JPS6124326B2 - - Google Patents

Info

Publication number
JPS6124326B2
JPS6124326B2 JP55120135A JP12013580A JPS6124326B2 JP S6124326 B2 JPS6124326 B2 JP S6124326B2 JP 55120135 A JP55120135 A JP 55120135A JP 12013580 A JP12013580 A JP 12013580A JP S6124326 B2 JPS6124326 B2 JP S6124326B2
Authority
JP
Japan
Prior art keywords
raw
coke
retarded
volatile content
vcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120135A
Other languages
Japanese (ja)
Other versions
JPS5744697A (en
Inventor
Masanao Nakagawa
Masatoshi Tsuchitani
Kazuo Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP55120135A priority Critical patent/JPS5744697A/en
Publication of JPS5744697A publication Critical patent/JPS5744697A/en
Publication of JPS6124326B2 publication Critical patent/JPS6124326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素製品の製造方法に係り、更に詳細
には特定の生遅延コークスにその性状に適合した
量のピツチを加え、均一に混合しながら同時粉砕
した後、常法に従つて粉末成型し、焼成ないし黒
鉛化することを特徴とする炭素材料の製造方法に
関する。 以下本明細書においては、生遅延コークス単味
を平均粒径100μ以下に微粉砕し、粘結剤を加え
ることなく常法に従つて成型し、焼成した際発泡
して膨脹し、あるいは半融して変形することなく
焼結する生遅延コークスを原料生遅延コークスと
記し、生遅延コークス単味を平均粒径100μ以下
に微粉砕し、粘結剤を加えることなく常法に従つ
て成型し、焼成した際発泡して膨脹し、あるいは
半融して変形する生遅延コークスを粗生遅延コー
クスと記し、そして生遅延コークスを一般的に述
べる場合に生遅延コークスと記し、区別すること
にする。また生コークスと言う語は生遅延コーク
スのみならず、石炭乾留等で得られる他の生コー
クスをも含む意味で用いている。 本方法の特徴は原料生遅延コークスを〓焼せず
に使用するため、従来法での〓焼に必要なエネル
ギーおよびコストが節減できること、ならびに従
来法では不可欠である〓焼コークスの粉砕物にピ
ツチを加えて140〜160℃に加熱しながら1〜2時
間混練するという手間および時間を要する〓合工
程およびそれに続く冷却工程が不要な点にあり、
経済的に在来の炭素製品と同等以上の特性を有す
る製品を製造できることにある。 このような炭素製品の製造に際して、従来技術
においては生遅延コークスを用いることなく〓焼
コークスが用いられてきた。その理由は必ずしも
明確でないが、生遅延コークスからの成型品は焼
成時の収縮が著しく、その結果変形しあるいは焼
成割れが多くなり一定の形状、品質の炭素製品を
安定して歩留良く与えることができなかつたため
であると考えられる。 従来、生コークスから炭素材料を作る試みとし
ては、生コークスを10μ以下の平均粒径に微粉砕
し、これを高圧にて成型したものを焼成すること
により高密度の炭材を得ることが提案されてい
る。しかしながら、この様に平均粒径10μ以下に
まで微粉砕することはかなりの経費を要し、かつ
成型に要する圧力も粒子が小さくなるにつれて高
圧を要し、大きい成型体を得るのは困難であり、
高価な高密度、高強度炭材の製法としては成立し
得ても、安価な大量に消費されるアルミニウム電
解製錬用電極あるいは炭素煉瓦あるいは黒鉛電極
等の製造には到底適用し得ない。 本発明者等は〓焼という大量の加熱エネルギー
を要する工程を経ることなく、生遅延コークスか
ら直接炭素製品を製造することができないか否か
について長年に亘り鋭意研究を行つた結果、図ら
ずも焼成収縮の大きい原料生遅延コークスでもそ
の性状に適合した量の特定な性状を有するピツチ
を加え、均一に混合しながら同時粉砕し、平均粒
径100μ以下に粉砕したものを成型し、焼成ない
し黒鉛化すればほぼ均等に収縮し、良好な品質の
炭素材料が歩留良くできることがわかつた。 換言するならば、本発明の方法によれば焼結力
の異なる種々の原料生遅延コークスに、バインダ
ーピツチを適量だけ加え、混合しながら平均粒径
100μ以下に粉砕した後、常法に従つて成型し、
焼成ないし黒鉛化することにより炭素煉瓦、アル
ミニウム電解製錬用電極、黒鉛電極、冶金用材料
等に適した特性をもつ高品質の炭素材料を安価に
製造できることを見出した。 すなわち本発明の要旨は生遅延コークス単味を
平均粒径100μ以下に微粉砕し、粘結剤を加える
ことなく常法に従つて成型し、焼成した際発泡し
て膨脹し、あるいは半融して変形することなく焼
結する原料生遅延コークスに軟化点75〜140℃で
かつ固定炭素量45〜70%のバインダーピツチを全
量に対して5wt%と(1)式で求められる揮発分量を
与えるに必要な量との範囲で加え、混合しながら
同時粉砕して平均粒径100μ以下の微粉末にし、
それを常法に従つて成型し、焼成ないし黒鉛化す
ることからなる炭素材料の製造方法。 VCM(nax)=0.39×VCM(gc)+13.1 (1) 〔式中VCM(nax)は原料生遅延コークスとピツチ
との混合物の揮発分含有量の上限(重量%)であ
り、VCM(gc)は原料生遅延コークスの揮発分含
有量(重量%)であり、7≦VCM(gc)≦15であ
る〕にある。 生遅延コークスの性状はそのメーカーまたは生
産プラント毎に著しく異なり、それ単味を微粉砕
したものを成型し焼成すれば一応の炭素材料にな
るものから、ある程度の保型性があり、慎重に扱
えば常法のようにしてガスコークス粒の詰粉(ブ
リーズ)中に埋めて焼成はできるが、焼結力が弱
く良い炭素材料にならないもの、あるいは単味で
は接着力が弱くて保型性がなく成型体ができない
ものまでの種々のものがある。 この接着力および焼結力の著しい違いは、遅延
コークス化条件および原料油の性状の両者の違い
による生遅延コークスの揮発分量の相違、その揮
発分を発生する主要成分である生遅延コークス中
のピツチ状化合物の性状ならびに生遅延コークス
中の大量成分であるコークス化の進んだ部分の性
状等の相違に帰せられる。 その接着力は生遅延コークスの揮発分が多いも
のが概して強いが、焼結の強さを意味する焼結力
は単純に揮発分量が多い方が強いとは言えない。
ここで言う焼結力は生遅延コークス単味を微粉砕
したものを成型し、焼成することにより得られる
炭素材料の強度で表示される実用的な性格のもの
であり、例えば焼成中に発泡すれば焼成品の嵩比
重が低下し、それが著しければたとえ粒子間の結
合力が強くても焼成品の強度が弱くなる。そのよ
うな生遅延コークスの焼結力は実用的には弱いこ
とになる。また、製品の炭素材料中に気泡があれ
ば実用上の制約ができ、焼成中に変形すれば後加
工で整形しても歩留が下り、コスト上昇につなが
る。このような理由から生遅延コークスの焼結力
はその焼成時に目視できる程度に発泡して膨れた
り、半融して変形しない範囲内に限定して考えれ
ば良く、この範囲内では揮発分が多い方が概して
強い。 前述したように、本発明の方法の原料として使
用できる原料生遅延コークスは、それ単味を平均
粒径100μ以下に微粉砕し、常法により成型、焼
成した際、すなわち200Kg/cm2以上の所要の圧力に
加圧して成型したものを1000℃以上に焼成した際
発泡して膨脹したり、半融して変形することなく
焼結し炭素材料になるものでなければならない。
ここで言う原料生遅延コークスとしては石油系コ
ークスは勿論のこと石炭タール系コークスも使用
し得る。この焼成時の発泡による膨脹、あるいは
半融による変形は、生遅延コークスが有する揮発
分量が多過ぎるか、生遅延コークスの主体である
黒鉛類似の結晶構造をもつ部分の有機物的な性格
が強いこと等のために起るものである。しかし、
生遅延コークスが焼成時に上述のような好ましく
ない現象を起すか否かは単なる揮発分量、溶剤分
別成分量ならびに平均的な元素分析値あるいはそ
れら要因の組合せ等のみによつては単純に判定で
きない。その理由は、揮発分を発生する生遅延コ
ークス中の主要成分はピツチ様物質であるが、揮
発分量がほぼ同一であつてもピツチ様物質の分子
量分布と化学構造は原料油の性状および遅延コー
クス化条件によつて著しく違うと共に、生遅延コ
ークスの主体である結晶様構造をもつ部分の性状
も原料油の性状および遅延コークス化条件によつ
て著しく違つたものになるからである。従つて、
それらの割合のみならず、それらの性状の組合せ
が生遅延コークスの性状を決定するため、その全
体としての性状は多数の因子の複雑な組合せによ
つて左右されることになる。一例をあげれば、揮
発分が9.8%で上述の半融現象を起す粗生遅延コ
ークスがある一方、揮発分が14.5%のものでもそ
のまま本発明の方法の好適な原料生遅延コークス
となるものもある。従つて、ある特定の材料がそ
のまま本発明の方法の原料生遅延コークスとして
使用し得るか否かは実験的に判定する必要があ
る。 一般に生遅延コークスは8〜15%の揮発分を有
し、中には7%台のものもある。揮発分8%以下
のものには上述の発泡あるいは半融するものは見
当らない。従つて、揮発分含有率8%以下の生遅
延コークスがそのまま本発明方法で用いる原料生
遅延コークスとなり得ることは勿論、揮発分含有
率8〜15%の生遅延コークスであつてもコークス
化ドラムの下側および壁面に近い部分から採取さ
れた生遅延コークスはそのまま本発明の方法で用
いる原料生遅延コークスになり得る場合が多い。
揮発分が15%を越えるものは市販されていないが
遅延コークス化ドラム内の特定の部分、例えば上
部の殊に中央部附近、には揮発分が15%以上、中
には20%を越えるものまである。このように多量
の揮発分を含有するものは上述の発泡、半融現象
を起し、そのままでは本発明の方法の原料として
使用できない粗生遅延コークスである。このよう
に発泡、半融するこ粗生遅延コークスは好適な原
料生遅延コークスに少量混合して使用できるが、
好ましくは揮発分を適量まで減少させて原料にす
る。 揮発分を減少させる方法としては、不活性雰囲
気中で400〜500℃に外部から加熱する方法、加熱
を過熱水蒸気を通じて行う方法、あるいは溶剤抽
出法のいずれも採用できる。但し外部から加熱す
る方法は簡便ではあるが局部加熱を起しやすいの
で、他の二方法の採用が好ましい。一例をあげれ
ば、揮発分が9.8%で上述の半融現象を起す生遅
延コークスを過熱水蒸気中で430℃に1時間加熱
したものは揮発分が8.8%に下り、半融現象をも
はや呈さず本発明の方法の原料として好適なもの
になつた。それ以上加熱時間を長くするかあるい
は加熱温度を高くすると揮発分が更に減少すると
共に、焼結力が弱いものになつた。また揮発分量
19.8%の粗生遅延コークスはそのままでは著しい
発泡現象を起すが、10倍量のキシレン中で120℃
に2時間加熱して可溶分を抽出したものは揮発分
13.2%で焼結力の強いものになつた。またそのま
まで強い焼結力を有する揮発分15.0%の原料生遅
延コークスを同様にしてキシレンで抽出した。処
理された原料生遅延コークスは揮発分11.0%であ
り、その焼結力は未処理のものより著しく弱くな
つた。これらの事実から、前述の発泡あるいは半
融現象を起さない揮発分量には上限があるが、そ
の上限は生遅延コークスの製造条件等によつて著
しく異ることがわかる。 本発明の方法では上述の条件を満足する原料生
遅延コークスにバインダーピツチを全量に対して
5wt%から下記の(1)式で規定される値に相当する
量の範囲内の量加えることが不可欠の構成要件と
なつている。 VCM(nax)=0.39×VCM(gc)+13.1 (1) 〔式中VCM(nax)は原料生遅延コークスとピツチ
との混合物の揮発分含有量の上限(重量%)であ
り、VCM(gc)は原料生遅延コークスの揮発分含
有量(重量%)であり、7≦VCM(gc)≦15であ
る〕。 (1)式の揮発分含有量の上限〔VCM(nax)〕は添
付の第1図に示す揮発分含有量の異なる原料生遅
延コークスと、軟化点および固定炭素量の違うピ
ツチを用いて求めたものである。即ち、ある特定
の原料生遅延コークスに対し、バインダーピツチ
の添加量を徐々に増加させて行き、最高の結果を
示すピツチの添加量に相当する値をプロツトした
ものである。これ以上のバインダーピツチの添加
は焼成時に成型品が発泡による膨れ、または半融
による変形を生じ好ましくない。バインダーピツ
チの添加量は最小は5%である。より少い添加で
は製品の強度あるいは電気伝導性の向上はあまり
期待できない上、製品が不均質になりやすい。 本発明の方法では原料生遅延コークスにピツチ
を加え、混合しながら平均粒径100μ以下に微粉
砕して成型材料にすることを1つの特徴としてい
る。 本発明方法で用いる原料生遅延コークスは〓焼
コークスおよび流動コークスに較べて軟質であ
