JPS6224095B2 - - Google Patents

Info

Publication number
JPS6224095B2
JPS6224095B2 JP52020235A JP2023577A JPS6224095B2 JP S6224095 B2 JPS6224095 B2 JP S6224095B2 JP 52020235 A JP52020235 A JP 52020235A JP 2023577 A JP2023577 A JP 2023577A JP S6224095 B2 JPS6224095 B2 JP S6224095B2
Authority
JP
Japan
Prior art keywords
blood flow
probe
flow meter
ultrasonic
tomographic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52020235A
Other languages
Japanese (ja)
Other versions
JPS53105881A (en
Inventor
Toshio Ogawa
Yoshihide Hojo
Kageyoshi Katakura
Kenji Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2023577A priority Critical patent/JPS53105881A/en
Publication of JPS53105881A publication Critical patent/JPS53105881A/en
Publication of JPS6224095B2 publication Critical patent/JPS6224095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 本発明は、超音波断層像診断装置と超音波血流
計とを用い、断層像の計測と同時に表示された断
層像内の任意の点の血流速度の計測が可能な超音
波診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an ultrasonic tomographic image diagnostic apparatus and an ultrasonic blood flow meter to measure the blood flow velocity at any point within the tomographic image displayed at the same time as the tomographic image measurement. The present invention relates to a possible ultrasonic diagnostic device.

従来、パルスドプラ形の超音波血流計により体
表より任意の深度の血流速度を得ることは可能で
あつたが生体内のどの部位が測定されているか明
らかでなかつた。そこで超音波の反射信号を時間
とともに一次元表示するいわゆるAモード信号と
血流速度の測定点をレンジゲートとして同時表示
する方法があるがやはり生体部位の同定が困難で
あり、血流計の定量化、再現性に問題があつた。
Conventionally, it has been possible to obtain blood flow velocity at any depth from the body surface using a pulsed Doppler type ultrasonic blood flow meter, but it has not been clear which part of the body is being measured. Therefore, there is a method that simultaneously displays the so-called A-mode signal, which one-dimensionally displays the ultrasound reflected signal over time, and the blood flow velocity measurement point as a range gate, but it is still difficult to identify the body part, and the blood flow meter is used to quantify the There were problems with conversion and reproducibility.

また断層像用探触子と血流計用探触子とを一定
角度で固定し断層像内の特定方向の任意の深度の
血流を計測する装置があるが、例えば心臓内血流
計測の場合のように最適の断層像が得られる体表
部位と最適の血流計測がなされる体表部位とが被
検者により異なつている場合には、この方式は不
適当である。
There is also a device that fixes a tomogram probe and a blood flow meter probe at a fixed angle and measures blood flow at an arbitrary depth in a specific direction within a tomogram. This method is inappropriate when the body surface site where the optimal tomographic image is obtained and the body surface site where the optimal blood flow measurement is performed differ depending on the subject, as in the case of the present invention.

本発明は体表より超音波断層像を得て、同時に
その断層像内の任意方向から任意の点の血流速度
を計測することが可能な超音波診断装置を提供す
ることを目的とする。
An object of the present invention is to provide an ultrasonic diagnostic apparatus that can obtain an ultrasonic tomographic image from the body surface and simultaneously measure blood flow velocity at any point from any direction within the tomographic image.

