JPS61243280A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61243280A
JPS61243280A JP8375485A JP8375485A JPS61243280A JP S61243280 A JPS61243280 A JP S61243280A JP 8375485 A JP8375485 A JP 8375485A JP 8375485 A JP8375485 A JP 8375485A JP S61243280 A JPS61243280 A JP S61243280A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant flow
members
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8375485A
Other languages
Japanese (ja)
Other versions
JPH0252200B2 (en
Inventor
Mitsuhiro Ikoma
生駒 光博
Tsutomu Harada
努 原田
Yoshiaki Yamamoto
義明 山本
Ryutaro Akutagawa
竜太郎 芥川
Isao Takeshita
功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8375485A priority Critical patent/JPS61243280A/en
Publication of JPS61243280A publication Critical patent/JPS61243280A/en
Publication of JPH0252200B2 publication Critical patent/JPH0252200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent formation of dead water area in the wake flow side of a refrigerant flow path and increase the performance of the heat exchanger by splitting or the like of fins by a method wherein the flat plate type refrigerant flow paths, constituted by laminating a plurality of flat plate members, are arranged in parallel to the direction of air stream and a plurality of fin members, parallel to the direction of air stream, is attached to the outer walls of the refrigerant flow paths. CONSTITUTION:The flat plate type refrigerant flow path 5 is constituted of a flow path member 12, a header member 14, communicating a plurality of slits 11 mutually and provided with headers 13 to which the inlet pipe 7 and the outlet pipe 8 of refrigerant are attached, and outer wall members 15, which are laminated and integrated. A plurality of L-shaped fin members 6 are attached to the outer walls of the refrigerant flow path 5 so as to be in parallel to the direction of air stream 9 substantially while the pitch P of the fin members 6 is designed so as to be larger at the upstream side of the airflow under considering the frosting phenomenon. Air flows smoothly between the fin members 6 along the refrigerant flow path 5 and exchanges the heat thereof with the heat of the refrigerant, flowing in the refrigerant flow path 5, without being adversely affected by the dead water area of the refrigerant flow path and, therefore, the fins may be utilized effectively and the heat transfer performance of the heat exchanger may be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は主として冷蔵庫に用いられる蒸発器用熱交換器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an evaporator heat exchanger used primarily in refrigerators.

従来の技術 従来のこの種の熱交換器は、例えば実開昭57−120
889号公報に示されているように1第5図のような構
造になっていた。
2. Description of the Related Art A conventional heat exchanger of this type is disclosed in, for example, Utility Model Application No. 57-120.
As shown in Japanese Patent No. 889, it had a structure as shown in FIG. 1.

すなわち、多数並列されたフィ/1と、これらフィン1
に直交するように貫通された冷媒管2より構成され、矢
印3の方向に送風される空気と、冷媒管2内を流通する
冷媒との熱交換を行うようになっている。
In other words, a large number of parallel fins/1 and these fins 1
The refrigerant pipe 2 is constructed of a refrigerant pipe 2 that passes through the refrigerant pipe perpendicularly to the refrigerant pipe 2, and heat exchange is performed between the air blown in the direction of the arrow 3 and the refrigerant flowing inside the refrigerant pipe 2.

発明が解決しようとする問題点 しかし、このように気流方向の冷媒管の段数が多い熱交
換器では、冷媒管の後流側にできる死水域のためフィン
が有効に使用されないという問題があった。
Problems to be Solved by the Invention However, in a heat exchanger having a large number of stages of refrigerant pipes in the airflow direction, there is a problem in that the fins cannot be used effectively because of the dead area formed on the downstream side of the refrigerant pipes. .

すなわち、第6図に示すように、各冷媒管2の後流側に
は死水域4が形成される。従、って、フィン1のこの部
分に相当する部分は、非常に熱伝達が悪く、有効に作用
しないため、伝熱性能も低いものであった。また冷蔵庫
用蒸発器のように、高湿気流中で使用される場合には、
着霜現象が生じる。この着霜現象も熱伝達の良い部分で
は着霜量が多く、熱伝達の悪い部分では着霜量も少ない
That is, as shown in FIG. 6, a dead area 4 is formed on the downstream side of each refrigerant pipe 2. Therefore, the portion of the fin 1 corresponding to this portion has very poor heat transfer and does not function effectively, and therefore has low heat transfer performance. Also, when used in high humidity streams such as refrigerator evaporators,
A frosting phenomenon occurs. In this frosting phenomenon, the amount of frost is large in areas with good heat transfer, and the amount of frost is small in areas with poor heat transfer.