り、はるかに容易に摩砕により微粉砕することが
できる。 従来この種の炭素製品の製造に当つては、単一
な粒度の粉末を用いずに適当な粒度分布を有する
粉末混合物が用いられてきた。殊にアルミニウム
電解製錬用電極の製造に関しては、その使用時の
熱衝撃に伴う崩落現象を防止するために、かなり
広い範囲の粒度分布をもたせることが行われてき
ており、このために複雑な粉砕、篩分、再配合の
工程が必要であつた。 本発明の方法においても、このような適当な粒
度分布をもたすために比較的大きな粒子を100μ
以下の微粉砕物中に配合することもできるが、本
発明の方法においては、このような異つた粒度を
有する粉末の配合は必ずしも必要ではなく、製品
の品質、性状は主として100μ以下の微粉砕物の
みによつて決定される。粒度が100μ以上では曲
げ強度および電気伝導度が低下し、また製品の品
質のバラツキも大きくなるので好ましくない。 本発明の方法で用いるバインダーピツチは、軟
化点75〜140℃で固定炭素量45〜70%のものが好
ましい。本来は固定炭素量が多いものが好ましい
が、70%を越えるものは軟化点が高くなり過ぎ、
それが高くなり過ぎると次第に生遅延コークスに
性状が似たものとなり、ピツチのようなバインダ
ーとしての性状とは異つたものになつてしまい良
い結果を与えない。また軟化点が75℃未満になる
と固定炭素量が少くなり、また添加量には(1)式で
表示される上限があるため、焼結力を高めるに充
分な量のピツチを添加できないばかりでなく、そ
の粘着性のために粉砕機に附着して障害を起しや
すい。また所要のピツチは充分芳香族性に富んだ
ものであることが望ましい。そうでなければここ
に言う程の強い焼結力をもたない。但し脂肪族性
に富んだものにあつては固定炭素量が45%以上に
なると、多くの場合に軟化点が140℃を越えるの
が普通であるので、結果的には組成分析を行わな
いでも軟化点75〜140℃で固定炭素量45〜70%の
ピツチを選択すれば、それは芳香族性に富んだも
のになるので、本発明の方法で用いるに適するこ
とになる。 また上述までの原料生遅延コークスとピツチと
を混合しながら同時粉砕するには摩砕方式の粉砕
機の使用が好ましい。それは粉砕物の混合が完全
に行いやすいと同時に、粉砕時にピツチが軟化
し、原料生遅延コークスに密着し粒子状に被覆を
形成する傾向があるため、均質な保型性の良い炭
素材料を作りやすいからである。摩砕方式の粉砕
機にはエツジランナー、リングロールミル等があ
る。 更に本発明の方法では原料生遅延コークスに少
量の〓焼コークスまたは使用し残りの炭素電極あ
るいは各種廃炭素材料を混ぜて使用することもで
きる。その場合には、その混合量が増すにつれて
強度が低下することは避けられないので、混合量
は原料生遅延コークス量の1/4以下が好ましく、
1/6以下とするのが更に好ましい。この焼成ずみ
の炭素材料を混合使用する際のバインダーピツチ
添加量の上限は全重量が同質の原料生遅延コーク
スである場合の(1)式で求められる値になる。即
ち、加えるピツチの量は用いる原料生遅延コーク
スの性状によつて定り、このように付加的に配合
される炭素製品粉末の質および量によつては左右
されない。焼成ずみの原料を混ぜていることを考
慮してピツチを多く加え、(1)式で求められる値以
上にすると原料生遅延コークスに対するピツチの
量が多くなりすぎ、既述のような焼成時の発泡に
よる膨れまたは半融による変形を生ずる。 既述した通り、揮発分量15.0%以上の生遅延コ
ークスは焼成すると発泡、変形することが知られ
ており、また〓焼コークスから炭素製品を作る際
に用いられるバインダーピツチの使用量も全量に
対する揮発分量で表示した場合、上記の知見に沿
う量そして通常は10.0%程度であつた。それに対
し、本発明方法では全量に対して揮発分を約16.0
〜19.0wt%の割合で含むようにバインダーピツチ
と配合されたものが最適の結果を与えるものであ
り、換言するならば従来は発泡、変形すると考え
られて来た範囲内の揮発分に相当する揮発分を与
える量のピツチの配合を規定している。このこと
は原料生遅延コークス中の揮発分と、粘結剤とし
て加えるバインダーピツチの揮発分とは均等でな
いことを意味するものと解される。 本発明方法の実施に際して用いられる焼成温度
は1100〜1400℃が好ましく、昇温速度は3〜20
℃/hrの範囲内とするのが好ましい。また黒鉛化
温度としては、好ましくは2500〜3000℃の範囲内
の温度が採用される。 以下に具体的な実験例を掲げて本発明の構成お
よび効果を説明するが、これらは単に説明の便宜
上例示するものであつて、本発明はこれらによつ
て限定されるものと解されるべきではない。 例 1 揮発分量8.2%の原料生遅延コークスに軟化点
87℃で固定炭素量58%のコールタールピツチを全
量に対して0、3.0、5.0、10.0、19.0、23.2およ
び26.1%加え、エツジランナーで混合しながら摩
砕により平均粒径35μに微粉砕した。この原料生
遅延コークスに対するピツチ添加の上限は
VCM(nax)表示で16.3%であり、それに相当する
ピツチ添加量は24.0%である。その微粉砕物2Kg
を20×12cm角の金型にとり、300Kg/cm2に加圧して
厚さ7.2〜7.4cmの成型体を得た。それを常法のよ
うにして10℃/hrで温度上昇し、1200℃に3時間
保持した後、300℃附近まで冷却し取り出した。
得られた炭素材料は均質であり、その特性は表1
のようであつた。
The present invention relates to a method for manufacturing carbon products, and more specifically, it involves adding pitch to a specific raw retarded coke in an amount suitable for its properties, mixing it uniformly and simultaneously crushing it, and then molding it into powder according to a conventional method. , relates to a method for producing a carbon material characterized by firing or graphitizing it. Hereinafter, in this specification, raw retarded coke alone is finely pulverized to an average particle size of 100μ or less, molded according to a conventional method without adding a binder, and when fired, it foams and expands or becomes semi-molten. Raw retarded coke that sinters without deformation is referred to as raw retarded coke, and raw retarded coke is finely ground to an average particle size of 100μ or less and molded according to a conventional method without adding a binder. To differentiate, raw retarded coke that foams and expands or half-melts and deforms when fired is referred to as crude retarded coke, and raw retarded coke is referred to in general terms as raw retarded coke. . Furthermore, the term "raw coke" is used to include not only raw retarded coke but also other raw cokes obtained by coal carbonization. The feature of this method is that the raw retarded coke is used without being burned, which saves the energy and cost required for burning in the conventional method. It requires time and effort to add and knead for 1 to 2 hours while heating to 140 to 160°C.The combination process and subsequent cooling process are unnecessary.
The goal is to be able to economically produce products with properties that are equal to or better than conventional carbon products. In the production of such carbon products, in the prior art, calcined coke has been used without using live retarded coke. The reason for this is not necessarily clear, but molded products made from raw retarded coke shrink significantly during firing, resulting in deformation or frequent firing cracks, making it difficult to stably produce carbon products of a certain shape and quality at a high yield. This is thought to be due to the inability to do so. Conventionally, in an attempt to make carbon material from raw coke, it was proposed to obtain high-density carbon material by pulverizing raw coke to an average particle size of 10μ or less, molding it under high pressure, and then firing it. has been done. However, pulverizing the particles to an average particle size of 10μ or less requires considerable expense, and the pressure required for molding becomes higher as the particles become smaller, making it difficult to obtain large molded bodies. ,
Although this method can be used as a method for producing expensive high-density, high-strength carbonaceous materials, it cannot be applied to the production of inexpensive, mass-consumed aluminum electrolytic smelting electrodes, carbon bricks, graphite electrodes, etc. The inventors of the present invention have conducted extensive research over many years to determine whether it is possible to directly manufacture carbon products from raw retarded coke without going through the process of calcination, which requires a large amount of heating energy. Even raw retarded coke, which has a large firing shrinkage, is mixed with an amount of pitch suitable for its properties, mixed uniformly and pulverized at the same time, and pulverized to an average particle size of 100μ or less, molded, and sintered or graphite. It was found that the carbon material shrinks almost uniformly and that good quality carbon materials can be produced at a high yield. In other words, according to the method of the present invention, an appropriate amount of binder pitch is added to raw retarded coke of various raw materials with different sintering powers, and the average particle size is adjusted while mixing.