以下、本発明を実施例を参照して詳細に説明す
る。第1図において1は電子走査形扇形超音波断
層像診断装置の探触子であり、端子aは出力端子
である。2はパルスドプラ形超音波血流計の探触
子であり、端子bは出力端子である。これら2つ
の探触子はそれぞれアームに紙面に垂直な回転軸
により保持され、これらのアーム同志も紙面に垂
直な回転軸により連結されている。したがつて両
探触子の相対位置,角度は自在に設定できる。3
は基準となるパルス発振器(例えば繰り返えし周
波数5kHz)であり、第2図aにその発振波形の
一例を示す。6は1/n分周器でありn=5のとき
の出力を第2図bに示す。5はスイツチであり、
分周器6の出力を制御信号とし、この制御信号が
1のときスイツチ5はOFF、制御信号が0のと
きスイツチ5はONとなる。スイツチ5の出力波
形を第2図cに示す。8は超音波断層診断装置
(以下において断層装置と略す)、9は超音波血流
計(以下において血流計と略す)、10は血流計
探触子の位置検出部、11は血流計用表示信号発
生部、12はモニタのXYZ信号切換スイツチ、1
3はモニタである。
Hereinafter, the present invention will be explained in detail with reference to Examples. In FIG. 1, numeral 1 is a probe of an electronic scanning sector-shaped ultrasonic tomographic image diagnostic apparatus, and terminal a is an output terminal. 2 is a probe of a pulsed Doppler type ultrasonic blood flow meter, and terminal b is an output terminal. These two probes are each held by an arm by a rotating shaft perpendicular to the plane of the paper, and these arms are also connected to each other by a rotating shaft perpendicular to the plane of the paper. Therefore, the relative positions and angles of both probes can be set freely. 3
is a reference pulse oscillator (eg, repetition frequency 5 kHz), and an example of its oscillation waveform is shown in FIG. 2a. 6 is a 1/n frequency divider, and the output when n=5 is shown in FIG. 2b. 5 is a switch,
The output of the frequency divider 6 is used as a control signal, and when this control signal is 1, the switch 5 is turned off, and when the control signal is 0, the switch 5 is turned on. The output waveform of switch 5 is shown in FIG. 2c. 8 is an ultrasonic tomographic diagnostic device (hereinafter abbreviated as a tomographic device), 9 is an ultrasonic blood flow meter (hereinafter abbreviated as a blood flow meter), 10 is a position detection unit of a blood flow meter probe, and 11 is a blood flow meter. Meter display signal generator, 12 is the monitor's XYZ signal changeover switch, 1
3 is a monitor.

4はモード切換制御信号発生器、7は切換スイ
ツチであり制御信号発生器4の出力が1のときス
イツチ5の出力を断層装置8に入力させ、分周器
6の出力を血流計9に入力させる。この場合断層
像計測を主に血流計測を従にする。逆にモード切
換制御信号発生器4の出力が0のときスイツチ5
の出力を血流計9に入力させ、分周器6の出力を
断層像装置8に入力させる。この場合血流計測を
主に断層像計測を従にする。13、14および1
5はsin、cosポテンシオであり探触子1,2及び
これらを連結する2本のアームの相互の角度か
ら、それぞれ第3図に示すSinθ,Cosθ
Sinθ、Cosθ、Sinθ、Cosθを検出
し、位置検出部10に入力する。同時にSinθ
03、Cosθは表示信号発生部11に入力する。
位置検出部10においては後述の演算がなされ血
流計用探触子の振動面の座標(X0,Y0)が出力す
る。また血流計9の端子9−1よりAモード信
号、9−2より血流測定点のレンジゲート信号お
よび9−3より距離マーク信号(例えば距離1cm
を音速(1500m/s)の1/2で除した時間13ミリ
秒の繰り返えしパルス)が一方より血流計用表示
信号発生部11に入力する。なお、上述の3信号
を発生する血流計は公知であるので詳細は省略す
る。他方、Sin、Cosポテンシオ15より探触子
1の軸方向に対する探触子2の軸の角度θを示
すSinθ、Cosθが表示信号発生部11に入
力し、後述の演算がなされ、血流計用Xスイー
プ;XD、Yスイープ;YDおよびZスイープ;Z
D(一定)が得られる。スイツチ12はモニタの
XYZ信号切換スイツチであり制御信号(断層装置
8の制御信号と同一)が1のとき断層装置用の
XYZ信号をそれぞれ端子12−1,12−2,1
2−3より出力させる。スイツチ12の制御信号
が0のとき血流計用表示信号発生部11のXYZ信
号をそれぞれ端子12−1,12−2,12−3
より出力する。スイツチ12の出力はモニタ13
の入力となり表示される。
4 is a mode switching control signal generator, and 7 is a changeover switch. When the output of the control signal generator 4 is 1, the output of the switch 5 is input to the tomography device 8, and the output of the frequency divider 6 is input to the blood flow meter 9. Let them input. In this case, tomographic image measurement is primarily performed, and blood flow measurement is secondary. Conversely, when the output of the mode switching control signal generator 4 is 0, the switch 5
The output of the frequency divider 6 is input to the blood flow meter 9, and the output of the frequency divider 6 is input to the tomographic image device 8. In this case, blood flow measurement is performed primarily and tomographic image measurement is used as a secondary method. 13, 14 and 1
5 are sin and cos potentios, and from the mutual angles of the probes 1 and 2 and the two arms connecting them, sin θ 1 , cos θ 1 , as shown in FIG. 3, respectively.
Sinθ 2 , Cosθ 2 , Sinθ 3 , and Cosθ 3 are detected and input to the position detection section 10 . At the same time, Sinθ
03 and Cos θ 3 are input to the display signal generator 11.
The position detection unit 10 performs calculations to be described later and outputs the coordinates (X 0 , Y 0 ) of the vibration plane of the blood flow meter probe. In addition, the A mode signal is sent from the terminal 9-1 of the blood flow meter 9, the range gate signal of the blood flow measurement point is sent from 9-2, and the distance mark signal is sent from 9-3 (for example, a distance of 1 cm).
(repetitive pulses with a time of 13 milliseconds divided by 1/2 the speed of sound (1500 m/s)) are input to the blood flow meter display signal generation section 11 from one side. Note that the blood flow meter that generates the three signals described above is well known, so the details will be omitted. On the other hand, Sin θ 3 and Cos θ 3 indicating the angle θ 3 of the axis of the probe 2 with respect to the axial direction of the probe 1 are input from the Sin, Cos potentiometer 15 to the display signal generator 11, and the calculations described below are performed. X sweep for flow meters; X D , Y sweep; Y D and Z sweep; Z
D (constant) is obtained. Switch 12 is for the monitor.
It is an XYZ signal changeover switch, and when the control signal (same as the control signal of tomography device 8) is 1, the
XYZ signals to terminals 12-1, 12-2, 1 respectively
Output from 2-3. When the control signal of the switch 12 is 0, the XYZ signals of the blood flow meter display signal generator 11 are sent to the terminals 12-1, 12-2, 12-3, respectively.
Output from The output of the switch 12 is the monitor 13
is input and displayed.

