈折率=1.520であ
つた。Example 3 61.74 mol% ZrF 4 (25 g) - 32.34 mol% BaF 2
(13.75) -3.92 mol% GdF3 (2.04g) -2 mol%
Each powdered fluoride raw material and 10 g of NH 4 F were weighed so as to have a composition of BeF 2 (0.228 g), and ground and mixed in a mortar. This was introduced into a metal crucible and heated at 400°C for 30 minutes using an electric furnace to completely fluorinate the raw material, and then heated and melted at 850°C for 30 minutes. Casting this into a brass mold, 9φ×100
A glass rod of mm was obtained. The coefficient of linear expansion of this glass sample is α=174×10 -7 , the glass transition temperature Tg=
The temperature was 302°C, the deformation temperature Td was 319°C, and the refractive index was 1.520.
比較例 1
55.44モル%ZrF4(25g)−29.04モル%BaF2
(13.75)−3.52モル%GdF3(2.04g)−12モル%
BeF2(1.52g)の組成となるように各粉末フツ
化物原料及び10gのNH4Fを秤量し、乳鉢で粉砕
混合した。これを金るつぼに導入し、電気炉を用
いて400℃、30分間加熱し原料の完全なフツ素化
を行ない後に850℃、30分間加熱溶融した。これ
を黄銅製鋳型にキヤステイングし、9φ×100mm
のガラスロツドを得た。このガラス試料内には結
晶が散在し、ガラスフアイバ用素材としては不適
当であることがわかつた。Comparative example 1 55.44 mol% ZrF 4 (25 g) - 29.04 mol% BaF 2
(13.75) −3.52 mol%GdF 3 (2.04g) −12 mol%
Each powdered fluoride raw material and 10 g of NH 4 F were weighed so as to have a composition of BeF 2 (1.52 g), and ground and mixed in a mortar. This was introduced into a metal crucible, heated in an electric furnace at 400°C for 30 minutes to completely fluorinate the raw material, and then heated and melted at 850°C for 30 minutes. Cast this into a brass mold, 9φ x 100mm.
Obtained a glass rod. This glass sample contained scattered crystals and was found to be unsuitable as a material for glass fiber.
比較例 2
63モル%ZrF4(25g)−33モル%BaF2(13.75
g)−4モル%GdF3(2.04)の組成となるように
各粉末フツ化物原料及び10gのNH4Fを秤量し、
乳鉢で粉砕混合した。これを金るつぼに導入し、
電気炉を用いて400℃、30分間加熱し原料の完全
なフツ素化を行ない後に850℃、30分間加熱溶融
した。これを黄銅製鋳型にキヤステイングし、9
φ×100mmのガラスロツドを得た。このガラス試
料の線膨張率は、α=175×10-7、ガラス転移温
度Tg=310℃、変形温度Td=332℃、屈折率nD
=1.529であつた。Comparative example 2 63 mol% ZrF 4 (25 g) - 33 mol% BaF 2 (13.75
g) Weigh each powdered fluoride raw material and 10 g of NH 4 F so that the composition is -4 mol% GdF 3 (2.04),
Grind and mix in a mortar. Introducing this into the golden crucible,
The raw material was heated at 400°C for 30 minutes using an electric furnace to completely fluorinate the raw material, and then heated and melted at 850°C for 30 minutes. Casting this into a brass mold, 9
A glass rod of φ×100 mm was obtained. The coefficient of linear expansion of this glass sample is α = 175 × 10 -7 , glass transition temperature Tg = 310°C, deformation temperature Td = 332°C, refractive index n D
= 1.529.
実施例1、2、3及び比較例2で得られたガラ
ス試料の分光スペクトルを、市販の石英ガラスと
比較して添付図面に示す。 The spectra of the glass samples obtained in Examples 1, 2, and 3 and Comparative Example 2 are shown in the attached drawings in comparison with commercially available quartz glass.