After crushing to 100μ or less, mold it according to the conventional method,
We have discovered that by firing or graphitizing, it is possible to inexpensively produce high-quality carbon materials with properties suitable for carbon bricks, aluminum electrolytic smelting electrodes, graphite electrodes, metallurgical materials, etc. In other words, the gist of the present invention is to finely grind raw retarded coke to an average particle size of 100μ or less, mold it according to a conventional method without adding a binder, and foam and expand or semi-melt when fired. A binder pitch with a softening point of 75 to 140°C and a fixed carbon content of 45 to 70% is added to the raw retarded coke, which sinteres without deformation, at 5 wt% of the total amount and the volatile content determined by equation (1). Add in the required amount and simultaneously crush while mixing to make a fine powder with an average particle size of 100μ or less,
A method for producing a carbon material, which comprises molding it according to a conventional method and firing or graphitizing it. VCM (nax) = 0.39 × VCM (gc) + 13.1 (1) [In the formula, VCM (nax) is the upper limit (wt%) of the volatile content of the mixture of raw raw retarded coke and pituti, and VCM ( gc) is the volatile content (wt%) of the raw raw retarded coke, and is 7≦VCM (gc) ≦15. The properties of raw retarded coke vary significantly depending on the manufacturer or production plant, and if it is finely ground and then molded and fired, it becomes a carbon material, so it has a certain degree of shape retention, so it should be handled with care. Although it is possible to embed it in gas coke granules (breeze) and sinter it using the usual method, the sintering force is too weak to make a good carbon material, or the adhesive force is weak and the shape retention is poor when used alone. There are various types, including those that cannot be molded. This remarkable difference in adhesive strength and sintering force is due to the difference in the amount of volatile matter in the raw retarded coke due to differences in both the retarded coking conditions and the properties of the feedstock oil, and the difference in the amount of volatile matter in the raw retarded coke, which is the main component that generates the volatile matter. This is due to the differences in the properties of the pitch-like compound and the properties of the highly coked portion, which is a large component in raw retarded coke. The adhesive force is generally stronger when the raw retarded coke has a large volatile content, but it cannot be said that the sintering force, which means the strength of sintering, is simply stronger when the volatile content is large.
The sintering force referred to here is a practical one that is expressed as the strength of the carbon material obtained by molding and firing a finely pulverized raw retarded coke. The bulk specific gravity of the fired product decreases, and if this is significant, the strength of the fired product becomes weak even if the bonding force between particles is strong. The sintering power of such raw retarded coke is practically weak. In addition, if there are bubbles in the carbon material of the product, it will be a practical limitation, and if it is deformed during firing, the yield will decrease even if it is shaped in post-processing, leading to an increase in costs. For this reason, the sintering power of raw retarded coke should be limited to a range in which it does not foam and swell to a visible degree during firing, or half-melt and deform, and within this range, the volatile content is high. Generally stronger. As mentioned above, the raw raw retarded coke that can be used as a raw material in the method of the present invention is obtained by finely pulverizing the coke to an average particle size of 100μ or less, molding and firing by a conventional method, that is, 200Kg/cm 2 or more. When molded under the required pressure and fired at 1000°C or higher, it must be able to sinter into a carbon material without foaming, expanding, or melting and deforming.
As the raw retarded coke mentioned here, not only petroleum-based coke but also coal tar-based coke can be used. This expansion due to foaming during firing or deformation due to half-melting is due to the presence of too much volatile matter in the raw retarded coke, or the strong organic character of the part with a crystal structure similar to graphite, which is the main component of the raw retarded coke. etc. This is what happens because of things like. but,
Whether or not retarded coke causes the above-mentioned unfavorable phenomena during firing cannot be determined simply by the amount of volatile matter, the amount of fractionated solvent components, the average elemental analysis value, or a combination of these factors. The reason for this is that the main component in raw retarded coke that generates volatile matter is a pitch-like substance, but even if the volatile content is almost the same, the molecular weight distribution and chemical structure of the pitch-like substance depend on the properties of the feedstock oil and the retarded coke. This is because the properties of the portion having a crystal-like structure, which is the main component of raw retarded coke, vary markedly depending on the properties of the raw material oil and the retarded coking conditions. Therefore,