さらに血流計用探触子位置検出部10および血
流計用表示信号発生部11につき詳細に説明す
る。まず位置検出部10について説明する。第3
図に示すように断層装置用探触子1の長さl1、血
流計用探触子2の長さl3、Sin、Cosポテンシオ1
3と14の間および14と15の間の距離をとも
にl2とし、断層用探触子1の軸方向をX軸、断層
用探触子1の先端を原点(0,0)、ポテンシオ
13,14,15においてX軸方向からの角度を
それぞれθ,θ,θとすれば血流計探触子
先端の座標(X0,Y0)は X0=−l1+l2cosθ+l2cosθ+l3cosθ
(1) Y0=l2sinθ+l2sinθ+l3sinθ となる。したがつて位置検出部においては(1)式の
演算を行なえばよい。
Further, the blood flow meter probe position detection section 10 and the blood flow meter display signal generation section 11 will be explained in detail. First, the position detection section 10 will be explained. Third
As shown in the figure, the length of the tomography probe 1 is l 1 , the length of the blood flow meter probe 2 is l 3 , and the Sin and Cos potentios are 1.
The distances between 3 and 14 and between 14 and 15 are both l 2 , the axial direction of the tomography probe 1 is the X axis, the tip of the tomography probe 1 is the origin (0,0), and the potentio 13 , 14, and 15, the angles from the X-axis direction are θ 1 , θ 2 , and θ 3 , respectively, then the coordinates (X 0 , Y 0 ) of the tip of the blood flow meter probe are X 0 =−l 1 +l 2 cosθ 1 +l 2 cosθ 2 +l 3 cosθ 3 }
(1) Y 0 = l 2 sin θ 1 + l 2 sin θ 2 + l 3 sin θ 3 . Therefore, in the position detection section, the calculation of equation (1) may be performed.

次に血流計用表示信号発生部11について説明
する。第4図a,b,cに示すように血流計9の
9−1,9−2,9−3よりそれぞれAモード信
号、測定点のレンジゲート信号、距離マーク信号
が出力し、表示信号発生部11に入力する。これ
らの和信号をg(t)とおく。
Next, the blood flow meter display signal generating section 11 will be explained. As shown in FIG. 4 a, b, and c, the A mode signal, the range gate signal of the measurement point, and the distance mark signal are output from 9-1, 9-2, and 9-3 of the blood flow meter 9, respectively, and the display signal is Input to the generating section 11. Let these sum signals be g(t).

