JPS61242966A - Method of joining ceramic rotor and metal rotation shaft - Google Patents

Method of joining ceramic rotor and metal rotation shaft

Info

Publication number
JPS61242966A
JPS61242966A JP60082307A JP8230785A JPS61242966A JP S61242966 A JPS61242966 A JP S61242966A JP 60082307 A JP60082307 A JP 60082307A JP 8230785 A JP8230785 A JP 8230785A JP S61242966 A JPS61242966 A JP S61242966A
Authority
JP
Japan
Prior art keywords
rotating shaft
boss
ceramic
joining
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60082307A
Other languages
Japanese (ja)
Inventor
顕臣 河野
山田 俊宏
内山 恭一
弘之 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60082307A priority Critical patent/JPS61242966A/en
Publication of JPS61242966A publication Critical patent/JPS61242966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、セラミック製回転体と金属製回転軸との接合
方法に係り、特に耐熱性が要求される部品に適用して好
適なセラミック製回転体と金属製回転軸との接合方法に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of joining a ceramic rotating body and a metal rotating shaft, and particularly relates to a ceramic rotating body suitable for application to parts that require heat resistance. This invention relates to a method of joining a body and a metal rotating shaft.

〔発明の背景〕[Background of the invention]

セラミック製回転体と金属製回転軸との接合方法の一例
として、例えば特開昭55−140771号公報に記載
されているように、セラミック製回転体と金属製回転軸
とを、両者の熱膨張差による焼ばめにより接合する方法
がある。
As an example of a method for joining a ceramic rotating body and a metal rotating shaft, for example, as described in Japanese Patent Application Laid-Open No. 55-140771, a ceramic rotating body and a metal rotating shaft are bonded together by thermal expansion of both. There is a method of joining by differential shrink fit.

しかし、この方法は、高温下では焼ばめ効果が消失する
ため、高温下で使用する部分に対してはセラミック製回
転体の軸を長くシ、高温側から離れた低温側で焼ばめし
なければならない。
However, with this method, the shrink-fit effect disappears at high temperatures, so the shaft of the ceramic rotating body must be lengthened for parts that will be used at high temperatures, and the shrink-fit must be performed on the low-temperature side, away from the high-temperature side. Must be.

一方、低温側で焼ばめあるいは接合する方法では、次の
ような問題点がある。
On the other hand, methods of shrink fitting or joining at a low temperature have the following problems.

(1)長いセラミック製軸とセラミック製回転体の一体
成形は困難で歩留りが悪く、また、欠陥が生じやすく信
頼性が低い。
(1) It is difficult to integrally mold a long ceramic shaft and a ceramic rotating body, resulting in poor yield, and is also prone to defects and low reliability.

(2)長いセラミック製軸付回転体では、それだけセラ
ミック部の加工時間が長く、経済的に問題がある。
(2) In the case of a long ceramic rotating body with a shaft, the machining time of the ceramic part is correspondingly long, which is an economical problem.

(3)稼動中、セラミック製軸あるいはセラミックと金
属との接合部で破損した場合、軸受部の潤滑オイルが高
温側に流入し、安全上問題となる。
(3) If the ceramic shaft or the joint between ceramic and metal breaks during operation, the lubricating oil in the bearing will flow into the high temperature side, creating a safety problem.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の従来技術の問題点に鑑みてなされたも
ので、耐熱性を向上させた金属回転軸付きセラミック製
回転体を安価に製作しうるセラミック製回転体と金属製
回転軸との結合方法の提供を、その目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a combination of a ceramic rotating body and a metal rotating shaft, which makes it possible to inexpensively produce a ceramic rotating body with a metal rotating shaft that has improved heat resistance. Its purpose is to provide a binding method.