Not only their proportions but also the combination of their properties determine the properties of raw retarded coke, so its overall properties are influenced by a complex combination of many factors. For example, while there is crude retarded coke with a volatile content of 9.8% that causes the above-mentioned half-melting phenomenon, there is also a crude retarded coke with a volatile content of 14.5% that is suitable as raw material raw retarded coke for the method of the present invention. be. Therefore, it is necessary to determine experimentally whether a particular material can be used as raw raw retarded coke in the method of the present invention. Generally, raw retarded coke has a volatile content of 8 to 15%, some as high as 7%. The above-mentioned foaming or semi-melting is not found in those with a volatile content of 8% or less. Therefore, it goes without saying that raw retarded coke with a volatile content of 8% or less can be used as raw material raw retarded coke for use in the method of the present invention, and even raw retarded coke with a volatile content of 8 to 15% can be used in the coking drum. In many cases, the raw retarded coke collected from the lower side and near the wall surface of the coke can be directly used as the raw retarded coke used in the method of the present invention.
Products with a volatile content of more than 15% are not commercially available, but certain parts of the delayed coking drum, such as the upper part, especially near the center, have a volatile content of more than 15%, and some contain more than 20%. There is even. A crude retarded coke containing such a large amount of volatile matter causes the above-mentioned foaming and slugging phenomena and cannot be used as it is as a raw material for the process of the present invention. This foamed and semi-melted coarse raw retarded coke can be used by mixing a small amount with a suitable raw material raw retarded coke.
Preferably, the volatile content is reduced to an appropriate amount before it is used as a raw material. The volatile content can be reduced by external heating to 400 to 500° C. in an inert atmosphere, by heating through superheated steam, or by solvent extraction. However, although the method of heating from the outside is simple, it tends to cause local heating, so it is preferable to employ the other two methods. For example, when raw retarded coke with a volatile content of 9.8% and causing the above-mentioned half-melting phenomenon is heated in superheated steam to 430°C for one hour, the volatile content drops to 8.8% and no longer exhibits the half-melting phenomenon. It has become suitable as a raw material for the method of the present invention. When the heating time was increased further or the heating temperature was increased, the volatile content further decreased and the sintering power became weaker. Also, volatile content
19.8% crude retarded coke causes a remarkable foaming phenomenon as it is, but when it is heated in 10 times the amount of xylene at 120℃
The volatile matter is heated for 2 hours to extract the soluble matter.
At 13.2%, the sintering force was strong. In addition, raw retarded coke with a volatile content of 15.0%, which has a strong sintering power as it is, was similarly extracted with xylene. The treated raw retarded coke had a volatile content of 11.0%, and its sintering power was significantly weaker than that of the untreated one. From these facts, it can be seen that there is an upper limit to the amount of volatile matter that does not cause the above-mentioned foaming or half-melting phenomenon, but the upper limit varies significantly depending on the production conditions of raw retarded coke. In the method of the present invention, binder pitch is added to the raw retarded coke that satisfies the above conditions based on the total amount.
It is an essential constituent requirement to add an amount within the range of 5wt% to the amount equivalent to the value specified by formula (1) below. VCM (nax) = 0.39 × VCM (gc) + 13.1 (1) [In the formula, VCM (nax) is the upper limit (wt%) of the volatile content of the mixture of raw raw retarded coke and pituti, and VCM ( gc) is the volatile content (wt%) of raw raw retarded coke, and 7≦VCM (gc) ≦15]. The upper limit of the volatile content [VCM (nax) ] in equation (1) is determined using raw retarded coke with different volatile content and pitches with different softening points and fixed carbon contents as shown in the attached Figure 1. It is something that That is, the amount of binder pitch added to a specific raw retarded coke was gradually increased, and the value corresponding to the amount of pitch added that gave the best result was plotted. If more binder pitch is added than this, the molded product will swell due to foaming or deform due to sluggishness during firing, which is not preferable. The minimum amount of binder pitch added is 5%. If a smaller amount is added, it is not possible to expect much improvement in the strength or electrical conductivity of the product, and the product is likely to become non-uniform. One feature of the method of the present invention is that pitch is added to raw retarded coke and, while mixing, is pulverized to an average particle size of 100 μm or less to form a molding material. The raw retarded coke used in the process of the present invention is softer than burnt coke and fluidized coke and can be much more easily pulverized by grinding. Conventionally, in the production of this type of carbon product, a powder mixture having an appropriate particle size distribution has been used instead of using powder of a single particle size. Particularly in the production of electrodes for aluminum electrolytic smelting, in order to prevent the collapse phenomenon caused by thermal shock during use, it has been necessary to have a particle size distribution in a fairly wide range, and for this reason, complex The steps of crushing, sieving, and re-blending were necessary. In the method of the present invention, relatively large particles of 100 μm are used in order to obtain such an appropriate particle size distribution.