g(t)≡{(Aモード信号) +(レンジゲート信号)+(距離マーク信号)} (2) いま血流用探触子のビーム方向指示線に垂直に
g(t)を表示するにはXスイープXD、Yスイ
ープYDは第5図に示すように ここでkは定数、tは時間 の演算を行なえばよい。なお、(1)及び(3)式を算出
する回路は当業者であれば簡単に作製できるので
省略する。もちろん計算機を用いてもよい。血流
用探触子のビーム方向指示線に垂直にAモードを
重畳させた理由は断層像とAモードとを同時観察
することにより断層用探触子と血流用探触子との
相対位置精度の確認が可能となるからである。か
かる構成とすれば断層像内の任意方向かつ任意の
点の血流信号をリアルタイムに得ることが可能で
あることを以下に説明する。
g(t) ≡ {(A mode signal) + (range gate signal) + (distance mark signal)} (2) Now, to display g(t) perpendicular to the beam direction indicator line of the blood flow probe. is the X sweep X D and the Y sweep Y D as shown in Figure 5. Here, k is a constant and t is a time calculation. Note that the circuit for calculating equations (1) and (3) can be easily created by a person skilled in the art, so the description thereof will be omitted. Of course, a computer may be used. The reason for superimposing A mode perpendicularly to the beam direction line of the blood flow probe is that by simultaneously observing the tomographic image and A mode, the relative position of the tomography probe and the blood flow probe can be determined. This is because accuracy can be confirmed. It will be explained below that with such a configuration, it is possible to obtain blood flow signals in any direction and at any point within a tomographic image in real time.

まず断層像計測を主に血流計測を従にするため
モード切換制御信号発生器4の出力を1とする。
切換スイツチ7によりゲート5の出力を断層装置
8の制御信号となり、分周器6の出力を血流計9
の制御信号となる。そこで断層像は例えば走査線
128本、40フレーム/sec、繰り返えし周波数5K
Hzとなる。また分周器のn=5のとき血流計の繰
り返えし周波数1KHzとなり、検出可能な血流の
周波数偏位はサンプリング理論により最大500Hz
となる。したがつて、血流速度の計測範囲は非常
に狭くなるので血流計測は行なわずあくまで血流
の測定部位のモニタとなる。
First, the output of the mode switching control signal generator 4 is set to 1 in order to mainly perform tomographic image measurement and to make blood flow measurement secondary.
The output of the gate 5 becomes the control signal of the tomography device 8 by the changeover switch 7, and the output of the frequency divider 6 becomes the control signal of the blood flow meter 9.
This becomes the control signal. Therefore, the tomographic image is, for example, a scanning line
128 lines, 40 frames/sec, repetition frequency 5K
Hz. Also, when n = 5 of the frequency divider, the repetition frequency of the blood flow meter is 1KHz, and the frequency deviation of the blood flow that can be detected is up to 500Hz according to sampling theory.
becomes. Therefore, since the measurement range of blood flow velocity becomes very narrow, blood flow is not measured, but only the blood flow measurement site is monitored.

すなわち、位置検出部10において血流計用探
触子2の先端(X0,Y0)は(1)式で計算され、さら
に血流計表示機構11において第4図のAモード
信号、レンジゲート信号および距離マーク信号が
血流計用探触子の超音波ビーム方向の表示線に垂
直に重畳され、第1図のスイツチ12をへてモニ
タ13に表示される。
That is, in the position detection unit 10, the tip (X 0 , Y 0 ) of the blood flow meter probe 2 is calculated using equation (1), and the blood flow meter display mechanism 11 calculates the A mode signal and range shown in FIG. The gate signal and the distance mark signal are superimposed perpendicularly on the display line in the ultrasonic beam direction of the blood flow meter probe, and are displayed on the monitor 13 through the switch 12 in FIG.

次に血流計測を主に断層像計測を従とするため
モード切換制御信号発生器4の出力を0とする。
切換スイツチ7によりゲート5の出力を血流計9
の制御信号となり、分周器6の出力を断層装置8
の制御信号となる。そこで断層像は例えば走査線
128本、8フレーム/secとなり像がちらつく欠点
がある。しかし、血流計の繰り返えしはほぼ5K
Hzであるので、検出可能な血流の周波数偏位は
2.5KHzとなり、心臓内血流速度から、まず実用
的な値となる。
Next, the output of the mode switching control signal generator 4 is set to 0 in order to mainly perform blood flow measurement and secondary tomographic image measurement.
The output of the gate 5 is connected to the blood flow meter 9 by the changeover switch 7.
The output of the frequency divider 6 is transmitted to the tomography device 8.
This becomes the control signal. Therefore, the tomographic image is, for example, a scanning line
There are 128 lines and 8 frames/sec, which causes the image to flicker. However, the number of repetitions of the blood flow meter is approximately 5K.
Hz, so the frequency deviation of the detectable blood flow is
It is 2.5KHz, which is a practical value based on the intracardiac blood flow velocity.