よって、フィン1の死水域4に相当する部分と、その他
の部分での着霜量の差が大きくなる0そのため均一に着
霜する場合に比べて、短時間で着霜量が多い部分で空気
通路が閉塞され、運転を中止して除霜する必要が生しる
ものてあった0普た、従来のように冷媒管2にフィン1
を固定する構造のものでは、気流方向の冷媒管の段数以
上に、気流方向にフィンを分断して、フィン間隔を変え
たり、高性能化あるいは着霜時の性能向上を図ることが
できなかった。
Therefore, the difference in the amount of frost between the part corresponding to the dead area 4 of the fin 1 and the other parts becomes large. Therefore, compared to the case where frost forms uniformly, the air is absorbed in areas where a large amount of frost forms in a short period of time. There were cases where the passage was blocked and it was necessary to stop the operation and defrost it.
With a structure that fixes the refrigerant, it was not possible to divide the fins in the airflow direction beyond the number of stages of refrigerant pipes in the airflow direction, change the fin spacing, improve performance, or improve performance during frost formation. .

そこで、本発明は冷媒流路の後流側に死水域が形成され
るのを防止すると共に、フィンの分断等による高性能化
を図れる熱交換器構造を提供するものである。
Therefore, the present invention provides a heat exchanger structure that can prevent the formation of a dead area on the downstream side of a refrigerant flow path and can improve performance by dividing the fins or the like.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、複数枚の平板状部
材を適当な間隔をもって積層して冷媒流路を構成し、上
記平板状冷媒流路を気流方向に平行に配置すると共に、
上記平板状冷媒流路の外壁に気流方向に平行な多数のフ
ィン部材を取り付けたものである。
Means for Solving the Problems In order to solve the above problems, the present invention constructs a refrigerant flow path by stacking a plurality of flat plate-like members at appropriate intervals, and the flat refrigerant flow path is arranged in the air flow direction. Along with parallel placement,
A large number of fin members parallel to the airflow direction are attached to the outer wall of the flat refrigerant flow path.

作  用 本発明は上記した構成により、冷媒流路が平板状となシ
、しかも、気流方向に平行に配置されていることによっ
て、フィンには死水域の悪影響もなく、フィンを有効に
使用した熱交換が行なわれる。
Effects The present invention has the above-described configuration, and since the refrigerant flow path is flat and arranged parallel to the air flow direction, the fins are not affected by dead areas and can be used effectively. Heat exchange takes place.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図において、5は平板状冷媒流路で、気流方向
に平行に配置されている。6はL字形のフィン部材であ
り、平板状冷媒流路5の外壁に気流方向とほぼ平行とな
るよう多数取り付けられており、上記フィン部材6のピ
ッチPは着霜現象を考慮して、風上側になるほど太きく
なるように設定されているうまた、7.8は平板状冷媒
流路6に接続された入口管および出口管である。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. In FIG. 1, reference numeral 5 denotes a flat refrigerant flow path, which is arranged parallel to the air flow direction. Reference numeral 6 denotes an L-shaped fin member, and a large number of them are attached to the outer wall of the flat refrigerant flow path 5 so as to be almost parallel to the air flow direction. The pipes are set to become thicker toward the top, and 7.8 is an inlet pipe and an outlet pipe connected to the flat refrigerant flow path 6.

なお、矢印9は気流方向、矢印10は冷媒の流れ方向を
示している。
Note that arrow 9 indicates the airflow direction, and arrow 10 indicates the flow direction of the refrigerant.

