JPS61243137A - Manufacture of cobalt alloy containing boron - Google Patents

Manufacture of cobalt alloy containing boron

Info

Publication number
JPS61243137A
JPS61243137A JP8185885A JP8185885A JPS61243137A JP S61243137 A JPS61243137 A JP S61243137A JP 8185885 A JP8185885 A JP 8185885A JP 8185885 A JP8185885 A JP 8185885A JP S61243137 A JPS61243137 A JP S61243137A
Authority
JP
Japan
Prior art keywords
boron
amount
calcium
boron oxide
cobalt alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185885A
Other languages
Japanese (ja)
Inventor
Yasuto Nozawa
野沢 康人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8185885A priority Critical patent/JPS61243137A/en
Publication of JPS61243137A publication Critical patent/JPS61243137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an inexpensive cobalt alloy contg. boron and little impurities by adding boron oxide and a specified amount of calcium to molten cobalt, reducing the boron oxide, and lowering the calcium content in the molten under reduced pressure. CONSTITUTION:Boron oxide and calcium by an amount 0.9-1.5 times the amount required to reduce all of the boron oxide are added to molten cobalt or a molten cobalt alloy. The amount of calcium required to reduce boron oxide is about 3mol per 1mol B2O3. After the boron oxide is reduced, the remaining calcium in the molten metal is evaporated at >=1,368K temp. under reduced pressure to lower the calcium content.

Description

【発明の詳細な説明】 本発明は、ホウ素含有コバルト合金の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a boron-containing cobalt alloy.

近縁、非晶質合金及び希土類磁石の原料としてホウ素を
含有する強磁性合金が求められてきている。
Closely related amorphous alloys and ferromagnetic alloys containing boron are being sought as raw materials for rare earth magnets.

従来の製造方法は単体ホウ素を強磁性合金に添加する方
法と、溶湯中でホウ素酸化物をAtや炭素によって還元
する方法に分けられる。このうち前者の方法は単体ホウ
素が高価であるが不純物が少ないという長所があ〕J後
者の方法は安価であるが不純物として還元剤であるAj
や炭素を含むため用途が限られてしまう欠点がある。
Conventional manufacturing methods can be divided into a method in which elemental boron is added to a ferromagnetic alloy and a method in which boron oxide is reduced with At or carbon in a molten metal. Among these methods, the former method has the advantage that elemental boron is expensive but has few impurities.The latter method is cheap but contains reducing agent as an impurity.
It has the disadvantage that its uses are limited because it contains carbon and carbon.

本発明は、不純物の少ない安価なホウ素含有コバルト合
金の製造方法を提供することを目的とする。
An object of the present invention is to provide an inexpensive method for producing a boron-containing cobalt alloy with few impurities.

本発明は、ホウ素の酸化物とホウ素の全量還元に必要な
量の0.9倍以上1.5倍以下のカルシウムを溶融状態
のコバル゛トあるいはコバルト合金に投入し、ホウ素の
酸化物を還元し、その後に減圧することによ〕溶湯中の
カルシウム量を減少させることを特徴とするホウ素含有
コバルト合金の製造方法を開示する。
In the present invention, boron oxide and calcium in an amount of 0.9 to 1.5 times the amount required for reducing the total amount of boron are added to molten cobalt or cobalt alloy to reduce boron oxide. Disclosed is a method for producing a boron-containing cobalt alloy, characterized in that the amount of calcium in the molten metal is reduced by reducing the pressure and then reducing the pressure.

本発明は、還元剤であるCaが溶湯中に不純物として残
る量を減らすために、溶湯を減圧する方式をとった0す
なわち、蒸気圧が10 Torrになる温度は、Co、
B、Ca[ついてそれぞれ2400K。
The present invention employs a method of reducing the pressure of the molten metal in order to reduce the amount of Ca, which is a reducing agent, remaining as an impurity in the molten metal.
B, Ca [2400K each.

3100に、1250にであシ、Co−Bの共晶点であ
る1368に以上の温度において減圧することにより、
Caは容易に蒸発することを見出し、本発明に到った。
By reducing the pressure at a temperature of 3100, 1250, and 1368, which is the eutectic point of Co-B,
It was discovered that Ca evaporates easily, leading to the present invention.

これに対し、AA、Cを用いた方法ではAt 、 Cの
蒸気圧が10 Torr Kなる温度は2100に、3
400にと非常に高いために減圧による不純物の減少は
期待できない。
On the other hand, in the method using AA and C, the temperature at which the vapor pressure of At and C becomes 10 Torr K is 2100 and 3
400, which is extremely high, so it cannot be expected that impurities will be reduced by reducing the pressure.