〔発明の概要〕[Summary of the invention]

本発明の係るセラミック製回転体と金属製回転軸との接
合方法は、セラミック製回転体の軸心と同心に突設させ
たボス部を、金属製回転軸の軸心と同心に設けた。前記
ボス部の直径より大ぎい径の穴に、前記ボス部の外周面
と前記穴の内周面とが微小間隙を保持するように挿入し
、前記ボス部の端面と前記穴の底面とを接触させて同相
接合するものである。
In the method of joining a ceramic rotating body and a metal rotating shaft according to the present invention, a boss portion that protrudes concentrically with the axis of the ceramic rotating body is provided concentrically with the axis of the metal rotating shaft. The boss is inserted into a hole having a diameter larger than the diameter of the boss so that a minute gap is maintained between the outer circumferential surface of the boss and the inner circumferential surface of the hole, and the end surface of the boss and the bottom of the hole are connected. They are brought into contact to form an in-phase junction.

なお、本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

先に述べた従来技術の問題点、すなわち、信頼性、経済
性および安全性の点から、セラミック製回転体の軸は短
くし、長い金属製回転軸付きセラミック製回転体とする
ようにした。
In view of the problems of the prior art described above, namely reliability, economy and safety, the shaft of the ceramic rotating body is shortened and a ceramic rotating body with a long metal rotating shaft is used.

しかし、この場合には、前記のような焼ばめ構造では耐
熱性が問題となる。そこで、セラミックスが金属に比較
して熱伝導性が低いという特性を利用して、接合部の構
造上から低熱性の向上を図ることを考えた。すなわち、
接合部が直接高温雰囲気にさらされず、かつ、金属製回
転軸からの熱伝達を遮断するような構造とした。セラミ
ック製回転体のボス外周面と金属製回転軸に設けた穴の
内面とに間隙を保持できるよう、前記穴の直径を大きく
し、前記ボス端面と穴の底面とを接合する構造とした。
However, in this case, heat resistance becomes a problem in the shrink-fit structure as described above. Therefore, we considered using the characteristic that ceramics have lower thermal conductivity than metals to improve the low thermal conductivity of the joint structure. That is,
The structure is such that the joints are not directly exposed to high-temperature atmosphere, and also blocks heat transfer from the metal rotating shaft. In order to maintain a gap between the outer peripheral surface of the boss of the ceramic rotating body and the inner surface of the hole provided in the metal rotating shaft, the diameter of the hole is increased, and the end surface of the boss is joined to the bottom surface of the hole.

このことにより、金属製回転軸とセラミック製ボス部と
は直接接触せず、また、直接高温雰囲気にさらされない
ので、接合部への熱負荷は減少できる。
As a result, the metal rotating shaft and the ceramic boss are not in direct contact with each other and are not directly exposed to a high temperature atmosphere, so that the thermal load on the joint can be reduced.

また、オイルリング溝より低温側へ離れた箇所を接合位
置とした。これは、軸受潤滑オイルで接合部を冷却する
ことを考えたものである。
In addition, the joining position was located at a location farther away from the oil ring groove toward the lower temperature side. This was designed to cool the joints using bearing lubricating oil.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第】図および第2図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS.

第1図は、本発明の一実施例に係るセラミック製羽根車
と金属製回転軸との接合方法を示すターボチャージャロ
ータの接合部断面図、第2図は、第1図のターボチャー
ジャと従来の金属製ターボチャージャとの実験比較で、
タービン入口温度と接合部温度との関係を示す線図であ
る。
FIG. 1 is a cross-sectional view of a joining part of a turbocharger rotor showing a method of joining a ceramic impeller and a metal rotating shaft according to an embodiment of the present invention, and FIG. 2 shows the turbocharger of FIG. 1 and a conventional one. In an experimental comparison with a metal turbocharger,
FIG. 3 is a diagram showing the relationship between turbine inlet temperature and junction temperature.

本実施例は、耐熱性が要求されるターボチャージャ部品
に本発明を適用したものである。
In this embodiment, the present invention is applied to a turbocharger component that requires heat resistance.