第2図は、平板状冷媒流路5を構成する平板状部材の分
解斜視図であり、冷媒流路となるスリット11を複数本
設けた流路部材12に、上記複数のスリット11を互い
に連通させ、しかも、冷媒の入口管7.出口管8を取り
付けるだめのヘッダー13を設けたヘッダー部材14を
積層し、さらに、これらの上下両面に冷媒流路外壁とな
る外壁部材16を積層し一体化することにより、平板状
冷媒流路5を構成している。
FIG. 2 is an exploded perspective view of a flat member constituting the flat refrigerant flow path 5, in which a flow path member 12 is provided with a plurality of slits 11 serving as refrigerant flow paths, and the plurality of slits 11 are communicated with each other. In addition, the refrigerant inlet pipe7. By stacking the header member 14 provided with the header 13 to which the outlet pipe 8 is attached, and further stacking and integrating the outer wall members 16 that serve as the outer wall of the refrigerant flow path on both upper and lower surfaces, the flat refrigerant flow path 5 is formed. It consists of

こσように構成された熱交換器において、気流は平板状
冷媒流路5に沿って、しかも、フィン部材6の間をスム
ーズに流動しながら、平板状冷媒流路5内を流れる冷媒
と熱交換を行う。従って、冷媒流路の死水域の悪影響が
フィンに及ぶこともなく、フィンを有効に活用して伝熱
性能を高くすることができる。また、そのため着霜時に
もフィンらの全面に比較的均一に霜層を形成させること
ができるため、一部分のために、気流通路が閉塞するこ
とを防止することもできるものである。
In the heat exchanger configured in this way, the airflow flows smoothly along the flat refrigerant flow path 5 and between the fin members 6, and the refrigerant and heat flowing inside the flat refrigerant flow path 5 are combined. Make an exchange. Therefore, the fins are not adversely affected by the dead area of the refrigerant flow path, and the fins can be effectively utilized to improve heat transfer performance. Further, even when frost forms, a frost layer can be formed relatively uniformly over the entire surface of the fins, so that it is possible to prevent the airflow passages from being blocked due to a portion of the fins.

また、上記実施例においてはL字形のフィン部材6を平
板状冷媒流路5の外壁に取り付けたが、本発明はこれに
限らず、第3図のように、波形フィン部材16を使用し
ても、同様の効果があり、この場合、製作が容易になる
Further, in the above embodiment, the L-shaped fin member 6 is attached to the outer wall of the flat refrigerant flow path 5, but the present invention is not limited to this, and as shown in FIG. also has a similar effect, and in this case, manufacturing becomes easier.

また、平板状冷媒流路5を構成するのに、流路部材12
とヘッダー部材14を用いて、複数の並列冷媒流路を構
成しているため、流路部材12およびヘッダー部材14
の厚さを非常に薄くしても。
Further, in order to configure the flat refrigerant flow path 5, the flow path member 12
and the header member 14 to form a plurality of parallel refrigerant flow paths, the flow path member 12 and the header member 14
Even if you make the thickness very thin.

冷媒の流通抵抗を小さくすることができ、しかも、平板
状冷媒流路5全体の厚さが小さくできるため、気流側の
通風抵抗をも小さくできるものである。
Since the flow resistance of the refrigerant can be reduced and the thickness of the entire flat refrigerant flow path 5 can be reduced, the ventilation resistance on the airflow side can also be reduced.

さらに、上述のように平板状冷媒流路6を採用している
ため、フィン部材を気流方向に細かく分段して取り付け
ることもでき、これにより、境界層前縁効果等の伝熱性
能の向上あるいは、着霜時の気流通路の閉塞防止などの
高性能化に対して、制約条件となるものが無くなるもの
である。
Furthermore, since the flat refrigerant flow path 6 is adopted as described above, the fin members can be installed in finely divided stages in the airflow direction, thereby improving heat transfer performance such as the leading edge effect of the boundary layer. Alternatively, there will be no constraint on improving performance, such as preventing blockage of airflow passages during frost formation.

第4図は平板状冷媒流路5の異なる実施例の分解祖国で
あシ、冷媒流路となるスリット17を複数本設けた流路
部材18を、上記複数のスリット17を互いに連通させ
、しかも、冷媒の入口管7゜出口管8を取り付けるだめ
のヘッダー19を設けたヘッダー部材20により挾むよ
うに積層し、さらに、これらの上下両面に冷媒流路外壁
となる外壁部材16を積層し一体化することによシ、平
板状冷媒流路を構成している。
FIG. 4 shows disassembly of different embodiments of the flat refrigerant flow path 5. A flow path member 18 is provided with a plurality of slits 17 serving as refrigerant flow paths, and the plurality of slits 17 are made to communicate with each other. , are stacked so as to be sandwiched by a header member 20 provided with a header 19 for attaching a refrigerant inlet pipe 7 and an outlet pipe 8, and further, outer wall members 16 which become outer walls of the refrigerant flow path are stacked and integrated on both upper and lower surfaces thereof. In particular, it constitutes a flat refrigerant flow path.