本発明は以下の化学反応に基いている。The invention is based on the following chemical reaction.

BzO3+ 30a →2B + 30aOよりて、B
2O,51 mol (69,61)に対してCa3m
ol(12OJ’)がホウ素の全量還元に必要な量であ
る。本発明者は、 B2O.全量が還元されれば。
From BzO3+ 30a → 2B + 30aO, B
Ca3m for 2O,51 mol (69,61)
ol(12OJ') is the amount required to reduce the total amount of boron. The present inventor has proposed B2O. If the entire amount is returned.

4 wt% B−Coとなる系において、Ca量を還元
必要量に対して、0.8 、0,9 、1,0 、1.
2 、1.4 。
In the system resulting in 4 wt% B-Co, the amount of Ca is 0.8, 0.9, 1.0, 1.
2, 1.4.

1.5,1.6倍加えた実験を行いBの収率を測定する
と、それぞれ0.71,0.83,0.91,0.92
゜0.92,0.94,0.93となった。とれに対し
て減圧前のCa量は、それぞれ0.4 、0.5 、0
.7 。
When we conducted an experiment in which B was added 1.5 and 1.6 times and measured the yield of B, the results were 0.71, 0.83, 0.91, and 0.92, respectively.
゜0.92, 0.94, 0.93. The amount of Ca before depressurization is 0.4, 0.5, 0, respectively.
.. 7.

0゜9 * 1.8−2.8−4.8 wt*となりた
。I Torrにして1時間減圧後のCa量はそれぞれ
、0.01゜0.02 、0.03 、0.07 、0
.12 、0.22,0.39wt%となりた。この実
験結果に基き、ホウ素の還元に必要なカルシウム量の0
.9倍以上1.5倍以下のカルシウム量が適当であると
判断した。
It became 0°9*1.8-2.8-4.8 wt*. The amount of Ca after reducing the pressure to I Torr for 1 hour is 0.01°0.02, 0.03, 0.07, 0, respectively.
.. 12, 0.22, and 0.39 wt%. Based on this experimental result, the amount of calcium required for boron reduction is 0.
.. It was determined that a calcium amount of 9 times or more and 1.5 times or less was appropriate.

減圧時の圧力は、低いほど良いが工業的には10−!1
Torrから10’ Torr程度が望ましい。この範
囲であれば、容易に装置を構成でき、また十分な効果を
期待できる。減圧保持時間は重要ではなく、0像圧力に
到達すれは良い。
The lower the pressure during decompression, the better, but industrially it is 10-! 1
Torr to about 10' Torr is desirable. Within this range, the device can be easily constructed and sufficient effects can be expected. The vacuum holding time is not critical, as long as zero image pressure is reached.

なお、本発明においてCo合金というのはCoを50重
量−以上含み、残シがCoと通常合金化される元素及び
不可避不純物からなる合金を言う。
In the present invention, the term "Co alloy" refers to an alloy containing at least 50% Co by weight, with the remainder consisting of elements that are normally alloyed with Co and inevitable impurities.

以下、実施例によシ本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail by way of examples.

実施例 コバルト500Iをアルミするつぼで高周波加熱によシ
大気中で溶解した。外径2O■、内径10mのコバルト
/fイデにB2O3粉末2mol、Ca粉末6molの
混合物をつめて、溶湯中でかくはんした。溶湯は激しく
反応してCaOが湯面に浮んだ。
Example Cobalt 500I was melted in an aluminum crucible by high frequency heating in the atmosphere. A mixture of 2 mol of B2O3 powder and 6 mol of Ca powder was packed into a cobalt/fide having an outer diameter of 2O and an inner diameter of 10m, and stirred in the molten metal. The molten metal reacted violently and CaO floated to the surface.

この際溶湯温度が急激に上昇しない様に、コバルトノ臂
イデは必要以上に太くしである。反応が終了した時点で
溶湯を予備加熱しであるアルミするつぼにスラグが入ら
ない様に郡しかえ・減圧した・45分で10  Tor
rK到達したので加熱をやめ、そのまま凝固させた。ホ
ウ素の収率は91%であル、マグネシウム量は0.02
wt%でありた。
At this time, in order to prevent the temperature of the molten metal from rising rapidly, the cobalt arm is made thicker than necessary. At the end of the reaction, the molten metal was preheated, regrouped and depressurized to prevent slag from entering the aluminum crucible, and heated to 10 Torr in 45 minutes.
When rK was reached, heating was stopped and solidification was continued. The yield of boron is 91%, and the amount of magnesium is 0.02%.
It was wt%.