第1図において、1は、セラミック製回転体に係るSi
3N、製羽根車、2は、その回転軸心と同心に突設させ
たボス部、3は、金属製回転軸に係るC r −M o
鋼製回転軸、4は、回転軸3の段付き大径部3aに、回
転軸心と同心に形成した穴で、この穴4は、前記ボス部
2の外径より大きい内径に加工されている。
In FIG. 1, 1 is Si related to the ceramic rotating body.
3N, an impeller made of impeller; 2, a boss protruding concentrically with the rotation axis; 3, Cr-Mo related to the metal rotation axis;
The steel rotating shaft 4 is a hole formed in the stepped large diameter portion 3a of the rotating shaft 3 so as to be concentric with the rotation axis, and the hole 4 is machined to have an inner diameter larger than the outer diameter of the boss portion 2. There is.

Cr−Mo鋼製回転軸3の大径部3aには、オイルリン
グ溝6が形成されており、このオイルリング溝6は、軸
受部7の潤滑油をシールするためのものである。
An oil ring groove 6 is formed in the large diameter portion 3a of the Cr-Mo steel rotary shaft 3, and this oil ring groove 6 is for sealing the lubricating oil of the bearing portion 7.

このようなSi3N4製羽根車1のボス部2を、Cr−
M o鋼製回転軸3の穴4に、前記ボス部2の外周面と
前記穴4の内周面とが接触しないように、すなわち、微
小間隙を保持するように挿入し、ボス部2の端面2aと
穴4の底面4aとを接触させ、固相接合方法のひとつで
ある拡散接合を、AQインサート材5を介して行って接
合した。
The boss portion 2 of such a Si3N4 impeller 1 is made of Cr-
M o Insert the boss part 2 into the hole 4 of the steel rotating shaft 3 so that the outer circumferential surface of the boss part 2 and the inner circumferential surface of the hole 4 do not contact each other, that is, maintain a small gap. The end surface 2a and the bottom surface 4a of the hole 4 were brought into contact, and diffusion bonding, which is one of the solid phase bonding methods, was performed via the AQ insert material 5 to bond them.

この接合位置は、前記オイルリング溝6より低温側へ離
れた位置となるよう、穴4の深さおよびボス部2の長さ
を調整して決めている。
This joining position is determined by adjusting the depth of the hole 4 and the length of the boss portion 2 so that it is located away from the oil ring groove 6 toward the lower temperature side.

本実施例のターボチャージャと、従来のCr −Moの
鋼製ターボチャージャについて、タービン入1コガス温
度と接合部温度との関係を比較実験した結果を第2図に
示す。
FIG. 2 shows the results of a comparative experiment on the relationship between the turbine input cogas temperature and the joint temperature for the turbocharger of this embodiment and a conventional Cr-Mo steel turbocharger.

第2図において、実線および黒丸印が本実施例のターボ
チャージャ、破線および黒三角印が従来の金属製ターボ
チャージャのデータを示している。
In FIG. 2, solid lines and black circles indicate data for the turbocharger of this embodiment, and broken lines and black triangles indicate data for a conventional metal turbocharger.

本実験結果によれば、図から明らかなように、本実施例
のものの接合部温度が低くなっている。
According to the results of this experiment, as is clear from the figure, the junction temperature of this example is low.

タービン入口温度が上昇するにつれ、接合部の温度は上
昇するが、タービン入口温度950℃において、本実施
例のものの接合部温度は約320℃である。
As the turbine inlet temperature increases, the temperature of the joint increases, and at a turbine inlet temperature of 950°C, the joint temperature of this example is about 320°C.

したがって、低融点のAQC融点約660℃)をインサ
ート材とした接合でも耐熱性に問題のないことが分る。
Therefore, it can be seen that there is no problem in heat resistance even when joining using low melting point AQC (melting point: about 660° C.) as an insert material.