この場合、流路部材18の両側にヘッダー部材20を積
層したため、ヘーダ一部における流路面積を大きくする
ことができ、冷媒の圧力損失を非常に小さくすることが
でき、しかも、冷媒と気流とは対向流としているため温
度差を最大限有効に利用できるものである。また、複数
の並列冷媒流路を構成しているため、流路部材18およ
びヘッダー部材20の厚さを非常に薄くしても、冷媒の
流通抵抗は非常に小さく、しかも、平板状冷媒流路6全
体の厚さが小さくできるため、気流側の通風抵抗をも小
さくできるものである。
In this case, since the header members 20 are laminated on both sides of the flow path member 18, the flow path area in a part of the header can be increased, and the pressure loss of the refrigerant can be extremely reduced. Since these flow in opposite directions, the temperature difference can be utilized as effectively as possible. Moreover, since a plurality of parallel refrigerant flow paths are configured, even if the thickness of the flow path member 18 and the header member 20 is made very thin, the flow resistance of the refrigerant is extremely small. Since the overall thickness of the device 6 can be reduced, the ventilation resistance on the airflow side can also be reduced.

発明の効果 本発明は、複数枚の平板状部材を適当な間隔をもって積
層して冷媒流路を構成し、上記平板状冷媒流路を、気流
方向に平行に配置すると共に、上記平板状冷媒流路の外
壁に気流方向に平行な多数のフィン部材を取り付けて構
成したものであるから、冷媒流路の死水域の悪影響がフ
ィンに及ぶこともなく、フィンを有効に活用して、伝熱
性能を高くすることができる。また、冷媒流路を薄い平
板状とするため、気流側の通風抵抗も小さくなり、しか
も、フィン部材構成上の制約条件が無くなるため、フィ
ンの伝熱性能の向上あるいは、着霜時の気流通路の閉塞
防止などの高性能化を十分に図ることができるなど、実
用上、多大な効果を発揮するものである。
Effects of the Invention The present invention configures a refrigerant flow path by stacking a plurality of flat plate-like members at appropriate intervals, and arranges the flat refrigerant flow path in parallel to the air flow direction. Since it is constructed by attaching a large number of fin members parallel to the air flow direction to the outer wall of the channel, the dead area of the coolant flow channel does not affect the fins, and the fins can be used effectively to improve heat transfer performance. can be made higher. In addition, since the refrigerant flow path is made into a thin flat plate, the ventilation resistance on the airflow side is reduced, and there are no restrictions on the fin member configuration, which improves the heat transfer performance of the fins and improves the airflow path during frost formation. This has great practical effects, such as being able to sufficiently improve performance such as preventing blockages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱交換器の構成図、第2図
は同熱交換器の構成要素である平板状冷媒流路を構成す
る平板状部材の分解斜視図、第3図は本発明の他の実施
例のフィン部材の斜視図、第4図は同熱交換器の平板状
冷媒流路を構成する平板状部材の異なる実施例の分解斜
視図、第6図は従来の熱交換器を示す構成図、第6図は
同熱交換器の部分図である。 6・・・・・・平板状冷媒流路、6・・・・・・フィン
部材、12・・・・・・流路部材、14・・・・・・ヘ
ッダー部材、16・・・・・・外壁部材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図
Fig. 1 is a configuration diagram of a heat exchanger according to an embodiment of the present invention, Fig. 2 is an exploded perspective view of a flat plate-shaped member constituting a plate-shaped refrigerant flow path, which is a component of the heat exchanger, and Fig. 3 is a perspective view of a fin member according to another embodiment of the present invention, FIG. 4 is an exploded perspective view of a different embodiment of the flat plate member constituting the flat refrigerant flow path of the heat exchanger, and FIG. 6 is a perspective view of a conventional fin member. FIG. 6 is a block diagram showing a heat exchanger, and FIG. 6 is a partial diagram of the heat exchanger. 6... Flat refrigerant channel, 6... Fin member, 12... Channel member, 14... Header member, 16...・Exterior wall components. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)複数枚の平板状部材を適当な間隔をもって積層し
て冷媒流路を構成し、前記平板状冷媒流路を、気流方向
に平行に配置すると共に、前記平板状冷媒流路の外壁に
気流方向に平行な複数のフィン部材を取り付けて構成し
た熱交換器。
(1) A refrigerant flow path is constructed by stacking a plurality of flat plate-like members at appropriate intervals, and the flat refrigerant flow path is arranged parallel to the air flow direction, and the flat refrigerant flow path is arranged on the outer wall of the flat refrigerant flow path. A heat exchanger configured by attaching multiple fin members parallel to the airflow direction.
(2)冷媒流路となるスリットを複数本設けた平板状の
流路部材を、前記スリットを互いに連通させるヘッダー
を設けたヘッダー部材により挾むように積層し、さらに
、これらの上下両面に冷媒流路外壁となる外壁部材を積
層し一体化して、前記平板状冷媒流路を構成し、前記平
板状冷媒流路を、気流方向に平行に配置すると共に、前
記平板状冷媒流路の外壁に気流方向に平行な多数のフィ
ン部材を取り付けて構成した特許請求の範囲第1項記載
の熱交換器。
(2) Planar flow path members each having a plurality of slits serving as refrigerant flow paths are stacked in such a way that they are sandwiched between header members provided with headers that communicate the slits with each other, and refrigerant flow paths are formed on both upper and lower surfaces of these flow path members. The flat refrigerant flow path is formed by laminating and integrating outer wall members that become the outer wall, and the flat refrigerant flow path is arranged parallel to the air flow direction, and the outer wall of the flat refrigerant flow path is arranged parallel to the air flow direction. The heat exchanger according to claim 1, wherein the heat exchanger is constructed by attaching a large number of fin members parallel to each other.
(3)平板状冷媒流路内の冷媒の流動方向を、気流方向
と対向するよう構成した特許請求の範囲第1項記載の熱
交換器。
(3) The heat exchanger according to claim 1, wherein the flow direction of the refrigerant in the flat refrigerant flow path is configured to face the direction of air flow.
(4)平板状冷媒流路形成部材に対して気流方向にフィ
ンを複数段形成し、前記気流上流側におけるフィン列の
フィン数を下流側のそれより少なくしたことを特徴とす
る特許請求の範囲第3項記載の熱交換器。
(4) A plurality of fins are formed in the airflow direction on the flat refrigerant flow path forming member, and the number of fins in the fin row on the upstream side of the airflow is smaller than that on the downstream side. The heat exchanger according to item 3.
JP8375485A 1985-04-19 1985-04-19 Heat exchanger Granted JPS61243280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8375485A JPS61243280A (en) 1985-04-19 1985-04-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8375485A JPS61243280A (en) 1985-04-19 1985-04-19 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS61243280A true JPS61243280A (en) 1986-10-29
JPH0252200B2 JPH0252200B2 (en) 1990-11-09