本発明によシ、不純物の少ないホウ素含有コバルト合金
を製造することが可能になシ、産業上の利益は大きいも
のと確信する。
The present invention makes it possible to produce a boron-containing cobalt alloy with few impurities, and is believed to be of great industrial benefit.

出 願 人 日立金属株式会社Applicant: Hitachi Metals, Ltd.

Claims (1)

【特許請求の範囲】 1、ホウ素の酸化物とホウ素の全量還元に必要な量の0
.9倍以上1.5倍以下のカルシウムを溶融状態のコバ
ルトあるいはコバルト合金に投入し、ホウ素の酸化物を
還元し、その後に減圧することにより溶湯中のカルシウ
ム量を減少することを特徴とするホウ素含有コバルト合
金の製造方法。 2、上記ホウ素の還元に必要なCaの量がB_2O_3
1molに対して、約3molであることを特徴とする
特許請求の範囲第1項記載のホウ素含有コバルト合金の
製造方法。 3、上記減圧を1368K以上の温度で行うことを特徴
とする特許請求の範囲第1項記載のホウ素含有コバルト
合金の製造方法。
[Claims] 1. Boron oxide and the amount of 0 necessary for reducing the total amount of boron
.. Boron characterized by reducing the amount of calcium in the molten metal by introducing 9 times or more and 1.5 times or less calcium into molten cobalt or cobalt alloy, reducing the boron oxide, and then reducing the pressure. A method for producing a cobalt-containing alloy. 2. The amount of Ca required for the reduction of boron is B_2O_3
The method for producing a boron-containing cobalt alloy according to claim 1, wherein the amount is about 3 mol per 1 mol. 3. The method for producing a boron-containing cobalt alloy according to claim 1, wherein the pressure reduction is performed at a temperature of 1368 K or higher.
JP8185885A 1985-04-17 1985-04-17 Manufacture of cobalt alloy containing boron Pending JPS61243137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185885A JPS61243137A (en) 1985-04-17 1985-04-17 Manufacture of cobalt alloy containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185885A JPS61243137A (en) 1985-04-17 1985-04-17 Manufacture of cobalt alloy containing boron

Publications (1)

Publication Number Publication Date
JPS61243137A true JPS61243137A (en) 1986-10-29

Family

ID=13758181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185885A Pending JPS61243137A (en) 1985-04-17 1985-04-17 Manufacture of cobalt alloy containing boron

Country Status (1)

Country Link
JP (1) JPS61243137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162997A (en) * 2013-02-26 2014-09-08 Glassimetal Technology Inc Bulk nickel-phosphorus-boron glasses containing manganese

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162997A (en) * 2013-02-26 2014-09-08 Glassimetal Technology Inc Bulk nickel-phosphorus-boron glasses containing manganese

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
JPS62502319A (en) Method for refining solid materials
US4681623A (en) Process for producing alloy powder containing rare earth metals
US4269624A (en) Method for the production of non-evaporable ternary gettering alloys
US4767455A (en) Process for the preparation of pure alloys based on rare earths and transition metals by metallothermy
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JP4035323B2 (en) Purification of metallurgical grade silicon
US5259866A (en) Method for producing high-purity metallic chromium
JPS61243137A (en) Manufacture of cobalt alloy containing boron
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
JPS6311628A (en) Production of rare earth metal
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPS60145339A (en) Manufacture of cobalt alloy containing boron
JPS61243150A (en) Production of iron alloy containing boron
US3396012A (en) Recovery of silicon from alloys thereof and from silicon sulfides
JPS60145354A (en) Manufacture of iron alloy containing boron
JPS61157646A (en) Manufacture of rare earth metal alloy
US4602951A (en) Production of iron-boron-silicon composition for an amorphous alloy without using ferroboron
RU2082793C1 (en) Process for preparing hafnium
US4375371A (en) Method for induction melting
JPH0645831B2 (en) Method for melting Al-Li alloy
US3873307A (en) Process for the preparation of yttrium-silicon compounds or master alloys by silicon carbide reduction of yttria
JPS63227740A (en) Production of alloy for permanent magnet
JPS6043418A (en) Manufacture of strontium-containing ferrosilicon- or -silicon alloy
SU1710188A1 (en) Method for production of magnetic powders based on alloys of rare-earth metals with transition metals