JPS61243308A - Three-dimensional position measuring instrument - Google Patents

Three-dimensional position measuring instrument

Info

Publication number
JPS61243308A
JPS61243308A JP60084385A JP8438585A JPS61243308A JP S61243308 A JPS61243308 A JP S61243308A JP 60084385 A JP60084385 A JP 60084385A JP 8438585 A JP8438585 A JP 8438585A JP S61243308 A JPS61243308 A JP S61243308A
Authority
JP
Japan
Prior art keywords
ultrasonic
dimensional position
signal
measuring
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084385A
Other languages
Japanese (ja)
Inventor
Takakazu Ishimatsu
隆和 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIYOUKI ENG KK
Nagasaki Prefectural Government
Original Assignee
RIYOUKI ENG KK
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIYOUKI ENG KK, Nagasaki Prefectural Government filed Critical RIYOUKI ENG KK
Priority to JP60084385A priority Critical patent/JPS61243308A/en
Publication of JPS61243308A publication Critical patent/JPS61243308A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To reduce the weight of a three-dimensional position measuring instrument without damaging a measuring accuracy by providing a measuring rod with an ultrasonic generator, arranging an ultrasonic receiver for receiving the output signal of the generator, and calculating the position to be measured on the basis of the signal received by the receiver. CONSTITUTION:A measuring rod 3 for specifying a point whose position is to be measured is provided with ultrasonic generators 4 and 5 and a plurality of ultrasonic receivers 11-16 for receiving a signal from the ultrasonic generators 4 and 5 are arranged above a measuring table 1. By continuously monitoring the quantity of displacement of the measuring rod 3 relative to a reference position by an arithmetic unit 10 based on a signal from the ultrasonic receivers 11-16, the distances between the ultrasonic generators 4 and 5 and the ultrasonic receivers 11-16 are calculated, whereby the three- dimensional position of the point to be measured is determined.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、被測定物の各部を指定することにより、そ
の三次元位置を計測する三次元位置測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a three-dimensional position measuring device that measures the three-dimensional position of an object by specifying each part of the object.

[従来の技術] 従来の三次元位置測定装置は、測定テーブルに一端が固
定された多関節リンク機構からなり、測定テーブル上に
載置された被測定物の各部に接触させたときの各関節の
変位量を計測することにより、機械的に被測定点の三次
元位置を決定し、ている、又、このような多関節リンク
機構に光学的距離測定装置を取り付け、非接触で三次元
位置を計測することも知られている。
[Prior Art] A conventional three-dimensional position measuring device consists of a multi-joint link mechanism with one end fixed to a measuring table, and when it comes into contact with each part of the object to be measured placed on the measuring table, each joint The three-dimensional position of the point to be measured is determined mechanically by measuring the amount of displacement of It is also known to measure

[発明が解決しようとする問題点] しかしながら、上記の従来装置はいずれにしても機械的
可動部分を有するため、その構成部分の機械的剛性およ
び機械的精度を高くすることが要求される結果、装置自
体が大規模となり使用分野が限られるという問題点があ
った。
[Problems to be Solved by the Invention] However, since the above-mentioned conventional devices have mechanically movable parts, the mechanical rigidity and mechanical precision of the constituent parts are required to be high. There was a problem in that the device itself was large-scale and the field of use was limited.

この発明は、かかる問題点を解決するためになされたも
ので、測定棒の先端で被測定物の各点すなわち被測定点
を指定するのみで、他には何ら可動部および位置決め部
を設けずに、その三次元位置を算出可能とし、精度を損
なうことなく極めて軽量かつ小型な三次元位置測定装置
を得ることを目的とする。
This invention was made to solve this problem, and only specifies each point of the object to be measured, that is, the point to be measured, with the tip of the measuring rod, and does not have any other moving parts or positioning parts. The object of the present invention is to obtain an extremely lightweight and compact three-dimensional position measuring device that can calculate the three-dimensional position without compromising accuracy.