Although it can be blended into the following finely pulverized materials, in the method of the present invention, it is not necessarily necessary to blend powders with such different particle sizes, and the quality and properties of the product are mainly determined by finely pulverized particles of 100μ or less. Determined only by things. If the particle size is 100 μm or more, the bending strength and electrical conductivity will decrease, and the quality of the product will vary widely, which is not preferable. The binder pitch used in the method of the present invention preferably has a softening point of 75 to 140°C and a fixed carbon content of 45 to 70%. Originally, it is preferable to have a large amount of fixed carbon, but if it exceeds 70%, the softening point will be too high.
If it becomes too high, the properties gradually become similar to raw retarded coke and differ from those of a binder such as pitch, which does not give good results. Furthermore, when the softening point is less than 75℃, the amount of fixed carbon decreases, and there is an upper limit to the amount of addition expressed by equation (1), so it is not possible to add a sufficient amount of pitch to increase the sintering force. Because of its stickiness, it tends to stick to the crusher and cause problems. It is also desirable that the required pitch be sufficiently aromatic. Otherwise, it would not have the strong sintering power mentioned here. However, in the case of materials with high aliphatic properties, when the amount of fixed carbon exceeds 45%, the softening point usually exceeds 140°C, so as a result, compositional analysis may not be necessary. If a pitch is selected with a softening point of 75-140°C and a fixed carbon content of 45-70%, it will be rich in aromaticity and therefore suitable for use in the method of the present invention. Further, it is preferable to use a grinding type pulverizer to simultaneously grind the raw raw retarded coke and pitch as described above while mixing them. This makes it easy to completely mix the pulverized materials, and at the same time, the pitch tends to soften during pulverization and adhere to the raw raw retarded coke to form a coating in the form of particles, creating a homogeneous carbon material with good shape retention. This is because it is easy. Grinding mills include edge runners and ring roll mills. Furthermore, in the method of the present invention, a small amount of calcined coke, used carbon electrodes, or various waste carbon materials can be mixed with raw retarded coke. In that case, it is inevitable that the strength will decrease as the mixing amount increases, so the mixing amount is preferably 1/4 or less of the amount of raw raw retarded coke,
More preferably, it is 1/6 or less. The upper limit of the amount of binder pitch added when this calcined carbon material is mixed and used is the value determined by equation (1) when the total weight is homogeneous raw retarded coke. That is, the amount of pitch added depends on the properties of the raw raw retarded coke used, and is not affected by the quality and quantity of the carbon product powder that is additionally blended. If you add a large amount of pitch considering that you are mixing raw materials that have already been fired, and the value exceeds the value calculated by equation (1), the amount of pitch will be too large compared to the raw raw retarded coke, which will cause problems during firing as described above. This causes swelling due to foaming or deformation due to half-melting. As mentioned above, raw retarded coke with a volatile content of 15.0% or more is known to foam and deform when fired, and the amount of binder pitch used when making carbon products from burned coke is also higher than the total amount of volatilization. When expressed in terms of quantity, the amount was in line with the above findings and was usually around 10.0%. In contrast, the method of the present invention reduces the volatile content to about 16.0% of the total amount.
A mixture containing ~19.0wt% with binder pitch gives the best results; in other words, it corresponds to the volatile content within the range that was conventionally thought to cause foaming and deformation. It specifies the amount of pitch that provides volatile content. This is understood to mean that the volatile content in the raw raw retarded coke and the volatile content in the binder pitch added as a caking agent are not equal. The firing temperature used in carrying out the method of the present invention is preferably 1100 to 1400°C, and the heating rate is 3 to 20°C.
It is preferably within the range of °C/hr. Further, as the graphitization temperature, a temperature within the range of 2500 to 3000°C is preferably adopted. The structure and effects of the present invention will be explained below using specific experimental examples, but these are merely illustrative for the convenience of explanation, and it should be understood that the present invention is limited by these. isn't it. Example 1 Softening point of raw retarded coke with volatile content of 8.2%
At 87°C, 0, 3.0, 5.0, 10.0, 19.0, 23.2, and 26.1% of coal tar pitch with a fixed carbon content of 58% was added to the total amount, and the mixture was ground to an average particle size of 35μ while being mixed with an edge runner. . The upper limit of adding pitch to this raw retarded coke is
It is 16.3% in VCM (nax) , and the corresponding amount of pitch added is 24.0%. 2Kg of finely pulverized material
was placed in a 20×12 cm square mold and pressurized to 300 Kg/cm 2 to obtain a molded product with a thickness of 7.2 to 7.4 cm. The temperature was raised at a rate of 10°C/hr in the usual manner, and after being held at 1200°C for 3 hours, it was cooled to around 300°C and taken out.
The obtained carbon material is homogeneous, and its properties are shown in Table 1.
It was like that.