Family

ID=13811327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8375485A Granted JPS61243280A (en) 1985-04-19 1985-04-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61243280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027372A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat exchanger for liquid cooling unit, liquid cooling unit, and electronic device
JP2008027371A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat exchanger for liquid cooling unit, liquid cooling unit, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027372A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat exchanger for liquid cooling unit, liquid cooling unit, and electronic device
JP2008027371A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat exchanger for liquid cooling unit, liquid cooling unit, and electronic device

Also Published As

Publication number Publication date
JPH0252200B2 (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP2004125270A (en) Heat exchanger and its manufacturing method
JPH035511B2 (en)
JPS61153498A (en) Finned heat exchanger
JPS61243280A (en) Heat exchanger
JPS61285395A (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JP3805665B2 (en) Heat exchanger
JPS62116873A (en) Evaporator for refrigerator
JPS62172192A (en) Heat exchanger
CN218443466U (en) Heat exchanger with two opposite air flows
JPS629182A (en) Heat exchanger
JPS6060495A (en) Plate fin tube type heat exchanger
JPS61268986A (en) Heat exchanger
JPH02290493A (en) Heat exchanger
JPS62116874A (en) Evaporator for refrigerator
JP2001174172A (en) Heat exchanging element
JPH10281669A (en) Heat exchanging element
JPH04122966U (en) heat exchange element
JP2000266486A (en) Heat exchanger
JPS6266098A (en) Heat exchanger
JP2002257433A (en) Multiple plate vaporizer
JPS61202094A (en) Heat exchanger
JPS62158991A (en) Heat exchanger
JPS62210395A (en) Heat transfer pipe
JPS61116294A (en) Heat exchanger