[−問題点を解決するための手段] この発明に係る三次元位置測定装置は、被測定点を指定
するための測定棒に超音波発振器を設け、この超音波発
振器からの信号を受信する超音波受信器を測定テーブル
上方に複数配設しこの超音波受信器で得られた信号に基
づいて被測定点の三次元位置を算出する演算装置を備え
たしのである。
[-Means for solving the problem] The three-dimensional position measuring device according to the present invention includes an ultrasonic oscillator provided on a measuring rod for specifying a point to be measured, and an ultrasonic oscillator that receives a signal from the ultrasonic oscillator. A plurality of ultrasonic receivers are arranged above the measurement table, and an arithmetic device is provided for calculating the three-dimensional position of the point to be measured based on the signals obtained by the ultrasonic receivers.

[作用] この発明においては、演算装置が、測定棒の基準位置に
対する移動量を超音波受信器からの信号に基づいて常に
監視することにより、超音波発振器と超音波受信器との
距離を算出し、これにより非測定点の三次元位置を決定
する。
[Operation] In this invention, the calculation device calculates the distance between the ultrasonic oscillator and the ultrasonic receiver by constantly monitoring the amount of movement of the measuring rod with respect to the reference position based on the signal from the ultrasonic receiver. This determines the three-dimensional position of the non-measurement point.

〔実施例] 以下図面と共にこの発明の詳細な説明する。〔Example] The present invention will be described in detail below with reference to the drawings.

第1図はこの発明による三次元位置測定装置の実施例を
示す一部側面ブロック図である。図において、1は測定
テーブル、2は測定テーブル1上に載置された被測定物
、3はペン形状をなし被測定物2の各点すなわち被測定
点を指定するための測定棒、4.5は測定棒3の先端部
および中央部に一体的に設けられた超音波発振器(以下
単に発振器という)、6は測定棒3に設けられ適宜信号
を出力するための押しボタンスイッチ、7は測定棒3に
接続された柔軟性に富んだ信号線、8は信号線7を介し
て測定棒3と接続されたマイクロコンピュータ(以下単
にマイコンという)である。11〜16は測定テーブル
1の上方に位置決め配設された複数の超音波受信器(以
下単に受信器という)であり、受信器11〜】3は発振
器4からの超音波信号を検出し、受信器14〜16は発
振器5からの超音波信号を検出するようになっている。
FIG. 1 is a partial side block diagram showing an embodiment of a three-dimensional position measuring device according to the present invention. In the figure, 1 is a measurement table, 2 is an object to be measured placed on the measurement table 1, 3 is a pen-shaped measuring stick for specifying each point on the object to be measured 2, that is, the point to be measured; 4. 5 is an ultrasonic oscillator (hereinafter simply referred to as an oscillator) provided integrally at the tip and center of the measuring rod 3; 6 is a push button switch provided on the measuring rod 3 to output a signal as appropriate; 7 is a measuring device A flexible signal line 8 connected to the rod 3 is a microcomputer (hereinafter simply referred to as a microcomputer) connected to the measuring rod 3 via a signal line 7. 11 to 16 are a plurality of ultrasonic receivers (hereinafter simply referred to as receivers) positioned above the measurement table 1, and the receivers 11 to 3 detect and receive ultrasonic signals from the oscillator 4. The devices 14 to 16 are adapted to detect ultrasonic signals from the oscillator 5.

