JPS61243134A - Production of extra-low sulfur alloy - Google Patents

Production of extra-low sulfur alloy

Info

Publication number
JPS61243134A
JPS61243134A JP8407785A JP8407785A JPS61243134A JP S61243134 A JPS61243134 A JP S61243134A JP 8407785 A JP8407785 A JP 8407785A JP 8407785 A JP8407785 A JP 8407785A JP S61243134 A JPS61243134 A JP S61243134A
Authority
JP
Japan
Prior art keywords
weight
cao
alloy
mgo
low sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8407785A
Other languages
Japanese (ja)
Inventor
Toru Degawa
出川 通
Kenichi Kusumoto
楠本 研一
Makoto Ebata
江端 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8407785A priority Critical patent/JPS61243134A/en
Publication of JPS61243134A publication Critical patent/JPS61243134A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To deoxidize, desulfurize and denitrify an Al-contg. alloy by adding powder consisting essentially of MaO and CaO in a vacuum state into the molten alloy in a melting furnace lined internally with refractories contg. a specific ratio of CaO. CONSTITUTION:The powder consisting essentially of MgO and CaO is added in the vacuum or non-oxidizing atmosphere into the molten alloy contg. Al in the melting furnace or vessel lined internally with the refractories contg. >=40% CaO. The MgO-CaO powder contg. about 17-75%, more particularly about 20-60% MgO and about >=15%, more particularly about >=40% CaO is preferably and is so added that the produced alloy contains 0.03-0.0001% Mg and 0.002-0.001% Ca. The pure alloy contg. about <=15ppm S, about <=20ppm O and about <=30ppm N is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸素、硫黄ならびに窒素含有量の極めて少ない
合金の製造方法に係り、特に硫黄含有量が格段に低減さ
れた合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an alloy with extremely low contents of oxygen, sulfur and nitrogen, and particularly to a method for producing an alloy with significantly reduced sulfur content.

[従来の技術] Fe基、Co基、Ni基合金は、機械的性質。[Conventional technology] Fe-based, Co-based, and Ni-based alloys have mechanical properties.

耐熱性ならびに耐食性等優れた性質を有するものが多い
、ところが残留酸素及び硫黄が多いと加工性が低下する
ので、残留酸素及び硫黄を十分に少なくすることが重要
である。
Many of them have excellent properties such as heat resistance and corrosion resistance, but if residual oxygen and sulfur are present in large amounts, processability will be reduced, so it is important to sufficiently reduce residual oxygen and sulfur.

真空又はアルゴンガス雰囲気下での、精錬中の脱酸、脱
硫について、特公昭54−849号、特公昭54−24
68.8及び特開昭52−58010号に、それぞれC
ab(酸化力ルシウウム)含有率の高い塩基性耐火物で
裏付けされた溶解炉又は取鍋を用い、真空又はアルゴン
ガス雰囲気中で溶湯中にアルミニウム(/11)または
その合金を添加することを特徴とする脱酸、脱硫方法が
提案されている。この原理は、Anの添加により耐火物
中のCaOを還元し、還元生成物であるカルシウム(C
a)により溶湯中の硫黄(S)、酸素(0)を除去する
ものである。。
Regarding deoxidation and desulfurization during refining under vacuum or argon gas atmosphere, Japanese Patent Publication No. 54-849, Japanese Patent Publication No. 54-24
68.8 and JP-A-52-58010, respectively.
It is characterized by adding aluminum (/11) or its alloy to the molten metal in a vacuum or argon gas atmosphere using a melting furnace or ladle backed by a basic refractory with a high ab (lucium oxidizing ability) content. A deoxidizing and desulfurizing method has been proposed. This principle is based on the addition of An to reduce CaO in the refractory, and the reduction product calcium (C
Sulfur (S) and oxygen (0) in the molten metal are removed by a). .

また、合金溶湯中にカルシア組成物とAl(又は合金溶
湯中にAJIが含まれている場合はカルシア組成物だけ
でも良い、)をArガス等の不活性ガスによりフラック
スインジェクションする方法も提案されている(Sca
nd、 J、 Metallurgy4(1975)、
P42〜48等)、フラックスインジェクションによる
方法としては、Ca0−An系の他、 Cao−AJI
 203 、 Cao −CaF2.Ca0−Al2O
2CaF2系のものも提案されている。その他、CaO
と金属Mgとを同時に添加する方法もLime−Mg法
として知られている(P、J、Koros発表)[発明
が解決しようとする問題点]上 記特公昭54−849.54−24688、特開昭52
〜58010号公報に記載の方法によれば、一応の脱酸
、脱硫が可能であるが、塩基性耐火物で裏付けされた溶
解炉又は取鍋を用いる方法は、耐火物裏付けに高度な技
術を要する他、溶解炉又は取鍋の内壁表面のカルシア組
成物が脱硫、脱酸反応に活用されるため、溶湯量が大容
量となると溶湯量に対して溶湯が内壁表面と接触する界
面積が相対的に小さくなり1反応速度が低下し、溶湯の
清浄化処理に多くの時間を要し、しかも使用回数が増え
るにつれて反応効率は低下するという問題点を有してい
る。
Additionally, a method has been proposed in which a calcia composition and Al (or just the calcia composition is sufficient if the molten alloy contains AJI) are injected into the molten alloy using an inert gas such as Ar gas. There is (Sca
nd, J. Metallurgy4 (1975),
P42-48 etc.), as a method using flux injection, in addition to Ca0-An system, Cao-AJI
203, Cao-CaF2. Ca0-Al2O
2CaF2-based materials have also been proposed. Others, CaO
A method of simultaneously adding metal Mg and Mg is also known as the Lime-Mg method (published by P, J. Koros) [Problems to be solved by the invention] Showa 52
According to the method described in Publication No. 58010, it is possible to perform deoxidation and desulfurization to a certain extent, but the method using a melting furnace or ladle backed with a basic refractory requires advanced technology for the refractory backing. In addition, since the calcia composition on the inner wall surface of the melting furnace or ladle is utilized for desulfurization and deoxidation reactions, when the amount of molten metal becomes large, the interfacial area where the molten metal contacts the inner wall surface becomes relative to the amount of molten metal. There are problems in that the reaction rate decreases, a lot of time is required for cleaning the molten metal, and the reaction efficiency decreases as the number of times it is used increases.