【表】 尚、ピツチ添加量0、3.0、26.1の実験は比較
のための実験である。 例 2 揮発分8.9%の原料生遅延コークスに例1で用
いた軟化点87℃のコールタールピツチを全量に対
して20%(全揮発分量15.5%、VCM(nax)16.6
%)加え、混合しながら摩砕により種々の平均粒
径に微粉砕したものから例1と同様にして炭素材
料を作つた。その特性を表2に示す。
[Table] The experiments with pitch addition amounts of 0, 3.0, and 26.1 are for comparison. Example 2 Coal tar pitch with a softening point of 87°C used in Example 1 was added to raw retarded coke with a volatile content of 8.9% at 20% of the total amount (total volatile content 15.5%, VCM (nax) 16.6
%) was added and ground to various average particle sizes by grinding while mixing, and carbon materials were prepared in the same manner as in Example 1. Its characteristics are shown in Table 2.

【表】 尚、粒径150μの実験は比較のための実験であ
る。 例 3 揮発分量(A)14.5%および(B)8.9%の原料生遅延
コークスに軟化点87℃で固定炭素量58%のピツチ
を全量に対してそれぞれ14.5%および20.0%加え
〔両遅延コークスのVCM(nax)はそれぞれ18.8%お
よび16.6%であり、ピツチ添加物の全揮発分量は
それぞれ18.5%および15.5%である〕、例1と同
様に同時粉砕して平均粒径35μの微粉末を得、こ
れを例1と同様にして炭素材料を作つた。得られ
た炭素材料の特性は表3のようであつた。尚、比
較のため従来品および規格値も示した。
[Table] Note that the experiment with a particle size of 150μ is for comparison. Example 3 Pitch with a softening point of 87°C and a fixed carbon content of 58% was added to 14.5% and 20.0% of the total amount of raw retarded coke with volatile content (A) 14.5% and (B) 8.9% [of both retarded cokes] The VCM (nax) were 18.8% and 16.6%, respectively, and the total volatile content of the pitch additive was 18.5% and 15.5%, respectively], and were simultaneously crushed in the same manner as in Example 1 to obtain a fine powder with an average particle size of 35μ. A carbon material was produced in the same manner as in Example 1. The properties of the obtained carbon material were as shown in Table 3. For comparison, conventional products and standard values are also shown.