以上説明したところでは分周器n=5とした
が、n=2、すなわち断層像計測と血流計測とを
交互にすることも可能なことは明らかである。こ
の場合断層像は走査線128本、20フレーム/sec、
血流計は繰り返えし2.5KHz、最大周波数偏位
1.25KHzとなり実用的である。
In the above explanation, the frequency divider n=5, but it is clear that n=2, that is, it is also possible to alternate tomographic image measurement and blood flow measurement. In this case, the tomographic image has 128 scanning lines, 20 frames/sec,
Blood flow meter repeats 2.5KHz, maximum frequency deviation
It is 1.25KHz, which is practical.

なお、本発明においては血流用探触子の位置検
出用センサとしてSin、Cosポテンシオを用いた
がθポテンシオを用い、回路的にSin、Cos変換
してもよいことは明らかである。
In the present invention, the sin and cos potentios are used as sensors for detecting the position of the blood flow probe, but it is clear that the θ potentio may be used and sin and cos conversion may be performed in a circuit.

また、本発明においては血流用探触子により得
られたAモードを断層像に重畳して表示したが、
このAモードを用いて他のモニタ上に通常のMモ
ードスキヤンにより超音波心拍曲線
(Ultrasound Cardiogram)を得ることができる
ことは明らかである。
In addition, in the present invention, the A mode obtained by the blood flow probe is displayed superimposed on the tomographic image.
It is clear that this A-mode can be used to obtain an Ultrasound Cardiogram by a normal M-mode scan on other monitors.

以上説明したように本発明によれば超音波断層
診断装置と超音波血流計とを組合わせることによ
り、断層像内の任意方向、任意位置の血流速度を
計測することができ、血流計測の定量化、再現性
向上を寄与することが大である。
As explained above, according to the present invention, by combining an ultrasonic tomographic diagnostic device and an ultrasonic blood flow meter, the blood flow velocity in any direction and any position within a tomographic image can be measured, and the blood flow It will greatly contribute to the quantification and improvement of reproducibility of measurements.

以上の説明においては電子走査形扇形超音波断
層診断装置とパルスドプラ型超音波血流計を用い
て説明した。しかし断層診断装置として電子走査
形リニア形装置を用いても同様であることは明ら
かである。
In the above explanation, an electronic scanning sector-shaped ultrasonic tomography diagnostic apparatus and a pulsed Doppler ultrasonic blood flow meter were used. However, it is clear that the same problem will occur even if an electronic scanning linear type device is used as the tomographic diagnostic device.

また本発明においては2個の探触子を用い、時
系列的に制御して断層像および血流計測を行なつ
たが、1個の探触子(配列振動子)を時系列的に
制御しても同様であることは明らかである。この
場合、位置検出機構が不要となる利点はあるが、
断層像と血流とをそれぞれ独立に最適位置に設置
し計測することは不可能である。
In addition, in the present invention, two probes were used and were controlled in a time-series manner to perform tomographic images and blood flow measurements, but one probe (array transducer) was controlled in a time-series manner. It is clear that the same holds true. In this case, there is an advantage that a position detection mechanism is not required, but
It is impossible to independently install and measure tomographic images and blood flow at optimal positions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例、第2図は第1図の制
御信号説明図、第3図は第1図の位置検出部説明
図、第4図は第1図の信号説明図、第5図は第1
図の表示信号発生部説明図である。
FIG. 1 is an embodiment of the present invention, FIG. 2 is an explanatory diagram of the control signals in FIG. 1, FIG. 3 is an explanatory diagram of the position detection section in FIG. Figure 5 is the first
FIG. 3 is an explanatory diagram of a display signal generating section in the figure.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波断層像撮影装置に超音波血流計の機能
が付加された超音波診断装置において、断層像用
探触子と血流用探触子との相対位置及び角度を自
在に設定することが可能な探触子保持手段,前記
相対位置及び角度を検出する手段,断層像用,血
流用それぞれの発射パルスを時系列的に切換え制
御する制御手段,及び検出された相対位置及び角
度により血流計の測定点に関する表示信号を発生
する表示信号発生部を備え、表示された断層像内
の任意の点の血流速度を計測すると共に血流速度
の測定点を上記断層像に重畳することを特徴とす
る超音波診断装置。
1. In an ultrasonic diagnostic device in which an ultrasonic blood flow meter function is added to an ultrasonic tomographic imaging device, the relative position and angle of a tomographic probe and a blood flow probe can be freely set. a probe holding means capable of detecting the relative position and angle; a control means for controlling the emission pulses for tomographic images and for blood flow by switching them in time series; A display signal generating section that generates a display signal regarding a measurement point of the blood flow meter is provided, and the blood flow velocity at an arbitrary point within the displayed tomographic image is measured and the measurement point of the blood flow velocity is superimposed on the tomographic image. An ultrasonic diagnostic device characterized by:
JP2023577A 1977-02-28 1977-02-28 Ultrasonic diagnosing device Granted JPS53105881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023577A JPS53105881A (en) 1977-02-28 1977-02-28 Ultrasonic diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023577A JPS53105881A (en) 1977-02-28 1977-02-28 Ultrasonic diagnosing device