しかして、使用回数の増加に伴い、反応効率が低下した
場合には、フラックスを添加してその脱硫作用により活
性化を図る等の各種の活性化処理が必要とされ(特開昭
57−200513)、処理工数が増加して不利であっ
た。
However, when the reaction efficiency decreases as the number of times of use increases, various activation treatments such as adding flux and activating it by its desulfurization effect are required (Japanese Patent Laid-Open No. 57-200513 ), which was disadvantageous as it increased the number of processing steps.

一方、カルシア組成物をフラックスインジェクションす
る方法やLime−Mg法では脱酸、脱硫によって到達
し得る0、Sのレベル(最終平衡値)がそれ程低くない
という問題がある。
On the other hand, the method of flux injection of a calcia composition and the Lime-Mg method have a problem in that the level of 0 and S (final equilibrium value) that can be reached by deoxidation and desulfurization is not so low.

[問題点を解決するための手段] 本発明は、上記従来法に比し、格段に優れた脱硫、脱酸
効果、特に脱硫効果を得るために、MgO及びCaOを
主成分とする粉末、場合により更にAnをも合金溶湯中
に添加することにより、反応速度を上昇させると共に、
最終平衡値を低減させるものであり、 Ca040%以上の耐火物により裏付けされた溶解炉又
は容器内のA文を含有する合金溶湯中に真空又は非酸化
性雰囲気でMgO及びCaOを主成分とする粉末を添加
することを特徴とする超極低硫黄合金の製造方法。
[Means for Solving the Problems] The present invention provides powders containing MgO and CaO as main components, in order to obtain much superior desulfurization and deoxidizing effects, especially desulfurization effects, as compared to the above-mentioned conventional methods. By further adding An to the molten alloy, the reaction rate is increased, and
The final equilibrium value is reduced, and the main components are MgO and CaO in a molten alloy containing A-type in a melting furnace or container supported by a refractory with Ca040% or more in a vacuum or non-oxidizing atmosphere. A method for producing an ultra-low sulfur alloy, characterized by adding powder.

及び Ca040%以上の耐火物により裏付けされた溶解炉又
は容器内の合金溶湯中に真空又は非酸化性雰囲気でMg
O及びCaOを主成分とする粉末とAlとを添加するこ
とを特徴とする超極低硫黄合金の製造方法、 を要旨とするものである。
and Mg in a vacuum or non-oxidizing atmosphere in a molten alloy in a melting furnace or container backed by a refractory with Ca040% or more.
The gist of the present invention is a method for producing an ultra-low sulfur alloy characterized by adding powder containing O and CaO as main components and Al.

なお本明細書において%は重量%を表わす。In this specification, % represents weight %.

以下本発明の構成について詳細に説明する。The configuration of the present invention will be explained in detail below.

本発明の方法においては、合金溶湯中に、真空又はアル
ゴン雰囲気下でMgO及びCaOを主成分とする粉末(
以下、M g O−Ca O粉という、)、あるいは必
要に応じこれに更にAiを添加する。
In the method of the present invention, powder containing MgO and CaO as main components (
(hereinafter referred to as MgO-CaO powder), or Ai is further added to this as necessary.

即ち、アルミニウムギルド鋼の如く、合金中にA9.°
を含有し、その含有量が後述する好適なAi残留量の範
囲内にある場合にはMgO−CaO粉だけの添加で良く
、Al合有量がその好適なAi残留量の範囲に満たない
場合、あるいは、Alを含有しない合金の場合には、M
gO−CaO粉に加えて更にAILを添加する。
That is, A9. °
If the content is within the range of the preferred residual amount of Ai described later, it is sufficient to add only MgO-CaO powder, and if the combined amount of Al is less than the range of the preferred residual amount of Ai. , or in the case of alloys containing no Al, M
In addition to gO-CaO powder, AIL is further added.