添付図面においてAは石英ガラス、Bは実施例
1、Cは実施例2、Dは実施例3、Eは比較例2
のそれぞれのガラス試料の分光スペクトルを示
す。添付図面からみて実施例1〜3及び比較例2
の試料は共に石英ガラスよりも赤外の吸収端が1
μm以上長波長側にあり、赤外線透過用ガラスフ
アイバ素材の条件を満たしている。 In the attached drawings, A is quartz glass, B is Example 1, C is Example 2, D is Example 3, and E is Comparative Example 2.
The spectra of each glass sample are shown. Examples 1 to 3 and Comparative Example 2 from the attached drawings
Both samples have an infrared absorption edge of 1 compared to silica glass.
It is on the long wavelength side of μm or more and satisfies the requirements for glass fiber material for infrared transmission.
次に前記各試料について光フアイバ化のための
応用例試験を行なつた結果を示す。 Next, the results of application tests for making optical fibers for each of the above samples will be shown.
応用例
実施例1〜3及び比較例2で得られたガラスロ
ツドをそれぞれ次の条件で線引きした。Application Example The glass rods obtained in Examples 1 to 3 and Comparative Example 2 were each drawn under the following conditions.
ガラスロツドをテフロンFEPチユーブに挿入
し、これを狭い溶融帯をもつ小型の電気炉を用
い、約400℃で加熱、溶融してネツクダウンを生
じさせて細い繊条とし、巻取速度15m/分で巻取
ドラムに巻取り約100mのフツ化物ガラスフアイ
バを得た。 The glass rod was inserted into a Teflon FEP tube, heated and melted at approximately 400°C using a small electric furnace with a narrow melting zone to create a neckdown and then wound into a thin filament at a winding speed of 15 m/min. A fluoride glass fiber having a length of about 100 m was obtained by winding it around a take-up drum.
前記線引き実験において、実施例1、2、3で
は結晶化して散乱損失が増大することなく安定に
線引きできた。一方比較例2では線引き中にネツ
クダウンの部分で結晶化が生じ散乱損失が生じた
り、線引き中にフアイバが切断してしまい安定な
線引きができないという欠点があつた。実施例
1、2、3のガラスロツドを線引きして得られた
光フアイバは、1.8μm以上の長波長に低損失な
窓を有し、赤外線伝送光フアイバとして用いるこ
とができる。 In the drawing experiment, Examples 1, 2, and 3 were able to be drawn stably without increasing scattering loss due to crystallization. On the other hand, Comparative Example 2 had disadvantages in that crystallization occurred at the neck-down portion during drawing, resulting in scattering loss, and the fiber was cut during drawing, making stable drawing impossible. The optical fibers obtained by drawing the glass rods of Examples 1, 2, and 3 have windows with low loss at long wavelengths of 1.8 μm or more, and can be used as infrared transmission optical fibers.
以上の説明から明らかなように、本発明の赤外
線透過用ガラスフアイバ素材は潮解性のない
BaF2−GdF3−ZrF4系ガラスを母体とし、このガ
ラスの結晶化に対する不安定性を2〜10モル%の
BeF2の添加により改善したので潮解性がなく又
線引き時に結晶化しない光フアイバ素材が得ら
れ、この素材は、0.3μm〜6μmの光を透過す
ることから、従来不可能であつた。1.7μmより
長波長の赤外線伝送用光フアイバ素材として利用
できる利点がある。 As is clear from the above explanation, the infrared transmitting glass fiber material of the present invention is non-deliquescent.
BaF 2 −GdF 3 −ZrF 4 glass is used as a matrix, and the instability of this glass to crystallization is reduced to 2 to 10 mol%.
The improvement achieved by adding BeF 2 makes it possible to obtain an optical fiber material that does not have deliquescent properties and does not crystallize during drawing, which was previously impossible since this material transmits light of 0.3 μm to 6 μm. It has the advantage that it can be used as an optical fiber material for infrared transmission with wavelengths longer than 1.7 μm.