Publications (2)

Publication Number Publication Date
JPS53105881A JPS53105881A (en) 1978-09-14
JPS6224095B2 true JPS6224095B2 (en) 1987-05-27

Family

ID=12021516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023577A Granted JPS53105881A (en) 1977-02-28 1977-02-28 Ultrasonic diagnosing device

Country Status (1)

Country Link
JP (1) JPS53105881A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554942A (en) * 1978-10-20 1980-04-22 Tokyo Shibaura Electric Co Ultrasoniccwave disgnosis device
JPS55129045A (en) * 1979-03-26 1980-10-06 Aloka Co Ltd Ultrasoniccwave diagnosis method
JPS56119237A (en) * 1980-02-27 1981-09-18 Tokyo Shibaura Electric Co Urtrasonic diagnosis apparatus
JPS5710808U (en) * 1980-06-23 1982-01-20
JPS57139327A (en) * 1981-02-25 1982-08-28 Aloka Co Ltd Ultrasonic doppler diagnostic apparatus
US4407293A (en) * 1981-04-24 1983-10-04 Diasonics, Inc. Ultrasound imaging apparatus for providing simultaneous B-scan and Doppler data
JPS6021743A (en) * 1983-07-15 1985-02-04 富士通株式会社 Ultrasonic pulse doppler blood meter
JPS61149129A (en) * 1984-12-24 1986-07-07 株式会社東芝 Ultrasonic diagnostic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048958A (en) * 1973-05-15 1975-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048958A (en) * 1973-05-15 1975-05-01

Also Published As

Publication number Publication date
JPS53105881A (en) 1978-09-14

Similar Documents

Publication Publication Date Title
JP4928886B2 (en) Ultrasonic diagnostic apparatus and ultrasonic measurement method
JP2001061840A (en) Ultrasonograph
JPS6131135A (en) Ultrasonic diagnostic apparatus
JPS61290942A (en) Ultrasonic tissue diagnostic apparatus
JPS6224095B2 (en)
Docker et al. Comparison between linear array real time ultrasonic scanning and conventional compound scanning in the measurement of the fetal biparietal diameter
JPS6253182B2 (en)
JPH0125578B2 (en)
JPS6129735B2 (en)
JP2985147B2 (en) Ultrasound diagnostic equipment
JP2004305236A (en) Ultrasonograph
JPH11309144A (en) Ultrasonograph
JPH0767451B2 (en) Ultrasonic tissue displacement measuring device
JPS6130643Y2 (en)
JPS6336257B2 (en)
JP3015489B2 (en) Ultrasound diagnostic equipment
JPS6346143A (en) Ultrasonic probe for measuring flood flow
JPH0221255B2 (en)
JP2656477B2 (en) Ultrasound diagnostic equipment
KR840002116B1 (en) Ultrasonic blood flow measuring apparatus
JPH04138146A (en) Correlation type ultrasonic flow velocity measurement device
JPH0347241A (en) Apparatus for ultrasonic doppler diagnosis
JPS6272336A (en) Ultrasonic tissue diagnostic apparatus
JPS6268441A (en) Ultrasonic tissue diagnostic apparatus
JPH01204653A (en) Ultrasonic doppler device