本発明で用いられるM g Q −C& O粉は、M 
g O−Ca O系フラックスなどCaOを主成分とす
る粉末であり、MgO−CaO粉末の他、M g O−
Ca O−Ca F 2粉末、pd g Q −Ca 
O−S i O2粉末、MgO−Ca0−AJ120a
 −CaF2粉末等も好適に採用可能である。これらの
Ca O−M g O粉は、合金溶湯との接触面積が大
きく、以下に説明する反応を極めて効率良く行なう、M
gO−CaO粉の組成としては、Mg015〜75%、
特に20〜60%、CaO15%以上、特に40%以上
含有するものが好ましい。
The M g Q -C&O powder used in the present invention is M
It is a powder whose main component is CaO, such as gO-CaO-based flux, and in addition to MgO-CaO powder, MgO-
Ca O-Ca F2 powder, pd g Q-Ca
O-S i O2 powder, MgO-Ca0-AJ120a
-CaF2 powder etc. can also be suitably employed. These CaO-MgO powders have a large contact area with the molten alloy, and the following reactions are carried out extremely efficiently.
The composition of gO-CaO powder is Mg015-75%,
In particular, those containing 20 to 60% CaO, 15% or more, especially 40% or more are preferable.

本発明において、M g O−Ca O粉、及び必要に
応じAMを添加することにより、溶湯中に初めから存在
する、あるいは新たに添加されたAnの一部は、直接に
、溶湯中の酸素と結合して脱酸を行なうが、Aiの他の
部分はMgO−CaO粉と反応して 2 A fL+ 3 M g O→AJL203 +3
Mg2 A l + 3 Ca O” A l 203
 + 3 Caとなり、Mg、CaとAl203が生じ
る。このMg、Caは脱酸、脱硫反応し、MgO,Ca
O1Mg5.CaSとなる。
In the present invention, by adding MgO-CaO powder and AM as necessary, a part of the An originally present in the molten metal or newly added is directly converted to oxygen in the molten metal. The other part of Ai reacts with MgO-CaO powder to form 2 A fL+ 3 M g O → AJL203 +3
Mg2 A l + 3 Ca O” A l 203
+3Ca, and Mg, Ca and Al203 are generated. These Mg and Ca undergo deoxidation and desulfurization reactions, and MgO and Ca
O1Mg5. It becomes CaS.

一方、Al203は、 A l 203+ 3 Ca O+ 3 CIL Oa
 A jL 203なる反応により3CaO*AJL2
o3  (以下C3Aということがある。)を主体とす
るカルシウムアルミネートを形成する。このC3Aは溶
湯の脱硫能が高く、このC3Aによっても脱硫が進行す
る。
On the other hand, Al203 is Al203+ 3 Ca O+ 3 CIL Oa
3CaO*AJL2 by the reaction A jL 203
Forms calcium aluminate mainly composed of o3 (hereinafter sometimes referred to as C3A). This C3A has a high ability to desulfurize the molten metal, and desulfurization also progresses with this C3A.

このように、AILにより脱酸が、またAnの還元作用
により生じた活性なMg、Ca、C3Aにより脱酸と脱
硫が行われる。
In this way, deoxidation is performed by AIL, and deoxidation and desulfurization are performed by active Mg, Ca, and C3A generated by the reducing action of An.

この反応は、極めて急速に進行し1例えばAlを溶湯中
に存在せしめた後、数分程度で脱硫、脱酸がほぼ終了す
る。
This reaction progresses extremely rapidly, and desulfurization and deoxidation are almost completed within a few minutes after Al, for example, is present in the molten metal.

また、時間の経過と共に、次第に溶湯中のN量が減少し
てくる。これはCa等の蒸発(沸m)等に伴ってNも溶
湯から離脱するためである。この脱窒速度は、アルゴン
又は真空雰囲気下では、脱酸、脱硫の進行に従って著し
く向上する・本発明においては、溶湯中に、MgO〜C
aO粉やAiの他に、B及び/又はB 203あるいは
・Na、K・ Li等のアJレカ1ノ金属、Ca等のア
ルカリ土類金属を添加しても良い。
Further, as time passes, the amount of N in the molten metal gradually decreases. This is because N also leaves the molten metal as Ca and the like evaporate (boil). This denitrification rate improves markedly in an argon or vacuum atmosphere as deoxidation and desulfurization progress.In the present invention, MgO to C
In addition to the aO powder and Ai, B and/or B 203 or metals such as Na, K and Li, and alkaline earth metals such as Ca may be added.

溶湯中に存在するCa、B、Na、に、Liは、Cao
、 B203 、 N &20、K 20 。
Ca, B, Na, and Li present in the molten metal are Cao
, B203, N&20, K20.

L i 20となり、溶湯中に、 A l 20 z −Ca O−B 203A i20
3  C& O−B 203− N a20A!L20
3−Cao  B20a −に20等の抵融点組成物を
形成し、脱酸、脱硫速度を増大させる。
L i 20, and in the molten metal, A l 20 z -Ca O-B 203A i20
3 C&O-B 203- Na20A! L20
3-Cao B20a - is formed with a low melting point composition such as 20 to increase the deoxidation and desulfurization rate.

即ち、Ca、B、Na、に、Li等の酸化物は溶湯中に
形成されたC3A等のカルシウムアルミネート組成物の
融点を下げ、その中の化合物、原子もしくはこれらのイ
オン(例えばS2−など)の拡散を容易とし、脱酸、脱
硫反応を加速するものである。
That is, oxides such as Ca, B, Na, Li, etc. lower the melting point of calcium aluminate compositions such as C3A formed in the molten metal, and lower the melting point of calcium aluminate compositions such as C3A formed in the molten metal. ) and accelerates deoxidation and desulfurization reactions.