21〜26は各受信器11〜16により受信された信号
11a〜16aをそれぞれ増幅するための信号増幅回路
、31〜36は各信号増幅回路21〜26にそれぞれ対
応して設けられ、増幅受信器21a〜26aを入力する
位相差測定回路、40は発振器4を駆動するための超音
波発振回路(以下単に発振回路という)、50は発振器
5を駆動するための超音波発振回路(以下単に発振回路
という)であり、各発振回路40 .50と発振器4゜
5とを接続する信号線7a 、?bは前述の信号線7と
一体に形成されている。又、発振回路40の出力信号4
0aは位相差測定回路31〜33の他の入力端子にも接
続されており、それぞれに、各増幅受信信号21a〜2
3aと比較されるようになっている。一方、発振回路5
0の出力信号50aは位相差測定回路34〜36の他の
入力端子に接続され、それぞれに各増幅受信信号24a
〜26aと比較されるようになっている0位相差測定回
路31〜36の各位相差出力 31a〜36aはマイコ
ン8に入力されている。これら信号増幅回路21〜26
、位相差測定回路31〜36および発振回路40.50
はマイコン8と共に演算装置10を構成している。
21 to 26 are signal amplification circuits for amplifying the signals 11a to 16a received by the receivers 11 to 16, respectively; 31 to 36 are provided corresponding to each of the signal amplification circuits 21 to 26; A phase difference measurement circuit inputs signals 21a to 26a, 40 an ultrasonic oscillation circuit for driving the oscillator 4 (hereinafter simply referred to as an oscillation circuit), and 50 an ultrasonic oscillation circuit for driving the oscillator 5 (hereinafter simply referred to as an oscillation circuit). ), and each oscillation circuit 40 . 50 and the oscillator 4.5 are connected to the signal line 7a, ? b is formed integrally with the signal line 7 described above. Moreover, the output signal 4 of the oscillation circuit 40
0a is also connected to other input terminals of the phase difference measurement circuits 31 to 33, and each amplified reception signal 21a to 2
It is designed to be compared with 3a. On the other hand, the oscillation circuit 5
The output signal 50a of 0 is connected to the other input terminals of the phase difference measuring circuits 34 to 36, and each amplified received signal 24a is connected to the other input terminals of the phase difference measurement circuits 34 to 36.
The phase difference outputs 31a to 36a of the zero phase difference measurement circuits 31 to 36, which are compared with the zero phase difference measuring circuits 31 to 26a, are input to the microcomputer 8. These signal amplification circuits 21 to 26
, phase difference measurement circuits 31 to 36 and oscillation circuit 40.50
constitutes an arithmetic unit 10 together with the microcomputer 8.

次に第2図(a)、(b)の波形図も参照して具体的動
作について説明する。
Next, the specific operation will be explained with reference to the waveform diagrams in FIGS. 2(a) and 2(b).

この実施例では、発振器4と受信器11〜13との距離
、および発振器5と受信器14〜16との距離を精度良
く測定するために、これらの発振器の信号波形と受信器
の信号波形との位相関係を常時監視することにより、発
振器4゜5と受信器11〜16との距離の変化量を求め
て両者の距離を算出する方法をとっている。まず測定者
は測定棒3を手に持ち、測定テーブル1上の被測定物2
の被測定点例えば点Pを測定棒3の先端で指定する。こ
の状態で、発振器4゜5は発振回路40.50によりそ
れぞれ駆動されているが、ここに、発振回路40の発振
周波数は例えば40Kflzであり、発振回路50の発
振周波数は26 K)lzであるようにされている。
In this embodiment, in order to accurately measure the distance between the oscillator 4 and the receivers 11 to 13, and the distance between the oscillator 5 and the receivers 14 to 16, the signal waveforms of these oscillators and the signal waveforms of the receivers are The distance between the oscillator 4.5 and the receivers 11 to 16 is calculated by constantly monitoring the phase relationship between the two. First, the measurer holds the measuring stick 3 in his hand and measures the object 2 on the measuring table 1.
A point to be measured, for example, point P, is specified with the tip of the measuring rod 3. In this state, the oscillators 4.5 are driven by oscillation circuits 40 and 50, respectively, and the oscillation frequency of the oscillation circuit 40 is, for example, 40Kflz, and the oscillation frequency of the oscillation circuit 50 is 26Kflz. It is like that.

従って、各発振器4.5はそれぞれ40KHz。Therefore, each oscillator 4.5 has a frequency of 40 KHz.

26KHzの超音波を放出していることになる。This means that it emits 26KHz ultrasonic waves.

各受信器11〜13および14〜16はそれぞれ4QK
)Izおよび26にHzの周波数を弁別し、各発振器4
又は5のみからの信号を受信信号1.1a〜16aとし
、信号増幅回路21〜26で増幅する。いま、点Pを基
準点とすれば、この点Pを原点として他の被測定点が測
定されていくが、測定テーブル上に所望の原点を設定す
ることは適宜なし得ることである。
Each receiver 11-13 and 14-16 each has 4QK
) Iz and 26 Hz frequency, each oscillator 4
Or, the signals from only 5 are set as received signals 1.1a to 16a, and are amplified by signal amplification circuits 21 to 26. Now, if point P is used as a reference point, other measured points are measured using this point P as the origin, but it is possible to set a desired origin on the measurement table as appropriate.