添付図面は石英ガラス、本発明の具体例である
実施例1〜3のフツ化物ガラス及び比較例2のフ
ツ化物ガラスの分光スペクトルを示す。
図中Aは石英ガラス、Bは実施例1、Cは実施
例2、Dは実施例3、Eは比較例2のそれぞれの
フツ化物ガラスの分光スペクトルである。
The accompanying drawings show spectra of quartz glass, fluoride glasses of Examples 1 to 3, which are specific examples of the present invention, and fluoride glass of Comparative Example 2. In the figure, A is the spectrum of quartz glass, B is the spectrum of Example 1, C is Example 2, D is Example 3, and E is the fluoride glass of Comparative Example 2.
Claims (1)
y+z=100としてw=28〜38、x=3〜7、y
=58〜69、z=2〜10の数値を示す)で表わされ
る組成を有することを特徴とする赤外線透過用ガ
ラスフアイバ素材。[Claims] 1 General formula wBaF 2 −xGdF 3 −yZrF 4 −zBeF 2 (wherein w, x, y, z represent mol%, w+x+
As y+z=100, w=28~38, x= 3 ~7, y
1. A glass fiber material for infrared transmission, characterized by having a composition represented by: =58 to 69 and z = 2 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56050559A JPS57166336A (en) | 1981-04-06 | 1981-04-06 | Glass fiber material for transmitting infrared ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56050559A JPS57166336A (en) | 1981-04-06 | 1981-04-06 | Glass fiber material for transmitting infrared ray |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57166336A JPS57166336A (en) | 1982-10-13 |
JPS6124350B2 true JPS6124350B2 (en) | 1986-06-10 |
Family
ID=12862358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56050559A Granted JPS57166336A (en) | 1981-04-06 | 1981-04-06 | Glass fiber material for transmitting infrared ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57166336A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0198189B1 (en) * | 1985-04-18 | 1990-12-05 | Galileo Electro-Optics Corporation | Process for removing a surface layer from a fluoride glass |
-
1981
- 1981-04-06 JP JP56050559A patent/JPS57166336A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57166336A (en) | 1982-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tran et al. | Heavy metal fluoride glasses and fibers: a review | |
US3460954A (en) | Bao-nb2o5-sio2 glass compositions for use in fiber-optics | |
US4094689A (en) | Glass compositions | |
US4380588A (en) | Glass for infrared ray-transmitting optical fibers and optical fibers formed from said glass | |
JPS6163544A (en) | Fluoride glass optical fiber | |
Ohsawa et al. | Preparation and characterization of ZrF 4-BaF 2-LaF 3-NaF-AIF 3 glass optical fibers | |
JPS6124350B2 (en) | ||
JP3749276B2 (en) | Infrared transmission glass | |
US4099834A (en) | Low loss glass suitable for optical fiber | |
Bendow et al. | Effect of Aluminum Content on Infrared Characteristics of BaF2/ThQ‐Containing Glasses | |
JPS582173B2 (en) | Glass material for optical glass fiber | |
JPH0428655B2 (en) | ||
JP3145136B2 (en) | Infrared transparent fluoride glass | |
JP2742703B2 (en) | Low melting glass composition | |
US4388413A (en) | Silver halide glasses | |
JPH0624791A (en) | Lead-containing fluoride glass, optical fiber and its production | |
SU1712329A1 (en) | Ir-transparent glass | |
Parker et al. | Optical properties of halide glasses | |
JPS59213640A (en) | Infrared ray transmitting glass | |
JPH05279077A (en) | Fluoride glass | |
JPS6158414B2 (en) | ||
JPS6121175B2 (en) | ||
JP4362281B2 (en) | Multicomponent glass for UV resistant optical fiber and optical fiber | |
JPS60195032A (en) | Infrared transmission glass | |
JPS62278144A (en) | Infrared optical fiber |