またC ao、B203 、アルカリ金属酸化物とりわ
けB2O3,アルカリ金属酸化物は、スラグに取り込ま
れたときに該スラグの融点をも低下させ、かつその粘度
を低下させる。これにより、該スラグ中への82−等の
イオンやその他の原子、化合物の拡散係数が大きくなり
、脱硫速度、脱硫能が大幅に向上される。
C ao, B203, alkali metal oxides, especially B2O3, alkali metal oxides also lower the melting point of the slag and reduce its viscosity when incorporated into the slag. As a result, the diffusion coefficient of ions such as 82- and other atoms and compounds into the slag becomes large, and the desulfurization rate and desulfurization ability are greatly improved.

更にB2O3は、A又203.3io2等の介在物を吸
収することにより、脱酸、脱硫効果を奏することもでき
る。
Furthermore, B2O3 can also exhibit deoxidizing and desulfurizing effects by absorbing inclusions such as A or 203.3io2.

本発明においてM g O−Ca O粉、Ca、B及び
/又はB2O3,AJl、アルカリ金属の添加は、製造
される合金中の残留量(MgOはMg換算値、CaOは
Ca換算値、B2O3はB換算値)が、各々 Mg:1〜300ppm特に5〜30PPmCa:1〜
20ppm特に5〜20ppmB及びアルカリ金属=0
.001−10%Al:0.01〜20% となるように溶湯中に添加するのが好ましい。
In the present invention, the addition of MgO-CaO powder, Ca, B and/or B2O3, AJl, and alkali metals is determined by the residual amount in the manufactured alloy (MgO is the Mg equivalent value, CaO is the Ca equivalent value, and B2O3 is the B conversion value) are respectively Mg: 1 to 300 ppm, especially 5 to 30 PPmCa: 1 to
20ppm especially 5-20ppmB and alkali metal = 0
.. 001-10% Al: It is preferable to add it to the molten metal in an amount of 0.01 to 20%.

本発明の方法において1合金中のMg残留量が1〜30
0ppmの範囲となるようにするのが好ましい理由は、
Mg含有量lppm未満においては合金中の酸素、硫黄
、窒素を低減する効果が小さく、またMg含有量300
ppmを超えると得られる合金が脆くなるからである。
In the method of the present invention, the residual amount of Mg in one alloy is 1 to 30
The reason why it is preferable to keep it within the range of 0 ppm is as follows.
When the Mg content is less than 1 ppm, the effect of reducing oxygen, sulfur, and nitrogen in the alloy is small;
This is because if the content exceeds ppm, the resulting alloy becomes brittle.

合金中のCa残留量が1〜20ppmの範囲となるよう
にするのが好ましい理由は、Ca含有量lppm未満に
おいては合金中の酸素、硫黄、窒素を大幅に低減するこ
とが容易ではなく、一方、Ca含有量が20ppmを超
えると同様に合金が脆くなる場合があるからである。
The reason why it is preferable to keep the amount of Ca remaining in the alloy in the range of 1 to 20 ppm is because it is difficult to significantly reduce oxygen, sulfur, and nitrogen in the alloy when the Ca content is less than 1 ppm. This is because if the Ca content exceeds 20 ppm, the alloy may similarly become brittle.

B及びアルカリ金属残留量は、o、oot%以下ではそ
の存在量が少なすぎ、B及びアルカリ金属存在による効
果が少なく、また10%より多いと合金が脆くなる。特
に好ましいB及びアルカリ金属残留量は0.005〜3
%である。
If the residual amount of B and alkali metal is less than o,oot%, the amount present is too small and the effect of the presence of B and alkali metal is small, and if it is more than 10%, the alloy becomes brittle. Particularly preferable B and alkali metal residual amounts are 0.005 to 3
%.

合金中のAn残留量を0.01〜20%の範囲とした理
由は、アルミニウム残留量0.01%未満では十分な脱
酸は行なわれないのみならず、Mg、Caの生成も行な
われず、Mg、Caによる脱硫、脱酸は殆ど行なわれず
、かつMg、Caによる十分な脱硫、脱酸の条件である
仕上合金中の残留カルシウム量が0.0001%以上に
ならないからである。また、アルミニウムが20%を超
える合金は実用性に乏しいからである。
The reason why the residual amount of An in the alloy is set in the range of 0.01 to 20% is that when the residual amount of aluminum is less than 0.01%, not only is sufficient deoxidation not performed, but also Mg and Ca are not generated. This is because desulfurization and deoxidation by Mg and Ca are hardly performed, and the amount of residual calcium in the finished alloy, which is a condition for sufficient desulfurization and deoxidation by Mg and Ca, does not exceed 0.0001%. Further, alloys containing more than 20% aluminum are impractical.

M g O−Ca O粉、B及び/又はB2O3、AQ
、Ca、アルカリ金属を溶湯中に添加する場合には、こ
れらを同時に添加しても、別々に添加しても良く、その
添加の方法に特に制限はない。
M g O-Ca O powder, B and/or B2O3, AQ
When adding , Ca, and alkali metals to the molten metal, they may be added simultaneously or separately, and there is no particular restriction on the method of addition.