6を操作すると、その時点の各位相差信号31a〜36
aがマイコン8に印加され、ここで所定の演算がなされ
て、前記点Pの三次元位置をマイコン8内のメモリ(図
示されない)に記憶する。
6, each phase difference signal 31a to 36 at that time
a is applied to the microcomputer 8, where a predetermined calculation is performed and the three-dimensional position of the point P is stored in a memory (not shown) within the microcomputer 8.

勿論、測定棒3に対する各発振器4.5の位置に関する
情報は予めマイコン8に入力されているので、測定棒3
を持つ手が点Pを中心に回転移動しても、この点Pの算
出位置は変動しない。
Of course, since the information regarding the position of each oscillator 4.5 with respect to the measuring rod 3 is input into the microcomputer 8 in advance, the measuring rod 3
Even if the hand holding the object rotates around point P, the calculated position of point P does not change.

次に、測定棒3が他の被測定点に移動したとする。例え
ば、40Kth、の超音波を放出する発振器4と受信器
11との距離が、40KHzの音波の波長の1,5倍す
なわち12.75 mm  遠ざかったとすると、発振
器4の出力信号すなわち発振回路40の出力信号40a
と受信器11の受信信号11aどの位相関係は第2図(
、)から第2図(b)のように変化する。第2図(a)
のように、測定棒3の移動前は出力信号40aのピーク
W + 〜W 3と受信信号11nのビークIll l
 〜11 )とが位相差ゼロの状態で一致していたとす
ると、測定棒3が前記されたように1.5倍波長相当遠
ざかった後は、第2図(b)のように、受信信号11a
は出力信号40aと比較して1.5倍波長分の位相遅れ
が生じることが分かる。演算装置10は常に受信信号1
1a〜16aと出力信号40a、50aとを比較してそ
れらの間の位相差を監視しているので、受信信号11a
〜16aの刻々の変化が認識できる。従って、第2図(
b)の状態が、第2図(a)の状態から半波長の遅れを
生じているものではなく、1.5倍波長分の位相遅れを
生じているものであることを認識している。
Next, assume that the measuring rod 3 is moved to another point to be measured. For example, if the distance between the oscillator 4 that emits a 40Kth ultrasonic wave and the receiver 11 is 1.5 times the wavelength of the 40KHz sound wave, or 12.75 mm, then the output signal of the oscillator 4, that is, the oscillation circuit 40 Output signal 40a
The phase relationship between the received signal 11a of the receiver 11 and the received signal 11a of the receiver 11 is shown in FIG.
, ) as shown in FIG. 2(b). Figure 2(a)
As shown, before the measuring rod 3 is moved, the peak W + ~W 3 of the output signal 40a and the peak Ill
11) are coincident with each other with zero phase difference, after the measuring rod 3 moves away from the distance equivalent to 1.5 times the wavelength as described above, the received signal 11a becomes as shown in FIG. 2(b).
It can be seen that a phase delay of 1.5 times the wavelength occurs compared to the output signal 40a. Arithmetic device 10 always receives received signal 1
Since the received signal 11a is compared with the output signals 40a and 50a and the phase difference between them is monitored.
-16a can be recognized from time to time. Therefore, Fig. 2 (
It is recognized that the state b) is not a half-wavelength delay from the state shown in FIG. 2(a), but a phase delay of 1.5 times the wavelength.

このように各受信器11〜16からの受信信号11a〜
16aに基づく位相差信号31a〜36aにより、演算
装置10内のマイコン8は、発振器4.5 と受信器1
1〜16 との距離変化から距離を算出し、移動後の被
測定点の三次元位置を算出決定する。そして前述と同様
に、押しボタンスイッチの操作により次の被測定点の位
置がマイコン8内のメモリに記憶される。
In this way, the received signals 11a~ from each receiver 11~16
The microcomputer 8 in the arithmetic unit 10 uses the phase difference signals 31a to 36a based on the oscillator 4.5 and the receiver 1
The distance is calculated from the distance change from 1 to 16, and the three-dimensional position of the measured point after movement is calculated and determined. Then, as described above, the position of the next point to be measured is stored in the memory within the microcomputer 8 by operating the push button switch.