【表】【table】

【表】 例 4 揮発分量14.5%の原料生遅延コークスに(A)軟化
点80℃で固定炭素量50%のコールタールピツチお
よび(B)軟化点138℃で固定炭素量69%の石油ピツ
チを揮発分量の上限18.8%に相当する量だけ加
え、例1と同様にして平均粒径35μに微粉砕し
た。両者の添加量は全量に対してそれぞれ12.1%
および26.1%である。その微粉砕物から例1と同
様にして炭素材料を作つた。その特性は表4のよ
うであつた。
[Table] Example 4 Raw retarded coke with a volatile content of 14.5% is mixed with (A) coal tar pitch with a softening point of 80°C and a fixed carbon content of 50% and (B) petroleum pitch with a softening point of 138°C and a fixed carbon content of 69%. An amount corresponding to the upper limit of 18.8% of the volatile content was added, and the mixture was pulverized in the same manner as in Example 1 to an average particle size of 35 μm. The amount of both added is 12.1% each of the total amount.
and 26.1%. A carbon material was produced from the finely pulverized material in the same manner as in Example 1. Its characteristics were as shown in Table 4.

【表】 例 5 揮発分12.1%の原料生遅延コークスに各種類の
コールタールピッチを全揮発分量が上限
VCM(nax)になるように加え、例1と同様にして
平均粒径35μに微粉砕し、例1と同様にして炭素
材料を作つた。その結果は表5のようであつた。
[Table] Example 5 Adding various types of coal tar pitch to raw raw retarded coke with a volatile content of 12.1% at the upper limit of the total volatile content
VCM (nax) was added and finely pulverized to an average particle size of 35μ in the same manner as in Example 1, to produce a carbon material in the same manner as in Example 1. The results were as shown in Table 5.

【表】 例 6 揮発分量8.2%の原料生遅延コークスに、この
コークスに対して1/6重量部の粗砕した廃炭素材
料を加え、さらにはその混合物に対して23%の軟
化点87℃、固定炭素58%のピツチを加え、混合し
ながら平均粒径30μに粉砕した。この粉砕物を実
施例1と同様にして炭素材を作つた。 得られた炭素材料の嵩比重1.44、曲げ強度420
Kg/cm2、固有抵抗4400μΩ−cmであつた。
[Table] Example 6 Raw retarded coke with a volatile content of 8.2% is added with 1/6 part by weight of coarsely crushed waste carbon material based on the coke, and the softening point of the mixture is 23% at 87°C. , Pitch containing 58% fixed carbon was added and ground to an average particle size of 30μ while mixing. A carbon material was produced from this pulverized product in the same manner as in Example 1. The obtained carbon material has a bulk specific gravity of 1.44 and a bending strength of 420.
Kg/cm 2 and a specific resistance of 4400 μΩ-cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最適な結果を与える揮発分量のグラフ
であり、縦軸は原料組成物の全量に対する揮発分
量の%、そして横軸は原料生遅延コークス中の揮
発分量の%である。
FIG. 1 is a graph of the amount of volatile matter that gives optimal results, where the vertical axis is the percentage of volatile matter relative to the total amount of the raw material composition, and the horizontal axis is the percentage of volatile matter in the raw raw retarded coke.

Claims (1)