AI Bについては、これらを別々に添加することも可
能であるが、Ca、アルカリ金属は反応性が高く取り扱
い性に問題を有することから、合金形態で添加するのが
好ましい、単体1合金いずれの場合においても、線状体
、棒状体、ブロック、粉体等の様々な形で添加可能であ
る。また、添加の態様としても特に限定はなく、粉末の
場合、吹込法を採用しても良い。
Regarding AIB, it is possible to add these separately, but since Ca and alkali metals are highly reactive and have problems in handling, it is preferable to add them in the form of an alloy. In any case, it can be added in various forms such as a linear body, a rod-shaped body, a block, or a powder. Moreover, there is no particular limitation on the mode of addition, and in the case of powder, a blowing method may be adopted.

本発明の方法は特に、Fe基、Co基又はN1基の合金
を対象とする場合に、有効である。
The method of the present invention is particularly effective when dealing with Fe-based, Co-based, or N1-based alloys.

Fe基の合金としては、普通元素C,Si、Mn、P、
Sを含有し、Cを2%以下含有する炭素鋼と、特殊な性
質を与えるため上記普通元素の他にNi、Cr、Co、
W、Mo、A1等の特殊元素はもとより、普通元素に属
するものでも、普通元素の含有範囲を超え、特殊な性質
の付加を目的として加えられている合金鋼が代表的であ
る。
As Fe-based alloys, common elements C, Si, Mn, P,
Carbon steel containing S and 2% or less of C, and in addition to the above ordinary elements, Ni, Cr, Co,
In addition to special elements such as W, Mo, and A1, even those belonging to ordinary elements are typically added to alloy steels that exceed the content range of ordinary elements and are added for the purpose of adding special properties.

合金鋼のうち、低合金鋼としては、高力低合金鋼、高温
高圧低合金鋼、石油工業用低合金鋼があり、申合金鋼に
はクロム鋼、ニッケル鋼等があり、高合金鋼には高クロ
ムステンレス鋼、高クロム−ニッケルステンレス鋼等が
ある。
Among alloy steels, low-alloy steels include high-strength low-alloy steel, high-temperature, high-pressure low-alloy steel, and low-alloy steel for the petroleum industry. There are high chromium stainless steel, high chromium-nickel stainless steel, etc.

ニッケル基合金としては、ニッケルを主な構成成分とし
て含有している主として耐熱耐食性合金や磁性合金等が
挙げられ、これに属する合金としては、Ni−Cu合金
(モネルメタル)、Nt−Cr−Fe系合金(インコネ
ル)、Ni −Mo系合金(ハステロイA、B)、Ni
−Mo−Cr−W系合金(ハステロイC)、Ni−5i
系合金(ハステロイD)、Ni−Ta系合金等がある。
Examples of nickel-based alloys include heat-resistant and corrosion-resistant alloys and magnetic alloys that contain nickel as a main component, and alloys that belong to these include Ni-Cu alloys (monel metal) and Nt-Cr-Fe alloys. Alloy (Inconel), Ni-Mo alloy (Hastelloy A, B), Ni
-Mo-Cr-W alloy (Hastelloy C), Ni-5i
There are alloys such as Hastelloy D, Ni-Ta alloys, etc.

CO基合金としては、COを主な構成成分として含有し
ている耐熱合金、耐食性合金、超高合金、磁性合金等で
あり、これに属する合金には、Co−Cr−W−C系合
金(ステライト)、Go−Fe系合金(ductile
  c  o  b att)□、Co−Cr−Ni−
Mo (El i gi 1oy合金)、Co−Cr−
NE−W(Hayness)、Vicalloy、Re
nendur。
Examples of CO-based alloys include heat-resistant alloys, corrosion-resistant alloys, ultra-high alloys, and magnetic alloys that contain CO as a main component. Alloys belonging to these include Co-Cr-W-C alloys ( stellite), Go-Fe alloys (ductile
c ob att) □, Co-Cr-Ni-
Mo (El i gi 1oy alloy), Co-Cr-
NEW-W (Hayness), Vicalloy, Re
nendur.

Permendur等の磁性材料用Co合金、或はNi
3Tiの析出を利用したCO基超超合金が挙げられる。
Co alloy for magnetic materials such as Permendur, or Ni
An example is a CO-based superalloy that utilizes the precipitation of 3Ti.

本発明においては、合金溶湯への各種粉末の添加を、M
gO−CaO系耐火物、特にCa040%以上含有する
M g O−Ca O系塩基性耐火物をもって裏付けさ
れた容器内で行うことにより、これらの耐火物をも精錬
反応に関与せしめ、脱酸、脱硫、脱窒効果をより一層向
上させることができる。
In the present invention, the addition of various powders to the molten alloy is
By carrying out the process in a container supported by gO-CaO-based refractories, especially MgO-CaO-based basic refractories containing 40% or more of Ca, these refractories are also involved in the refining reaction, resulting in deoxidation and deoxidation. Desulfurization and denitrification effects can be further improved.

使用する裏付は耐火物としては、カルシア耐火物(Ca
b)、ラルナイト耐火物(安定化2CaO・S E O
2) 、  メルウィナイト耐火物(3CaO*MgO
−2SiO2)、アノルサイト耐火物(Caoa Al
2O3” 2S i 02 )ならびにCaOを富化し
たドロマイト耐火物等が挙げられ、いずれもCaOを4
0%以上含有する塩基性耐火物である。
The backing used is calcia refractory (Ca
b), Larnite refractory (stabilized 2CaO S E O
2) Melwinite refractory (3CaO*MgO
-2SiO2), anorsite refractory (Caoa Al
2O3" 2S i 02 ) and CaO-enriched dolomite refractories, both of which have CaO enriched with 4
It is a basic refractory containing 0% or more.