このように接合部の温度が従来例に比較して上昇しない
理由は、Si3N4製羽根車のボス部2の外周と、Cr
 −M o鋼製回転軸に設けた穴4の内周とが直接接触
していないこと、接合部が直接高温ガス雰囲気にさらさ
れていないことおよび軸受用潤滑オイルで間接的に冷却
されていることによるものである。
The reason why the temperature of the joint does not rise compared to the conventional example is that the outer periphery of the boss part 2 of the Si3N4 impeller and the Cr
-Mo There is no direct contact with the inner periphery of the hole 4 in the steel rotating shaft, the joint is not directly exposed to a high-temperature gas atmosphere, and it is indirectly cooled with bearing lubricating oil. This is due to a number of things.

本実施例によれば、ターボチャージャロータの耐熱性を
向上させるとともに、次のような効果がある。
According to this embodiment, the heat resistance of the turbocharger rotor is improved and the following effects are achieved.

従来の焼ばめによる接合では、セラミック製回転体のボ
ス部と金属製回転軸に設ける嵌合穴との加工寸法精度は
±5μm以下にしなければならないが、本実施例の場合
は、±50μm程度でもよい。したがって、加工コスト
が減少する。
In conventional joining by shrink fit, the machining dimensional accuracy between the boss part of the ceramic rotating body and the fitting hole provided in the metal rotating shaft must be ±5 μm or less, but in the case of this example, it is ±50 μm. It may be a degree. Therefore, processing costs are reduced.

また、金属製回転軸の直径が5mm以下の部品に対して
は、従来は機械加工における寸法精度の点から十分な焼
ばめ代がとれず、実用上焼ばめが不可能であった。しか
し、本実施例のような接合方法では金属製回転軸の直径
には左右されずに接合が可能である。
Furthermore, for parts whose metal rotating shafts have a diameter of 5 mm or less, conventionally it has not been possible to provide a sufficient shrink fit allowance from the viewpoint of dimensional accuracy in machining, making shrink fit practically impossible. However, with the joining method of this embodiment, joining is possible regardless of the diameter of the metal rotating shaft.

なお、前述の実施例では、ターボチャージャロータのS
L、 N4製羽根車およびCr −M o @l ie
i回転軸の接合例を説明したが、本発明はこれに限るも
のではなく、同様の効果が期待される範囲で、耐熱性が
要求されるセラミック製回転体と金属製回転軸からなる
部品に、汎用的に適用できる方法である。
In addition, in the above-mentioned embodiment, S of the turbocharger rotor
L, N4 impeller and Cr-Mo@lie
i Although an example of joining a rotating shaft has been described, the present invention is not limited to this, and can be applied to parts consisting of a ceramic rotating body and a metal rotating shaft that require heat resistance, within the range where the same effect is expected. , is a method that can be applied universally.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、耐熱性を向上させ
た金属回転軸付きセラミック製回転体を安価に製作しう
るセラミック製回転体と金属製回転軸との結合方法を提
供することができる。
As described above, according to the present invention, it is possible to provide a method for joining a ceramic rotating body and a metal rotating shaft, which allows manufacturing a ceramic rotating body with a metal rotating shaft with improved heat resistance at low cost. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係るセラミック製羽根車
と金属製回転軸との接合方法を示すターボチャージャロ
ータの接合部断面図、第2図は、第1図のターボチャー
ジャと従来の金属製ターボチャージャとの実験比較で、
タービン入口温度と接合部温度との関係を示す線図であ
る。
FIG. 1 is a cross-sectional view of a joining part of a turbocharger rotor showing a method of joining a ceramic impeller and a metal rotating shaft according to an embodiment of the present invention, and FIG. 2 shows the turbocharger of FIG. 1 and a conventional one. In an experimental comparison with a metal turbocharger,
FIG. 3 is a diagram showing the relationship between turbine inlet temperature and junction temperature.