【特許請求の範囲】 1 生遅延コークス単味を平均粒径100μ以下に
微粉砕し、粘結剤を加えることなく常法に従つて
成型し、焼成した際発泡して膨脹し、あるいは半
融して変形することなく焼結する原料生遅延コー
クスに軟化点75〜140℃でかつ固定炭素量45〜70
%のバインダーピツチを全量に対して5wt%と(1)
式で求められる揮発分量を与えるに必要な量との
範囲で加え、混合しながら同時粉砕して平均粒径
100μ以下の微粉末にし、それを常法に従つて成
型し、焼成ないし黒鉛化することからなる炭素材
料の製造方法 VCM(nax)=0.39×VCM(gc)+13.1 (1) 〔式中VCM(nax)は原料生遅延コークスとピツチ
との混合物の揮発分含有量の上限(重量%)であ
り、VCM(gc)は原料生遅延コークスの揮発分含
有量(重量%)であり、7≦VCM(gc)≦15であ
る〕。 2 原料生遅延コークスの揮発分量が8〜15wt
%である特許請求の範囲第1項に記載の方法。 3 粉砕が摩砕により行われる特許請求の範囲第
1項または第2項に記載の方法。 4 焼成温度が1100〜1400℃である特許請求の範
囲第1項ないし第3項のいずれかに記載の方法。 5 黒鉛化温度が2500〜3000℃である特許請求の
範囲第1項ないし第4項のいずれかに記載の方
法。 6 焼成のための昇温を平均3〜20℃/hrの割合
で行う特許請求の範囲第1項ないし第5項のいず
れかに記載の方法。 7 生遅延コークス単味を平均粒径100μ以下に
微粉砕し、粘結剤を加えることなく常法に従つて
成型し、焼成した際発泡して膨脹し、あるいは半
融して変形する粗生遅延コークスを粗原料としそ
の揮発分量を低下させる操作により上記の条件で
発泡して膨脹し、あるいは半融して変形すること
のない原料生遅延コークスを製し、これに軟化点
75〜140℃でかつ固定炭素量45〜70%のバインダ
ーピツチを全量に対して5wt%と(1)式で求められ
る揮発分量を与えるに必要な量との範囲で加え、
混合しながら同時粉砕して平均粒径100μ以下の
微粉末にし、それを常法に従つて成型し、焼成な
いし黒鉛化することからなる炭素材料の製造方
法。 VCM(nax)=0.39×VCM(gc)+13.1 (1) 〔式中VCM(nax)は原料生遅延コークスとピツチ
との混合物の揮発分含有量の上限(重量%)であ
り、VCM(gc)は原料生遅延コークスの揮発分含
有量(重量%)であり、7≦VCM(gc)≦15であ
る〕。 8 揮発分量を低下させる操作が外部加熱である
特許請求の範囲第7項に記載の方法。 9 揮発分量を低下させる操作が不活性ガスによ
る内部加熱である特許請求の範囲第7項に記載の
方法。 10 揮発分量を低下させる操作が溶剤抽出であ
る特許請求の範囲第7項に記載の方法。
[Scope of Claims] 1 Raw retarded coke alone is finely pulverized to an average particle size of 100μ or less, molded according to a conventional method without adding a binder, and when fired, it foams and expands or becomes semi-molten. Raw retarded coke, which is sintered without deformation, has a softening point of 75 to 140℃ and a fixed carbon content of 45 to 70.
% binder pitch with 5wt% of the total amount (1)
Add the amount necessary to give the volatile content determined by the formula, and grind simultaneously while mixing to determine the average particle size.
A method for manufacturing carbon materials, which consists of making a fine powder of 100μ or less, molding it according to a conventional method, and firing or graphitizing it.VCM (nax) = 0.39 × VCM (gc) + 13.1 (1) [In the formula 7 _ ≦VCM (gc) ≦15]. 2 The volatile content of raw raw retarded coke is 8 to 15wt
%. 3. The method according to claim 1 or 2, wherein the pulverization is carried out by grinding. 4. The method according to any one of claims 1 to 3, wherein the firing temperature is 1100 to 1400°C. 5. The method according to any one of claims 1 to 4, wherein the graphitization temperature is 2500 to 3000°C. 6. The method according to any one of claims 1 to 5, wherein the temperature for firing is increased at an average rate of 3 to 20°C/hr. 7 Raw retarded coke that is finely pulverized to an average particle size of 100μ or less, molded according to a conventional method without adding a binder, and foams and expands or semi-melts and deforms when fired. By using retarded coke as a crude raw material and reducing its volatile content, raw retarded coke that foams and expands under the above conditions or half-melts and does not deform is produced, and this is given a softening point.
Add binder pitch at 75 to 140°C and with a fixed carbon content of 45 to 70% in the range of 5 wt% to the total amount and the amount necessary to give the volatile content determined by equation (1),
A method for producing a carbon material, which consists of mixing and simultaneously pulverizing the powder to a fine powder with an average particle size of 100μ or less, molding it according to a conventional method, and firing or graphitizing it. VCM (nax) = 0.39 × VCM (gc) + 13.1 (1) [In the formula, VCM (nax) is the upper limit (wt%) of the volatile content of the mixture of raw raw retarded coke and pituti, and VCM ( gc) is the volatile content (wt%) of raw raw retarded coke, and 7≦VCM (gc) ≦15]. 8. The method according to claim 7, wherein the operation for reducing the volatile content is external heating. 9. The method according to claim 7, wherein the operation for reducing the volatile content is internal heating with an inert gas. 10. The method according to claim 7, wherein the operation for reducing the volatile content is solvent extraction.
JP55120135A 1980-08-30 1980-08-30 Preparation of carbonaceous material Granted JPS5744697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55120135A JPS5744697A (en) 1980-08-30 1980-08-30 Preparation of carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55120135A JPS5744697A (en) 1980-08-30 1980-08-30 Preparation of carbonaceous material

Publications (2)

Publication Number Publication Date
JPS5744697A JPS5744697A (en) 1982-03-13
JPS6124326B2 true JPS6124326B2 (en) 1986-06-10

Family

ID=14778826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55120135A Granted JPS5744697A (en) 1980-08-30 1980-08-30 Preparation of carbonaceous material

Country Status (1)

Country Link
JP (1) JPS5744697A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033208A (en) * 1983-07-20 1985-02-20 Nippon Steel Corp Method for reducing puffing of graphite electrode
JPS60171849U (en) * 1984-04-20 1985-11-14 株式会社吉野工業所 container with lid
JP2655742B2 (en) * 1990-07-16 1997-09-24 工業技術院長 Tapered carbon microelectrode and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5744697A (en) 1982-03-13

Similar Documents

Publication Publication Date Title
KR101209465B1 (en) Modification of coal using palm residue
JP2012184125A (en) Method for producing carbon material
US3619376A (en) Method of making metallurgical coke briquettes from coal, raw petroleum coke, inert material and a binder
JPH1192833A (en) Agglomerate for reduced iron and its production
JPS6124326B2 (en)
EP0157586A2 (en) A method for producing sintered silicon carbide articles
JPH0714804B2 (en) Method for producing high-density isotropic carbon material
US5283045A (en) Sinterable carbon powder and method of its production
US3043753A (en) Manufacture of dense coherent carbon masses
US3460907A (en) Manufacture of coke and low cte graphite from petroleum derived feed materials
JPS638158B2 (en)
JP2910002B2 (en) Special carbon material kneading method
JPS5858284B2 (en) Tansozaino Seizouhouhou
JPS59174511A (en) Manufacture of carbon green product
JPH0132162B2 (en)
US4272324A (en) Process for producing shaft furnace cokes
JPH0158125B2 (en)
KR100206495B1 (en) Method for caking of tar sludge and method of coke from caking tar sludge
US3197395A (en) Carbon electrodes
KR100299446B1 (en) Manufacturing method of raw coke material using fine coke dust
JPH0364448B2 (en)
JPS6213284B2 (en)
RU2096319C1 (en) Method for producing carbon articles having controllable characteristics and porous structure
US9751764B2 (en) Carbon material production method and carbon material
JP2924062B2 (en) Production method of raw material powder for carbon material