こうして次々と記憶された被測定物2の被訳定点は、図
示しない他の押しボタン又はマイコン8に接続された入
力装置等により適宜変更あるいは表示することができる
The fixed points to be translated of the object to be measured 2 stored one after another in this way can be changed or displayed as appropriate by using other push buttons (not shown) or an input device connected to the microcomputer 8.

尚、以上の実施例においては、測定棒3の2カ所に発振
器4.5を取り付け、各発振器4.5に対応する受信器
11〜13および14〜46としてそれぞれ3個ずつ配
設して位相検出を行なったが、測定棒3の先端に唯一の
発振器を設け、受信器を3個のみで構成すれば全体構成
および演算内容が簡略化することは言うまでもない。
In the above embodiment, the oscillators 4.5 are attached to two locations on the measuring rod 3, and three receivers 11 to 13 and 14 to 46 are provided corresponding to each oscillator 4.5 to determine the phase. Although the detection was performed, it goes without saying that the overall configuration and calculation contents can be simplified by providing only one oscillator at the tip of the measuring rod 3 and configuring only three receivers.

又、精度をそれ程必要としない場合は、位相差測定回路
31〜36を用いずに、通常の超音波による距離計測に
採用されているように、発振器4.5から一定時間間隔
で放出される超音波パルスが受信器11〜16に到達す
るのに要する時間から両者の距離を算出する方法をとっ
ても良い。
Alternatively, if high accuracy is not required, the phase difference measurement circuits 31 to 36 may be omitted, and the oscillator 4.5 may emit the signal at regular time intervals, as is used for distance measurement using normal ultrasonic waves. Alternatively, the distance between the receivers 11 to 16 may be calculated from the time required for the ultrasonic pulse to reach the receivers 11 to 16.

[発明の効果] この発明は以上説明したとおり、測定棒に超音波発振器
を設け、この出力信号を受信する超音波受信器を配設し
、この受信信号に基づいて被測定点を算出する構成とし
たので、測定精度を損なうことなく極めて軽量かつ小型
の三次元位置測定装置を提供できる効果がある。
[Effects of the Invention] As explained above, the present invention has a configuration in which a measuring rod is provided with an ultrasonic oscillator, an ultrasonic receiver is provided to receive the output signal, and a point to be measured is calculated based on the received signal. Therefore, it is possible to provide an extremely lightweight and compact three-dimensional position measuring device without compromising measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による三次元位置測定装置の実施例を
示す一部側面ブロック図、第2図(a)、(b)は出力
信号40aおよび受信信号11aの測定棒移動前と移動
後との波形図である。 1は測定テーブル、2は被測定物、3は測定棒、4.5
は超音波発振器、8はマイクロコンピュータ、10は演
算装置、11〜16は超音波受信器、lla〜16aは
受信信号、31〜36は位相差測定回路、31a〜36
aは位相差信号、40..50は超音波発振回路、40
a、50aは出力信号である。 晃2図 (b)
FIG. 1 is a partial side block diagram showing an embodiment of the three-dimensional position measuring device according to the present invention, and FIGS. 2(a) and 2(b) show the output signal 40a and the received signal 11a before and after the measuring rod is moved. FIG. 1 is the measuring table, 2 is the object to be measured, 3 is the measuring rod, 4.5
8 is an ultrasonic oscillator, 8 is a microcomputer, 10 is an arithmetic unit, 11 to 16 are ultrasonic receivers, lla to 16a are received signals, 31 to 36 are phase difference measuring circuits, 31a to 36
a is a phase difference signal, 40. .. 50 is an ultrasonic oscillation circuit, 40
a and 50a are output signals. Figure 2 (b)

Claims (5)

【特許請求の範囲】[Claims] (1)測定テーブル上に載置された被測定物の各部を指
定するための測定棒と、この測定棒に一体に設けられた
超音波発振器と、前記測定テーブル上方に配設された複
数の超音波受信器と、この超音波受信器が前記超音波発
振器から受信する受信信号に基づいて前記被測定物の各
部の三次元位置を算出する演算装置とからなる三次元位
置測定装置。
(1) A measuring rod for specifying each part of the object to be measured placed on the measuring table, an ultrasonic oscillator integrated with the measuring rod, and a plurality of ultrasonic oscillators placed above the measuring table. A three-dimensional position measuring device comprising an ultrasonic receiver and an arithmetic device that calculates the three-dimensional position of each part of the object based on a reception signal that the ultrasonic receiver receives from the ultrasonic oscillator.
(2)演算装置が前記超音波発振器に対応する超音波発
振回路と位相差測定回路とを含み、この位相差測定回路
が、前記超音波発振回路の出力信号と超音波受信器の受
信信号とを入力して位相差信号を出力し、この位相差信
号に基づいて被測定点の各部の三次元位置を算出するこ
とを特徴とする特許請求の範囲第1項記載の三次元位置
測定装置。
(2) The arithmetic device includes an ultrasonic oscillation circuit corresponding to the ultrasonic oscillator and a phase difference measurement circuit, and the phase difference measurement circuit is configured to detect the output signal of the ultrasonic oscillation circuit and the received signal of the ultrasonic receiver. 2. The three-dimensional position measuring device according to claim 1, wherein the three-dimensional position measuring device inputs a phase difference signal, outputs a phase difference signal, and calculates the three-dimensional position of each part of the measured point based on the phase difference signal.
(3)超音波発振器が測定棒の2カ所に設けられたこと
を特徴とする特許請求の範囲第1項又は第2項記載の三
次元位置測定装置。
(3) The three-dimensional position measuring device according to claim 1 or 2, characterized in that ultrasonic oscillators are provided at two locations on the measuring rod.
(4)超音波受信器が、各超音波発振器に対し3個ずつ
配設したことを特徴とする特許請求の範囲第3項記載の
三次元位置測定装置。
(4) The three-dimensional position measuring device according to claim 3, wherein three ultrasonic receivers are provided for each ultrasonic oscillator.
(5)各超音波発振器の発振周波数が互いに異なること
を特徴とする特許請求の範囲第3項又は第4項記載の三
次元位置測定装置。
(5) The three-dimensional position measuring device according to claim 3 or 4, wherein the oscillation frequencies of the respective ultrasonic oscillators are different from each other.
JP60084385A 1985-04-22 1985-04-22 Three-dimensional position measuring instrument Pending JPS61243308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084385A JPS61243308A (en) 1985-04-22 1985-04-22 Three-dimensional position measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084385A JPS61243308A (en) 1985-04-22 1985-04-22 Three-dimensional position measuring instrument

Publications (1)

Publication Number Publication Date
JPS61243308A true JPS61243308A (en) 1986-10-29

Family

ID=13829092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084385A Pending JPS61243308A (en) 1985-04-22 1985-04-22 Three-dimensional position measuring instrument

Country Status (1)

Country Link
JP (1) JPS61243308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623318A (en) * 1985-06-28 1987-01-09 Canon Inc Coordinate detector
JPH01172140U (en) * 1988-05-20 1989-12-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623318A (en) * 1985-06-28 1987-01-09 Canon Inc Coordinate detector
JPH01172140U (en) * 1988-05-20 1989-12-06

Similar Documents

Publication Publication Date Title
JPS6222091A (en) Distance measuring method
JPS6457112A (en) Portable measuring apparatus
JPH09501068A (en) External acoustic bone velocity measuring device and method
JPS61243308A (en) Three-dimensional position measuring instrument
JPH0797304B2 (en) Coordinate detection device
JPS61209382A (en) Range finder
JPS6224095B2 (en)
JP2004138481A (en) Position measuring device and robot using it
JP2005283473A (en) Ultrasonic position detector
JPS60218086A (en) Distance measuring instrument
JPS56124072A (en) Optical wave distance measurement instrument
JPH0684986B2 (en) Moving position measuring device
JP2651269B2 (en) Ultrasonic thickness gauge
JPH0262991A (en) Doppler radar device
JPH04313010A (en) Method and instrument for measuring thickness
JPH0440325A (en) Vibration measuring method and vibration meter
JPS606770Y2 (en) speed detection device
KR19990026375A (en) Portable distance measuring device
JP2004101343A (en) Distance measuring machine
SU892290A2 (en) Device for measuring sound absorbtion coefficient
JP2503443B2 (en) Pointing device
JPH07323023A (en) Stereodisplacement sensor for human body
SU414494A1 (en)
JPH01114926A (en) Coordinate input device
JP2004171179A (en) Coordinate input device