Claims (1)

【特許請求の範囲】 1、セラミック製回転体の軸心と同じに突設させたボス
部を、金属製回転軸の軸心と同心に設けた、前記ボス部
の直径より大きい径の穴に、前記ボス部の外周面と前記
穴の内周面とが微小間隙を保持するように挿入し、前記
ボス部の端面と前記穴の底面とを接触させて固相接合す
ることを特徴とするセラミック製回転体と金属製回転軸
との接合方法。 2、特許請求の範囲第1項記載の方法において金属製回
転軸にオイルリング溝を設け、セラミック製回転体のボ
ス端面と金属製回転軸の内底面との接合部を、前記オイ
ルリング溝より低温側に位置せしめるようにしたセラミ
ック製回転体と金属製回転軸との接合方法。
[Scope of Claims] 1. A boss protruding in the same direction as the axis of the ceramic rotating body is inserted into a hole having a diameter larger than the diameter of the boss, which is provided concentrically with the axis of the metal rotating shaft. , the boss is inserted so that an outer circumferential surface of the boss and the inner circumferential surface of the hole maintain a small gap, and the end face of the boss is brought into contact with the bottom of the hole to perform solid phase welding. A method of joining a ceramic rotating body and a metal rotating shaft. 2. In the method described in claim 1, an oil ring groove is provided in the metal rotating shaft, and the joint portion between the boss end face of the ceramic rotating body and the inner bottom surface of the metal rotating shaft is separated from the oil ring groove. A method of joining a ceramic rotating body and a metal rotating shaft, which are positioned on the low temperature side.
JP60082307A 1985-04-19 1985-04-19 Method of joining ceramic rotor and metal rotation shaft Pending JPS61242966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082307A JPS61242966A (en) 1985-04-19 1985-04-19 Method of joining ceramic rotor and metal rotation shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082307A JPS61242966A (en) 1985-04-19 1985-04-19 Method of joining ceramic rotor and metal rotation shaft

Publications (1)

Publication Number Publication Date
JPS61242966A true JPS61242966A (en) 1986-10-29

Family

ID=13770897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082307A Pending JPS61242966A (en) 1985-04-19 1985-04-19 Method of joining ceramic rotor and metal rotation shaft

Country Status (1)

Country Link
JP (1) JPS61242966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248780A (en) * 1987-04-02 1988-10-17 株式会社東芝 Ceramic structure
JPH04321814A (en) * 1990-10-16 1992-11-11 Dornay Technol Gmbh Coupled body of metallic body and ceramic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248780A (en) * 1987-04-02 1988-10-17 株式会社東芝 Ceramic structure
JPH04321814A (en) * 1990-10-16 1992-11-11 Dornay Technol Gmbh Coupled body of metallic body and ceramic body

Similar Documents

Publication Publication Date Title
JPS5924242B2 (en) Turbine rotor structure
JPH037367Y2 (en)
US4798320A (en) Ceramic-metal brazed joint for turbochargers
JPS6278172A (en) Bonded structure of ceramic to metal
JP2531708Y2 (en) Ceramic / metal composite
JPS62191478A (en) Ceramics-metal bonded body
JPS61242966A (en) Method of joining ceramic rotor and metal rotation shaft
JPS63139075A (en) Ceramic-metal joined body, manufacture and joining apparatus
JP3174979B2 (en) Rotating body of ceramic and metal
JPS6227380A (en) Method of joining axis of ceramic structure to boss of metalstructure
JPH0260635B2 (en)
JPS638273A (en) Method of joining ceramic member to metal member
JPH09272021A (en) Manufacture of turbine rotor
JP2650372B2 (en) Method of joining ceramic member and metal member
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPS59159409A (en) Mechanical element
JPS6177682A (en) Structure for bonding ceramic and metal
JPS61219534A (en) Composite material of ceramic and metal
JPH0627761Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JPH0350241Y2 (en)
JP2557556B2 (en) Bonded body of ceramics and metal and method of manufacturing the same
JPH0744722Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JPS6217413A (en) Connecting structure of shaft member
JPS60132002A (en) Turbine assembly for turbo charger
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof