JPS61243111A - Method for controlling end point concentration of nitrogen in top and bottom blown converter - Google Patents

Method for controlling end point concentration of nitrogen in top and bottom blown converter

Info

Publication number
JPS61243111A
JPS61243111A JP8398185A JP8398185A JPS61243111A JP S61243111 A JPS61243111 A JP S61243111A JP 8398185 A JP8398185 A JP 8398185A JP 8398185 A JP8398185 A JP 8398185A JP S61243111 A JPS61243111 A JP S61243111A
Authority
JP
Japan
Prior art keywords
blowing
nitrogen
molten steel
converter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8398185A
Other languages
Japanese (ja)
Other versions
JPH0557326B2 (en
Inventor
Keizo Goto
桂三 後藤
Nobuo Kawamura
河村 信夫
Masachika Fukuda
福田 正親
Yusuke Shiratani
白谷 勇介
Shinji Kuriyama
栗山 伸二
Youichi Nimura
洋一 丹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8398185A priority Critical patent/JPS61243111A/en
Publication of JPS61243111A publication Critical patent/JPS61243111A/en
Publication of JPH0557326B2 publication Critical patent/JPH0557326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To control exactly the content of N2 in a molten steel to a target value by calculating the gaseous N2 to be blown from the target content of N2 and the concn. of N2 prior to blowing of the gaseous N2 in accordance with the actual amt. of the gaseous N2 to be blown into the molten steel and the pick up amt. of the molten steel and blowing a required amt. of the gaseous N2 into the molten steel from a nozzle. CONSTITUTION:The content of N2 Nc in the molten iron which is the raw material is estimated from the concn. of Ti having a correlation therewith and the molten iron is charged into a converter where the molten iron is refined to a steel by oxygen top blown refining. The concn. DELTA(N) of N to pickup the difference between the target concn. (N)0 and (N)c of N2 in the steel of the final product is calculated. The weight R of the N2 to be picked up into the molten steel is calculated from such concn. of N and the amt. of the molten steel. The amt. of the gaseous N2 S to be blown into the molten steel upon lapse of the prescribed time t0 from the start of converter blowing is determined from the yield of the N2 blown. The time (t) for blowing N2 is determined from the amt. of the gaseous N2 passing through a lance for blowing gaseous N2 and the gaseous N2 is blown to the molten iron for the determined time, by which the molten steel having the intended concn. of N2 is produced.

Description

【発明の詳細な説明】 [産業上の利用分野コ     ″ この発明は、上底吹き転炉吹錬において溶鋼の窒素濃度
[N]を高精度で1lJlllすることができる上底吹
き転炉における終点窒素濃度制御方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention provides an end point in a top-bottom blowing converter that can reduce the nitrogen concentration [N] of molten steel to 1 lJlll with high accuracy in top-bottom blowing converter blowing. This invention relates to a nitrogen concentration control method.

[従来の技術] 本願出願人は、溶銑のチタン濃度[T1]とその窒素濃
度[N]との間に一定の関係が存在することに看目し、
溶銑の[T1]から[N]を推定し、転炉終点目標値と
この推定[N]とから求まる所要量の窒素ガスを溶鋼に
吹込んで、転炉終点窒素濃度[N]を目標値にill 
110する溶鋼の窒素制御方法を提案した(特願昭57
−50548号)。
[Prior Art] The applicant of the present application noticed that there is a certain relationship between the titanium concentration [T1] of hot metal and its nitrogen concentration [N],
Estimate [N] from [T1] of the hot metal, inject the required amount of nitrogen gas found from the target value at the end point of the converter and this estimate [N] into the molten steel, and set the nitrogen concentration [N] at the end point of the converter to the target value. ill
proposed a nitrogen control method for molten steel that
-50548).

[発明が解決しようとする問題点〕 しかしながら、既脱酸出鋼、半脱酸出鋼又は未脱酸出鋼
等の出鋼条件及び転炉装入物中の溶銑配合率等によって
、溶銑の[N]推定値及び溶鋼のNピックアップ量がバ
ラツクため、近時のように、操業条件が多種多様化して
いる場合に、従来の溶鋼窒素濃度制御方法においては、
転炉終点[N]の制御精度が低いという問題点がある。
[Problems to be solved by the invention] However, depending on the tapping conditions such as deoxidized tapped steel, semi-deoxidized tapped steel, or non-deoxidized tapped steel, and the hot metal content ratio in the converter charge, [N] Due to variations in the estimated value and the amount of N picked up in molten steel, when operating conditions are diversifying as in recent years, in conventional molten steel nitrogen concentration control methods,
There is a problem that the control accuracy of the converter end point [N] is low.

[問題点を解決するための手段] この発明は、かかる事情に鑑みてなされたものであって
、転炉終点[N]の制御精度が高く、操業条件の変動に
も拘らず高精度で転炉終点における溶鋼の窒素濃度をそ
の目標値に制御することができる上底吹き転炉における
終点窒素濃度制御方法を提供することを目的とする。
[Means for Solving the Problems] The present invention has been made in view of the above circumstances, and has a high control accuracy of the converter end point [N], and enables highly accurate converter conversion despite fluctuations in operating conditions. It is an object of the present invention to provide a method for controlling the nitrogen concentration at the end point of a top-bottom blowing converter, which can control the nitrogen concentration of molten steel at the furnace end point to its target value.

この発明に係る上底吹き転炉における終点窒素濃度制御
方法は、転炉の底部に設けたノズルから吹込む窒素ガス
量とWJ8の窒素ピックアップ量との間の関係を予め求
めておき、吹錬初期のr8湧の窒素濃度及び終点目標窒
素濃度から転炉において溶湯に添加すべき窒素の所要ピ
ックアップ濃度を算出し、前記窒素ガス層と窒素ピック
アップ量との関係を基に前記窒素の所要ピックアップ濃
度から溶鋼に吹込むべき所要窒素ガス量を求め、この所
要窒素ガス量及び前記ノズルにおけるガス流量から窒素
ガスの所要吹込み時間を求め、転炉内溶鋼に窒素ガスを
所要吹込み時間だけ吹込むことを特徴とする。
The end-point nitrogen concentration control method in a top-bottom blowing converter according to the present invention is such that the relationship between the amount of nitrogen gas blown in from the nozzle provided at the bottom of the converter and the amount of nitrogen picked up by WJ8 is determined in advance, and the blowing The required pick-up concentration of nitrogen to be added to the molten metal in the converter is calculated from the initial R8 nitrogen concentration and the final target nitrogen concentration, and the required pick-up concentration of nitrogen is calculated based on the relationship between the nitrogen gas layer and the nitrogen pick-up amount. Determine the required amount of nitrogen gas to be injected into the molten steel from this, determine the required nitrogen gas blowing time from this required nitrogen gas amount and the gas flow rate at the nozzle, and inject nitrogen gas into the molten steel in the converter for the required blowing time. It is characterized by

[実施例] 以下、この発明の実施例について、添附の図面を参照し
て具体的に説明する。第1図は、この発明の実施例に係
る終点窒素濃度制御方法を示すフローチャートである。
[Examples] Examples of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a flowchart showing an end point nitrogen concentration control method according to an embodiment of the present invention.

先ず、溶銑中の成分組成が分析され(ステップ1)、溶
銑のチタン濃度〔T1〕に基づいて溶銑の窒素濃度[N
]が推定される(ステップ2)。第2図及び第3図は、
転炉において、酸素ガスが着火した後、一定時間経過し
た後の溶鋼の窒素濃度[N]を溶銑のチタン濃度[T 
i ]に対してプロットしたグラフである。
First, the component composition in the hot metal is analyzed (step 1), and the nitrogen concentration [N
] is estimated (step 2). Figures 2 and 3 are
In a converter, the nitrogen concentration [N] of molten steel after a certain period of time has passed after oxygen gas ignites is expressed as the titanium concentration [T
i] is a graph plotted against

転炉の炉底には、通常4個(1個の場合もある)のノズ
ルが設置されており、これらのノズルを介して転炉内の
溶鋼中にガスを吹込むことができるようになっている。
There are usually four (sometimes one) nozzles installed at the bottom of the converter, and through these nozzles gas can be injected into the molten steel inside the converter. ing.

各ノズルには、同心円状に配列された2個の円に沿って
複数個の孔が形成されており、いずれのノズルも、内円
に沿う第1の孔群は第1の配管系に接続されており、外
円に沿う第2の孔群は第2の配管系に接続されている。
Each nozzle has a plurality of holes formed along two concentrically arranged circles, and the first group of holes along the inner circle of each nozzle is connected to the first piping system. A second hole group along the outer circle is connected to a second piping system.

第2図は転炉の底部に設けたノズルが1個の場合、第3
図はそのノズルが2乃至411Iの場合のものである。
Figure 2 shows that when there is one nozzle installed at the bottom of the converter, the third
The figure shows the case where the nozzles are 2 to 411I.

各図において、実線は溶銑比率が96%以上の場合、破
線は溶銑比率が96%未満で88%以上の場合及び一点
鎖線は溶銑比率が88%未満の場合である。このように
、溶銑のチタン濃度[Ti]と、転炉吹錬開始後一定時
間経過した時の溶鋼の窒素濃度[N]との間には明確な
関係が存在するから、溶銑の組成分析により求められた
チタン濃度[T1]を基に、転炉吹錬中の一定時期にお
ける溶鋼の窒素濃度IN]を推定することができる。
In each figure, the solid line is when the hot metal ratio is 96% or more, the broken line is when the hot metal ratio is less than 96% and 88% or more, and the dashed line is when the hot metal ratio is less than 88%. In this way, there is a clear relationship between the titanium concentration [Ti] in hot metal and the nitrogen concentration [N] in molten steel after a certain period of time has passed after the start of converter blowing. Based on the determined titanium concentration [T1], the nitrogen concentration IN of the molten steel at a certain time during converter blowing can be estimated.

各チャージ毎に転炉終点窒素濃度の目標値[N]aが設
定されており(ステップ3)、溶鋼の窒素濃度の推定値
[N]cと終点目標値[N]aとから、転炉において、
溶鋼に添加すべき所要の窒素ピックアップ量Δ[N]が
下記(1)式に従って算出される(ステップ4)。
A target value [N]a of the nitrogen concentration at the end point of the converter is set for each charge (step 3), and from the estimated value [N]c of the nitrogen concentration of molten steel and the target value [N]a of the end point, the converter In,
The required nitrogen pickup amount Δ[N] to be added to the molten steel is calculated according to the following equation (1) (step 4).

Δ[N] = [N]O−[N]c    ” (1)
転炉は、前述の如く、その底部に複数個のノズルが設け
られており、転炉内に装入されたランスから溶鋼に酸素
ガスを吹き付けて溶鋼を酸素吹錬するとともに、これら
のノズルから二酸化炭素(CO2>ガス又はアルゴン(
Ar>ガスを転炉内溶鋼に吹き込んで溶鋼を攪拌し、又
は、窒素(N2)ガスを溶鋼に吹き込んで溶鋼に窒素を
添加することができるようになっている。第4図は、転
炉炉底のノズルから溶鋼に吹き込まれた窒素ガスのII
 (Nm3/トン)と、窒素ピックアップ量(pom)
との間の関係を示すグラフである。この図から明らかな
ように、溶鋼に吹き込まれた窒素ガス量と溶鋼の窒素ピ
ックアップ量との間には密接な関係が存在するので、所
要窒素ピックアップ量の算出値から、この量の窒素を溶
鋼に添加するのに必要な窒素ガスの吹き込み量R(Nm
’ /トン)を求めることができる。
Δ[N] = [N]O−[N]c” (1)
As mentioned above, a converter is equipped with a plurality of nozzles at its bottom. Oxygen gas is blown onto the molten steel from a lance inserted into the converter to oxygen-blow the molten steel. Carbon dioxide (CO2>gas or argon (
Ar> gas can be blown into the molten steel in the converter to stir the molten steel, or nitrogen (N2) gas can be blown into the molten steel to add nitrogen to the molten steel. Figure 4 shows the flow of nitrogen gas blown into the molten steel from the nozzle at the bottom of the converter.
(Nm3/ton) and nitrogen pickup amount (pom)
It is a graph showing the relationship between. As is clear from this figure, there is a close relationship between the amount of nitrogen gas blown into the molten steel and the amount of nitrogen picked up by the molten steel. The amount of nitrogen gas blown R (Nm
'/ton) can be calculated.

溶鋼への窒素の添加パターンは、通常、2種類ある。第
1の添加パターンは、転炉吹錬開始後(酸素ガスの着火
後)所定時1ntoだけ経過した後、第1及び第2の孔
群の双方を介して窒素ガスを溶鋼に吹き込むパターンで
ある。これに対し、第2の添加パターンにおいては、転
炉吹錬開始後は、第2の孔群から窒素ガスを溶鋼に導入
して溶鋼に窒素を添加するとともに、第1の孔群からは
CO2ガス又はArガスを溶鋼に吹込んで溶鋼を攪拌し
、所定時間1.経過した後、第1及び第2の双方の孔群
から溶鋼に窒素ガスを吹込んでIIIに窒素を添加する
パターンである。
There are usually two types of nitrogen addition patterns to molten steel. The first addition pattern is a pattern in which nitrogen gas is blown into the molten steel through both the first and second hole groups after a predetermined time period of 1nto has elapsed after the start of converter blowing (after ignition of oxygen gas). . On the other hand, in the second addition pattern, after the start of converter blowing, nitrogen gas is introduced into the molten steel from the second hole group to add nitrogen to the molten steel, and CO2 is added from the first hole group. Gas or Ar gas is injected into the molten steel to stir the molten steel, and the molten steel is stirred for a predetermined time 1. After the lapse of time, nitrogen gas is blown into the molten steel from both the first and second hole groups to add nitrogen to III.

転炉吹錬開始後所定時間1.経過した時点以降に、溶鋼
に吹込むべき窒素ガスIs (Nm3/トン)は下記数
式に従って算出される (ステップ6)。
Predetermined time after the start of converter blowing 1. After the lapse of time, the nitrogen gas Is (Nm3/ton) to be blown into the molten steel is calculated according to the following formula (Step 6).

5−R−P             ・・・(2)但
し、Pは第2の配管系に接続された第2の孔群から既に
溶鋼に吹込まれている窒素ガス量(Nm3/トン)であ
る。なお、第1の添加パターンにおいては、Pは0であ
る。
5-R-P...(2) However, P is the amount of nitrogen gas (Nm3/ton) already blown into the molten steel from the second hole group connected to the second piping system. Note that in the first addition pattern, P is 0.

次に、所要吹込み量Sに基づいて、窒素ガスの所要吹込
み時1tを算出する。第1の配管系に接続された第1の
孔群から溶鋼に吹込まれるガスの流量をQl  (Nm
3/トン・秒)、第2の配管系に接続された第2の孔群
から溶鋼に吹込まれるガスの流量を02  (Nm”/
トン・秒)とすると、所要窒素ガス!Sを溶鋼に吹込む
のに必要な吹込み時間t(秒)は下記(3)式にて算出
される。
Next, based on the required blowing amount S, the required blowing time 1t of nitrogen gas is calculated. Ql (Nm
3/ton・sec), and the flow rate of the gas injected into the molten steel from the second hole group connected to the second piping system is 02 (Nm”/second).
tons/second), the required nitrogen gas! The injection time t (seconds) required to inject S into the molten steel is calculated using the following equation (3).

t−8/ (Ql +Q2 )       ・・・(
3)これにより、第1及び第2の配管系に供給するガス
の種類及び供給時間を制御している制御系に対し、転炉
吹錬が開始されてから所定時間to経過した時点以降の
第1及び第2の配管系に対する窒素ガスの供給時間をt
に設定する。
t-8/ (Ql +Q2) ...(
3) As a result, the control system that controls the type and supply time of gas to be supplied to the first and second piping systems is instructed to The supply time of nitrogen gas to the first and second piping systems is t
Set to .

次いで、転炉炉底のノズルから溶鋼への窒素ガスの吹込
みを開始した後、ノズルから溶鋼に吹込まれているガス
の流量を測定する(ステップ8)。
Next, after starting to blow nitrogen gas into the molten steel from the nozzle at the bottom of the converter, the flow rate of the gas being blown into the molten steel from the nozzle is measured (step 8).

この第1及び第2の配管系におけるガス流量の実測値Q
1*、Q2*を基に、窒素ガスの所要吹込み時間t*を
下記数式に従って再度算出する(ステップ9)。
Actual measurement value Q of gas flow rate in this first and second piping system
1* and Q2*, the required nitrogen gas blowing time t* is calculated again according to the following formula (step 9).

t*−8/ (Ql *十〇2 *)    ・・・(
4)そして、前記ガス吹込み制御系における窒素ガスの
供給時間の設定を変更し、窒素ガスの添加時間をtから
t*に修正する。
t*-8/ (Ql *102*) ...(
4) Then, change the setting of the nitrogen gas supply time in the gas blowing control system and correct the nitrogen gas addition time from t to t*.

転炉吹錬が開始されてから、一定時間経過した時点以降
、第1及び第2の孔群を介して溶鋼に窒素ガスを所要時
間tだけ吹込む。従って、窒素ガスの吹込みパターンは
、第5図及び第6図に示すようになり、第1のパターン
で溶鋼に窒素を添加する場合(第5図)には、第1及び
第2の孔群を介して、窒素ガスを、転炉吹錬開始後一定
時間to経過した時点からt*秒間だけ溶鋼に吹き込み
、第2の添加パターンにおいては(第6図)、第2の孔
群からは転炉吹錬開始時点からtl +t*時藺だけ溶
鋼に窒素ガスを吹込み、第、1の孔群からは転炉吹錬開
始後一定時間1.経過した後、時間t*だけ溶鋼に窒素
ガスを吹込む。
After a certain period of time has elapsed since the start of converter blowing, nitrogen gas is blown into the molten steel through the first and second hole groups for a required time t. Therefore, the nitrogen gas injection pattern is as shown in Figures 5 and 6, and when adding nitrogen to molten steel in the first pattern (Figure 5), the first and second holes are Nitrogen gas is blown into the molten steel for t* seconds after a certain period of time to has elapsed after the start of converter blowing, and in the second addition pattern (Fig. 6), nitrogen gas is Nitrogen gas is injected into the molten steel for tl + t * time from the start of converter blowing, and from the first hole group for a fixed time 1. After the elapse of time, nitrogen gas is blown into the molten steel for a time t*.

所要量の窒素ガスを溶鋼に吹き込んだ後は、溶鋼にCO
2ガス又はArガスを吹き込んで溶鋼の攪拌を継続し、
所要時間の酸素吹錬が終了した後、ランスからの酸素ガ
スの吐出を停止し、溶鋼を出鋼する。
After blowing the required amount of nitrogen gas into the molten steel, CO is added to the molten steel.
Continue stirring the molten steel by blowing 2 gas or Ar gas,
After the required time of oxygen blowing is completed, the discharge of oxygen gas from the lance is stopped and the molten steel is tapped.

このように構成された終点窒素濃度制御方法においては
、転炉吹錬開始後、一定時間to経過した時点での溶鋼
の窒素濃度[N]を、溶銑のチタン1度[Tilから推
定する(ステシブ2)。そして、転炉終点における窒素
濃度目標111[N]aとこの推定fll[N]cとか
ら、転炉吹錬中における所要窒素ピックアップ量Δ[N
]を求め(ステップ4)、窒素ガス吹込み曇と窒素ピッ
クアップ量との圀の予め求められた関係(第4図)から
、転炉において溶鋼に吹込むべき所要窒素ガス量を求め
る(ステップ5)。
In the end-point nitrogen concentration control method configured as described above, the nitrogen concentration [N] of the molten steel at a certain time to has elapsed after the start of converter blowing is estimated from the titanium 1 degree [Til] of the hot metal. 2). Then, from the nitrogen concentration target 111 [N]a at the end point of the converter and this estimated fll[N]c, the required nitrogen pickup amount Δ[N] during converter blowing is determined.
) is determined (Step 4), and the required amount of nitrogen gas to be injected into the molten steel in the converter is determined from the predetermined relationship between the nitrogen gas injection fog and the amount of nitrogen pickup (Fig. 4) (Step 5). ).

第1の添加パターンにおいては、溶銑を転炉に装入した
後、ランスを介して溶銑に酸素ガスを吹付け、酸素吹錬
を開始する。そして、所定の時間teが経過した後、第
1及び第2の孔群を介して窒素ガスを溶鋼に吹込む。所
要添加時mtは、一定時1111過後の窒素ガス所要吹
き込みIs (−Rステップ6)から前記(3)式に従
って求め、この添加時間tを転炉内ガス吹き込み制御系
に設定する。そして、30秒経過した時点で、第1及び
第2の孔群から溶鋼に吹き込まれているガスの流量を測
定し、この実測ガス流量に基づいて、前記(4)式に従
って、所要吹込み時mt*を算出し、制御系への窒素ガ
ス吹込み時間をtからt*に修正する。転炉吹錬開始後
、1+1*たけ経過した後、WImへの窒素ガスの吹込
みを停止する。
In the first addition pattern, after charging hot metal into a converter, oxygen gas is blown onto the hot metal through a lance to start oxygen blowing. After a predetermined time te has elapsed, nitrogen gas is blown into the molten steel through the first and second hole groups. The required addition time mt is determined from the required nitrogen gas blowing Is after the constant time 1111 (-R step 6) according to the above equation (3), and this addition time t is set in the converter gas blowing control system. Then, after 30 seconds have elapsed, the flow rate of the gas being blown into the molten steel from the first and second hole groups is measured, and based on this measured gas flow rate, the required blowing time is determined according to equation (4) above. Calculate mt* and correct the nitrogen gas blowing time into the control system from t to t*. After 1+1*times have elapsed after the start of converter blowing, the injection of nitrogen gas into WIm is stopped.

第2の添加パターンにおいては、酸素吹錬開始後、第2
の孔群を介して窒素ガスを溶鋼に吹き込むとともに、第
1の孔群からはGO2ガス又はArガスを溶鋼に吹き込
む。そして、所定の時間toが経過した後、第1の孔群
から吹込むガスを窒素ガスに切換え、第1及び第2の双
方の孔群を介して窒素ガスを溶鋼に吹込む。所要添加時
間tは、一定時間経過後の窒素ガス所要吹込み量5(−
R−P、ステップ6)から前記(3)に従って求め、こ
の添加時間tを転炉内ガス吹込み制御系に設定する。そ
して、30秒経過した時点で、第1及び12のノズル群
から溶鋼に吹込まれているガスの*mを測定し、この実
測ガス流量に基づいて、前記(4)式に従って、所要吹
込み時間t*を算出し、制御系への窒素ガス吹込み時間
をtからt*に修正する。転炉吹錬開始後、1+1*だ
け経過した後、溶鋼への窒素 ガスの吹き込みを停止する。
In the second addition pattern, after the start of oxygen blowing, the second
Nitrogen gas is blown into the molten steel through the first hole group, and GO2 gas or Ar gas is blown into the molten steel through the first hole group. After the predetermined time to has elapsed, the gas injected from the first hole group is switched to nitrogen gas, and the nitrogen gas is injected into the molten steel through both the first and second hole groups. The required addition time t is the required nitrogen gas injection amount 5 (-
RP, step 6), is determined according to (3) above, and this addition time t is set in the converter gas injection control system. Then, after 30 seconds have elapsed, *m of the gas being blown into the molten steel from the first and twelfth nozzle groups is measured, and based on this measured gas flow rate, the required blowing time is calculated according to the above equation (4). Calculate t* and correct the nitrogen gas blowing time into the control system from t to t*. After 1+1* has passed after the start of converter blowing, the blowing of nitrogen gas into the molten steel is stopped.

[発明の効果] この発明によれば、転炉の底部に設けたノズルから吹込
む窒素ガス量と溶鋼の窒素ピックアップ量との間の予め
求められた関係から、転炉内溶鋼の窒素濃度推定値を基
に、転炉内溶鋼に吹き込むべき窒素ガス量を求め、この
ガス量の窒素ガスを溶鋼に吹き込むから、転炉終点にお
ける溶鋼の窒素濃度を目標値に高精度で一致させること
ができる。また、溶銑比率等の操業条件の変動に対して
、窒素ガスの所要吹込み量を適切に設定することができ
るので、操業条件が多種多様化している現状においても
、転炉終点[N]のI11御精度が高い。
[Effects of the Invention] According to the present invention, the nitrogen concentration of molten steel in the converter can be estimated from the predetermined relationship between the amount of nitrogen gas injected from the nozzle provided at the bottom of the converter and the amount of nitrogen picked up in the molten steel. Based on the value, the amount of nitrogen gas to be injected into the molten steel in the converter is determined, and this amount of nitrogen gas is injected into the molten steel, making it possible to match the nitrogen concentration of the molten steel at the end point of the converter with high accuracy to the target value. . In addition, the required amount of nitrogen gas injection can be appropriately set in response to fluctuations in operating conditions such as the hot metal ratio, so even in the current situation where operating conditions are diversifying, the end point [N] of the converter can be adjusted. I11 has high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る終点窒素濃度制御方法
を示すフローチャート図、第2図及び第3図は溶銑のチ
タン濃度[Tilと窒素濃度[N]との関係を示すグラ
フ図、第4図は窒素ガス吹込み量と窒素ピックアップと
の関係を示すグラフ図、第5図及び第6図は窒素ガスの
吹込みパターンを示す模式図である。 出願人代理人 弁理士 鈴江武彦 第1図 第3図 ケタ〉シ駄 (v+)(岸4江Isイ杢、七−)第4図 N2力゛スp欠XΔシク」動  (N□3/トン)第5
図 第6図 ヒtO→ti
FIG. 1 is a flowchart showing the end point nitrogen concentration control method according to an embodiment of the present invention, FIGS. 2 and 3 are graphs showing the relationship between titanium concentration [Til] and nitrogen concentration [N] in hot metal; FIG. 4 is a graph showing the relationship between the nitrogen gas blowing amount and nitrogen pickup, and FIGS. 5 and 6 are schematic diagrams showing the nitrogen gas blowing pattern. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 3 digit〉Sida (v+) (Kishi 4E Is Is, 7-) Figure 4 N2 force p lack ton) 5th
Figure 6 Human O→ti

Claims (5)

【特許請求の範囲】[Claims] (1)転炉の底部に設けたノズルから吹込む窒素ガス量
と溶湯の窒素ピックアップ量との間の関係を予め求めて
おき、吹錬初期の溶湯の窒素濃度及び終点目標窒素濃度
から転炉において溶湯に添加すべき窒素の所要ピックア
ップ濃度を算出し、前記窒素ガス量と窒素ピックアップ
量との関係を基に前記窒素の所要ピックアップ濃度から
溶鋼に吹込むべき所要窒素ガス量を求め、この所要窒素
ガス量及び前記ノズルにおけるガス流量から窒素ガスの
所要吹込み時間を求め、転炉内溶鋼に窒素ガスを所要吹
込み時間だけ吹込むことを特徴とする上底吹き転炉にお
ける終点窒素濃度制御方法。
(1) The relationship between the amount of nitrogen gas blown in from the nozzle installed at the bottom of the converter and the amount of nitrogen picked up in the molten metal is determined in advance, and the relationship between the nitrogen concentration in the molten metal at the initial stage of blowing and the target nitrogen concentration at the end point is determined in advance. Calculate the required pickup concentration of nitrogen to be added to the molten metal, calculate the required amount of nitrogen gas to be blown into the molten steel from the required pickup concentration of nitrogen based on the relationship between the nitrogen gas amount and the nitrogen pickup amount, and calculate the required amount of nitrogen gas to be blown into the molten steel. End point nitrogen concentration control in a top-bottom blowing converter, characterized in that the required blowing time of nitrogen gas is determined from the amount of nitrogen gas and the gas flow rate in the nozzle, and nitrogen gas is injected into molten steel in the converter for the required blowing time. Method.
(2)ノズルは夫々複数個のガス吐出孔からなる第1及
び第2の孔群を有し、転炉吹錬開始後、所定時間経過し
た後、第1及び第2の孔群を介して窒素ガスを溶鋼に吹
込むことを特徴とする特許請求の範囲第1項に記載の上
底吹き転炉における終点窒素濃度制御方法。
(2) The nozzle has first and second hole groups each consisting of a plurality of gas discharge holes, and after a predetermined period of time has passed after the start of converter blowing, the nozzle A method for controlling the end point nitrogen concentration in a top-bottom blowing converter according to claim 1, which comprises blowing nitrogen gas into molten steel.
(3)ノズルは夫々複数個のガス吐出孔からなる第1及
び第2の孔群を有し、転炉吹錬開始後、第2の孔群を介
して窒素ガスを溶鋼に吹込み、所定時間経過した後、第
1及び第2の孔群を介して、所要ガス吹込み量から第2
の孔群を介して吹込まれたガス量を差し引いた量から求
められる所要吹込み時間だけ溶鋼に窒素ガスを吹込むこ
とを特徴とする特許請求の範囲第1項に記載の上底吹き
転炉における終点窒素濃度制御方法。
(3) The nozzle has first and second hole groups each consisting of a plurality of gas discharge holes, and after the start of converter blowing, nitrogen gas is blown into the molten steel through the second hole group. After the elapse of time, the required gas injection amount is changed to a second amount through the first and second hole groups.
A top-bottom blowing converter according to claim 1, characterized in that nitrogen gas is injected into the molten steel for the required blowing time determined from the amount obtained by subtracting the amount of gas injected through the hole group. End point nitrogen concentration control method.
(4)転炉吹錬開始後、第1及び第2の孔群から溶鋼に
吹込まれているガス流量を測定し、前記所要吹込み量及
び実測ガス流量から所要吹込み時間を算出し、ガス吹込
み時間を修正することを特徴とする特許請求の範囲第2
項又は第3項に記載の上底吹き転炉における終点窒素濃
度制御方法。
(4) After the start of converter blowing, measure the gas flow rate being blown into the molten steel from the first and second hole groups, calculate the required blowing time from the required blowing amount and the measured gas flow rate, and Claim 2, characterized in that the blowing time is modified.
A method for controlling the end point nitrogen concentration in a top-bottom blowing converter according to item 1 or 3.
(5)吹錬初期の溶湯の窒素濃度は溶鋼のチタン濃度か
ら推定することを特徴とする特許請求の範囲第1項に記
載の上底吹き転炉における終点窒素濃度制御方法。
(5) The end point nitrogen concentration control method in a top-bottom blowing converter according to claim 1, wherein the nitrogen concentration of the molten metal at the initial stage of blowing is estimated from the titanium concentration of the molten steel.
JP8398185A 1985-04-19 1985-04-19 Method for controlling end point concentration of nitrogen in top and bottom blown converter Granted JPS61243111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8398185A JPS61243111A (en) 1985-04-19 1985-04-19 Method for controlling end point concentration of nitrogen in top and bottom blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8398185A JPS61243111A (en) 1985-04-19 1985-04-19 Method for controlling end point concentration of nitrogen in top and bottom blown converter

Publications (2)

Publication Number Publication Date
JPS61243111A true JPS61243111A (en) 1986-10-29
JPH0557326B2 JPH0557326B2 (en) 1993-08-23

Family

ID=13817711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8398185A Granted JPS61243111A (en) 1985-04-19 1985-04-19 Method for controlling end point concentration of nitrogen in top and bottom blown converter

Country Status (1)

Country Link
JP (1) JPS61243111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102706A (en) * 2007-10-24 2009-05-14 Sumitomo Metal Ind Ltd Method for smelting high nitrogen steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213493A (en) * 1975-07-23 1977-02-01 Nippon Steel Corp Apparatus for treating molten slag
JPS5760010A (en) * 1980-09-27 1982-04-10 Kawasaki Steel Corp Blowing method for converter having bottom blowing tuyere
JPS5835244A (en) * 1981-08-27 1983-03-01 Yamaha Motor Co Ltd Operative cylinder selected engine
JPS58167708A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Method of controlling (n) in steel melt by top and bottom-blown converter furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213493A (en) * 1975-07-23 1977-02-01 Nippon Steel Corp Apparatus for treating molten slag
JPS5760010A (en) * 1980-09-27 1982-04-10 Kawasaki Steel Corp Blowing method for converter having bottom blowing tuyere
JPS5835244A (en) * 1981-08-27 1983-03-01 Yamaha Motor Co Ltd Operative cylinder selected engine
JPS58167708A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Method of controlling (n) in steel melt by top and bottom-blown converter furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102706A (en) * 2007-10-24 2009-05-14 Sumitomo Metal Ind Ltd Method for smelting high nitrogen steel

Also Published As

Publication number Publication date
JPH0557326B2 (en) 1993-08-23

Similar Documents

Publication Publication Date Title
CN111868268B (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
CN105177216B (en) A kind of method for judging the double slags of converter and carrying rifle opportunity
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
CN113661257A (en) Method for predicting splash in converter, method for operating converter, and system for predicting splash in converter
JPS61243111A (en) Method for controlling end point concentration of nitrogen in top and bottom blown converter
US4474361A (en) Oxygen-blown steelmaking furnace
JP5533058B2 (en) Blowing method, blowing system, low phosphorus hot metal manufacturing method, and low phosphorus hot metal manufacturing apparatus
JPH05263120A (en) Method for controlling blowing in converter
AU724385B2 (en) Method for controlling a smelting reduction process
US4148629A (en) Process for controlling a steel refining process for steels having a carbon content within the range of 0.1 to 0.8 % by weight
RU2493262C2 (en) Method of steelmaking in basic oxygen converter
JPS59568B2 (en) Oxygen converter blowing control method
JP7469646B2 (en) Converter blowing control device, statistical model building device, converter blowing control method, statistical model building method and program
CA1205290A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
KR100923793B1 (en) Slag coating method
US4334922A (en) Process for metal-bath refining
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
JP2001316713A (en) Method for controlling top-blown oxygen into oxygen steel making furnace
JPH0310012A (en) Steelmaking method in converter
KR19980080961A (en) Basic oxygen steelmaking method with iron oxide pellet adduct
JPH01230709A (en) Method for controlling blowing in converter
JPS6318014A (en) Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace
JPH11117013A (en) Converter blowing
JPH0520484B2 (en)