裏付は耐火物のCaO含有率が40%以上のものが好ま
しい理由は、40%未満のCaOを含有する塩基性耐火
物にあっては、その中のCaOは他の酸化物と強固に結
合している。そのため、CaOの活性が少なく、添加さ
れたアルミニウムにより還元されない、一方、40%以
上のCaOを有する塩基性耐火物中のCaOは活性が大
でアルミニウムによってよく還元されるからである。
The reason why it is preferable to use a refractory with a CaO content of 40% or more is because in basic refractories containing less than 40% CaO, the CaO therein is strongly bonded to other oxides. are doing. Therefore, CaO has low activity and is not reduced by added aluminum, whereas CaO in basic refractories containing 40% or more of CaO has high activity and is well reduced by aluminum.

また、CaOを40%以上含む耐火物は、A IL 2
0 sやS i O2等の酸化物と反応し易く、従って
、溶湯中の酸化物を吸収し、酸化物介在量を大幅に減少
させる。またCaOを40%以上含む耐火物はC,Ti
、Zr等に対する安定性が高いので、高温溶解が可能と
なる。なお1本発明の製造方法において、非酸化性雰囲
気中とは、開放炉又は密閉炉中の溶湯にアルゴンガス、
窒素ガス、ヘリウムガス等を吹き込むことにより溶湯を
処理するか、密閉炉中の溶湯表面にこのようなガス雰囲
気を形成して溶湯を処理する場合の雰囲気を意味するも
のである。
In addition, refractories containing 40% or more of CaO are AIL 2
It easily reacts with oxides such as 0 s and S i O2, and therefore absorbs oxides in the molten metal, greatly reducing the amount of oxides present. In addition, refractories containing 40% or more of CaO include C, Ti.
, Zr, etc., so high temperature melting is possible. Note that in the manufacturing method of the present invention, "in a non-oxidizing atmosphere" means that the molten metal is in an open furnace or a closed furnace with argon gas,
This refers to an atmosphere in which molten metal is treated by blowing nitrogen gas, helium gas, etc., or by forming such a gas atmosphere on the surface of molten metal in a closed furnace.

このような本発明の方法により得られる合金は、硫黄1
5ppm以下、酸素20ppm以下2窒素30ppm以
下の極めて清浄な合金である。
The alloy obtained by the method of the present invention has sulfur 1
It is an extremely clean alloy containing 5 ppm or less, 20 ppm or less of oxygen, and 30 ppm or less of nitrogen.

[作用] 上述の如く、合金中に存在するAnあるいは添加された
Al2.、及びM g O−Ca O粉末により効果的
な脱酸、脱硫、脱窒が行なわれる。特に溶湯中にはMg
が生ずるようになるため、このMgがCaと共に脱硫に
作用しその脱硫能は極めて高いものとなる。
[Function] As mentioned above, An existing in the alloy or added Al2. , and M g O--Ca O powders perform effective deoxidation, desulfurization, and denitrification. Especially Mg in the molten metal
is generated, this Mg acts on desulfurization together with Ca, and the desulfurization ability becomes extremely high.

而して、本発明の方法、においては、MgO−CaOの
添加形態が粉末であるため、溶湯とMgO粉、CaO粉
との接触面積を極めて大きくすることができる。従って
、単位接触時間当りの上述の介在物の反応吸着、脱硫、
脱酸反応を極めて効果的に行うことができ、極めて純度
の高い合金を得ることが可能とされる。
In the method of the present invention, since the MgO--CaO is added in the form of powder, the contact area between the molten metal and the MgO powder and CaO powder can be made extremely large. Therefore, the reaction adsorption, desulfurization, and
It is believed that the deoxidation reaction can be carried out extremely effectively and that it is possible to obtain an alloy with extremely high purity.

また、Mgの添加形態がMgOであることから、従来の
CaO粉及びMgを添加する方法のようにMg、Mg合
金を添加する時の激しい反応を回避することができ、M
gの飛散等が無く、その作業性も極めて良好である。
In addition, since the addition form of Mg is MgO, it is possible to avoid violent reactions when adding Mg and Mg alloys as in the conventional method of adding CaO powder and Mg.
There is no scattering of g, etc., and the workability is extremely good.

[実施例] 以下に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。
[Examples] The present invention will be explained in more detail by examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 第1表に示す組成の電解鉄に0.03%程度の硫黄成分
になるように予めFeSを添加した鉄3Kgを50KH
z高周波溶解炉(内張:マグネシアスタンプ)にて溶解
し、アルゴン雰囲気下で、Al1203ノズルを用いて
アルゴンガスと共にM g O−Ca O粉(組成:M
g030%、Ca070%)及びAn粉末を、各々、2
%、0.2%添加した。
Example 1 3 kg of electrolytic iron having the composition shown in Table 1 and FeS added in advance to a sulfur content of about 0.03% was heated at 50 KH.
M g O-Ca O powder (composition: M
g030%, Ca070%) and An powder, respectively, 2
%, 0.2% was added.

坩堝内の合金溶湯の酸素含有量、硫黄含有量、窒素含有
量の経時変化を測定した。
Changes over time in the oxygen content, sulfur content, and nitrogen content of the molten alloy in the crucible were measured.

その結果を第1図に示す。The results are shown in FIG.

第1表(電解鉄組成)(wt%) 実施例2 第2表に示す組成のCaO坩堝内で処理したこと以外は
、実施例1と同様にして測定を行った。
Table 1 (Electrolytic iron composition) (wt%) Example 2 Measurements were carried out in the same manner as in Example 1, except that the treatment was carried out in a CaO crucible having the composition shown in Table 2.

その結果を第1図に示す。The results are shown in FIG.

なお、使用に供したCaO坩堝は、−級試薬のCaOを
原料とし、これを20メツシユに粉砕後、坩堝型中へ入
れてよくつき固め、固められた坩堝を約900℃、24
時間電気抵抗炉中で仮焼することにより作成した。
The CaO crucible used was made from CaO, a -grade reagent, which was crushed into 20 meshes, put into a crucible mold and compacted well, and the solidified crucible was heated at approximately 900°C for 24
It was prepared by calcining in an electric resistance furnace for hours.

第  2  表 比較例I M g O−Ca O粉末を添加する代りにCaO粉末
を添加したこと以外は実施例1と同様にして測定を行な
った。その結果を第1図に示す。
Table 2 Comparative Example I M g O-Ca Measurements were carried out in the same manner as in Example 1 except that CaO powder was added instead of adding O powder. The results are shown in FIG.

第1図より、本発明の方法によれば、酸素、硫黄及び窒
素含有量の少ない溶湯が速やかに得られ、特にその脱硫
効果が大きいことが認められる。
From FIG. 1, it is recognized that according to the method of the present invention, a molten metal with low oxygen, sulfur, and nitrogen contents can be obtained quickly, and that the desulfurization effect is particularly large.

[効果] 以上の通り1本発明によれば1合金の極めて強力な脱酸
、脱硫、脱窒を行なうことができ、酸素、硫黄、窒素が
極めて少なく、クリープ強度。
[Effects] As described above, according to the present invention, it is possible to perform extremely strong deoxidation, desulfurization, and denitrification of an alloy, and the amount of oxygen, sulfur, and nitrogen is extremely low, and the creep strength is improved.

耐熱性、靭性、溶接性、鍛造性等の緒特性に著しく優れ
た合金を製造することができる。また介在される酸化物
も殆ど無い。
It is possible to produce alloys with outstanding properties such as heat resistance, toughness, weldability, and forgeability. Furthermore, there are almost no intervening oxides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1.2及び比較例1で得られた、溶湯中
の酸素、硫黄、窒素含有率の経時変化を示すグラフであ
る。 代理人  弁理士  重 野  剛 第1図 □ 時間(min)
FIG. 1 is a graph showing changes over time in the oxygen, sulfur, and nitrogen contents in the molten metal obtained in Example 1.2 and Comparative Example 1. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 □ Time (min)

Claims (1)

【特許請求の範囲】 (1)CaO40%以上の耐火物により裏付けされた溶
解炉又は容器内のAlを含有する合金溶湯中に真空又は
非酸化性雰囲気でMgO及びCaOを主成分とする粉末
を添加することを特徴とする超極低硫黄合金の製造方法
。 (2)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有する特許請求の範囲第1項に
記載の超極低硫黄合金の製造方法。 (3)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有し、S:0.0015重量%
以下、酸素:0.002重量%以下、窒素:0.003
重量%以下を含有する特許請求の範囲第1項に記載の超
極低硫黄合金の製造方法。 (4)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有し、S:0.0015重量%
以下、酸素:0.002重量%以下、窒素:0.003
重量%以下、Al:0.01〜20重量%、B及びアル
カリ金属:0.001〜10重量%を含有する特許請求
の範囲第1項に記載の超極低硫黄合金の製造方法。 (5)CaO40%以上の耐火物により裏付けされた溶
解炉又は容器内の合金溶湯中に真空又は非酸化性雰囲気
でMgO及びCaOを主成分とする粉末とAlとを添加
することを特徴とする超極低硫黄合金の製造方法。 (6)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有する特許請求の範囲第5項に
記載の超極低硫黄合金の製造方法。 (7)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有し、S:0.0015重量%
以下、酸素:0.002重量%以下、窒素:0.003
重量%以下を含有する特許請求の範囲第5項に記載の超
極低硫黄合金の製造方法。 (8)得られる合金が、Mg:0.03〜 0.0001重量%、Ca:0.002〜 0.0001重量%を含有し、S:0.0015重量%
以下、酸素:0.002重量%以下、窒素:0.003
重量%以下、Al:0.01〜20重量%、B及びアル
カリ金属:0.001〜10重量%を含有する特許請求
の範囲第5項に記載の超極低硫黄合金の製造方法。
[Scope of Claims] (1) Powder mainly composed of MgO and CaO is added in vacuum or in a non-oxidizing atmosphere to a molten alloy containing Al in a melting furnace or container supported by a refractory containing 40% CaO or more. A method for producing an ultra-low sulfur alloy, characterized by adding (2) The ultra-low sulfur alloy according to claim 1, wherein the resulting alloy contains Mg: 0.03 to 0.0001% by weight and Ca: 0.002 to 0.0001% by weight. Production method. (3) The resulting alloy contains Mg: 0.03 to 0.0001% by weight, Ca: 0.002 to 0.0001% by weight, and S: 0.0015% by weight.
Below, oxygen: 0.002% by weight or less, nitrogen: 0.003
A method for producing an ultra-low sulfur alloy according to claim 1, wherein the ultra-low sulfur alloy contains at most % by weight. (4) The resulting alloy contains Mg: 0.03 to 0.0001% by weight, Ca: 0.002 to 0.0001% by weight, and S: 0.0015% by weight.
Below, oxygen: 0.002% by weight or less, nitrogen: 0.003
% by weight or less, Al: 0.01 to 20 weight %, B and alkali metal: 0.001 to 10 weight %. (5) A powder mainly composed of MgO and CaO and Al are added in a vacuum or non-oxidizing atmosphere to a molten alloy in a melting furnace or container supported by a refractory containing 40% or more CaO. Method for producing ultra-low sulfur alloy. (6) The ultra-low sulfur alloy according to claim 5, wherein the resulting alloy contains Mg: 0.03 to 0.0001% by weight and Ca: 0.002 to 0.0001% by weight. Production method. (7) The resulting alloy contains Mg: 0.03 to 0.0001% by weight, Ca: 0.002 to 0.0001% by weight, and S: 0.0015% by weight.
Below, oxygen: 0.002% by weight or less, nitrogen: 0.003
% or less by weight of the ultra-low sulfur alloy according to claim 5. (8) The resulting alloy contains Mg: 0.03 to 0.0001% by weight, Ca: 0.002 to 0.0001% by weight, and S: 0.0015% by weight.
Below, oxygen: 0.002% by weight or less, nitrogen: 0.003
The method for producing an ultra-low sulfur alloy according to claim 5, which contains Al: 0.01 to 20 weight %, B and alkali metals: 0.001 to 10 weight %.
JP8407785A 1985-04-19 1985-04-19 Production of extra-low sulfur alloy Pending JPS61243134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8407785A JPS61243134A (en) 1985-04-19 1985-04-19 Production of extra-low sulfur alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8407785A JPS61243134A (en) 1985-04-19 1985-04-19 Production of extra-low sulfur alloy

Publications (1)

Publication Number Publication Date
JPS61243134A true JPS61243134A (en) 1986-10-29

Family

ID=13820421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8407785A Pending JPS61243134A (en) 1985-04-19 1985-04-19 Production of extra-low sulfur alloy

Country Status (1)

Country Link
JP (1) JPS61243134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442534A (en) * 1987-08-07 1989-02-14 Mitsui Shipbuilding Eng Method for denitriding ni-base super alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200513A (en) * 1981-06-02 1982-12-08 Metal Res Corp:Kk Preparation of iron base alloy with reduced oxygen, sulfur and nitrogen contents
JPS59133316A (en) * 1982-12-11 1984-07-31 フオセコ・インタ−ナシヨナル・リミテツド Molten steel treating agent and treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200513A (en) * 1981-06-02 1982-12-08 Metal Res Corp:Kk Preparation of iron base alloy with reduced oxygen, sulfur and nitrogen contents
JPS59133316A (en) * 1982-12-11 1984-07-31 フオセコ・インタ−ナシヨナル・リミテツド Molten steel treating agent and treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442534A (en) * 1987-08-07 1989-02-14 Mitsui Shipbuilding Eng Method for denitriding ni-base super alloy

Similar Documents

Publication Publication Date Title
US4944798A (en) Method of manufacturing clean steel
US5268141A (en) Iron based alloy having low contents of aluminum silicon, magnesium, calcium, oxygen, sulphur, and nitrogen
US4729787A (en) Method of producing an iron; cobalt and nickel base alloy having low contents of sulphur, oxygen and nitrogen
JPH03223414A (en) Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen
JPS61243134A (en) Production of extra-low sulfur alloy
US4999053A (en) Method of producing an iron-, cobalt- and nickel-base alloy having low contents of sulphur, oxygen and nitrogen
JPH03236434A (en) Nickel-base alloy in which each content of sulfur, oxygen and nitrogen extremely low
US5055018A (en) Clean steel
US5225156A (en) Clean steel composition
JPS6286111A (en) Calcia refractory composition for refining and desulfurization method using said composition
JPS6184341A (en) Manufacture of alloy having small content of oxygen, sulfur and nitrogen
JPS61153224A (en) Manufacture of alloy having low content of oxygen, sulfur and nitrogen
JPH0366374B2 (en)
JPS61250125A (en) Manufacture of high purity ultralow sulfur alloy
KR940008928B1 (en) Clean steel
JPS6252021B2 (en)
JPH07207316A (en) Wire for desulfurization of molten iron having high desulfurization efficiency
JPH03223440A (en) Iron base alloy in which each content of sulfur, oxygen and nitrogen is extremely low
JPS61149415A (en) Method for removing copper and tin from molten iron
JPH0127135B2 (en)
JPH03236435A (en) Cobalt-base alloy in which each content of sulfur, oxygen and nitrogen is extremely low
JPS6169933A (en) Manufacture of alloy having less content of oxygen and sulfur
JPS6299426A (en) Manufacture of low-silicon chromium or chromium alloy
JPH0613431B2 (en) Refining refractory material and refining method
JPS61149414A (en) Method for removing copper and tin from molten iron