JPS61242964A - Joined body and joining method of oxide base ceramic and metal - Google Patents

Joined body and joining method of oxide base ceramic and metal

Info

Publication number
JPS61242964A
JPS61242964A JP8185185A JP8185185A JPS61242964A JP S61242964 A JPS61242964 A JP S61242964A JP 8185185 A JP8185185 A JP 8185185A JP 8185185 A JP8185185 A JP 8185185A JP S61242964 A JPS61242964 A JP S61242964A
Authority
JP
Japan
Prior art keywords
metal
ceramics
oxide
ceramic
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185185A
Other languages
Japanese (ja)
Inventor
一安 六夫
亮 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8185185A priority Critical patent/JPS61242964A/en
Publication of JPS61242964A publication Critical patent/JPS61242964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は、ジルコニア、アルミナ、シリカ、マグネシア
等の酸化物を主体とする酸化物系セラミ、クスと銅、ニ
ッケル、ステンレス等の金属、合金(本明細書中では合
金も含め金属と記す)との接合体、および接合方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention is applied to oxide-based ceramics and clays mainly composed of oxides such as zirconia, alumina, silica, and magnesia, and metals and alloys such as copper, nickel, and stainless steel. (herein referred to as metal including alloys) and a joining method.

口)従来の技術 セラミックスは優れた耐熱、耐食、耐摩耗性を有してい
るがこれを有効に利用しようとするとセラミックスの脆
性すなわち衝死に弱いことが難点であり、構造材として
使用するときは靭性のすぐれている金属との接合体とし
て使用するのがもつとも望ましい。この方法によシセラ
ミックスの用途も大きく拓けるものである。
口)Conventional technology Ceramics have excellent heat resistance, corrosion resistance, and wear resistance, but when trying to utilize them effectively, the difficulty is that ceramics are brittle, that is, vulnerable to shock, and when used as structural materials. It is desirable to use it as a bonded body with a metal that has excellent toughness. This method can greatly expand the applications of ceramics.

セラミックスと金属との接合に関しては種々研究が行な
われている。すなわち有機、無機などの接着剤によるも
の、焼ばめなどKよる機械的な接合等もあり、最近はす
ぐれた接着剤も開発され、それ相当の評価がなされてい
る。しかしながら耐熱性接合強度などの点で化学反応、
拡散浸透効果による接合、いわゆるメタライズ法が最も
優れているものである。
Various studies have been conducted on bonding ceramics and metals. That is, there are methods such as those using organic or inorganic adhesives, mechanical joining using K such as shrink fitting, etc., and recently excellent adhesives have been developed and are being evaluated accordingly. However, chemical reactions and
The most excellent bonding method is the so-called metallization method, which uses the diffusion-penetration effect.

このメタライズ法は以下の3種に大分されている。This metallization method is roughly divided into the following three types.

■ 高融点金属法とも言われるもので、Mo 、 M。■It is also called the high melting point metal method, and Mo, M.

−Mn r W r W−Mnまたはこれらにカオリン
等を添加し、バインダーと混合し加湿水素中で1600
℃前後に加熱しMo+Wを浸透させ、これにN1メ、キ
等を行なって、さらに接合金属とロク付をする方法。接
合機構はMnはMnOとなクセラミック中にに溶は込み
、またMoは若干酸化されてセラミック相のガラス相お
よびN1メッキ相に浸透し接合するものである。
-Mn r W r W-Mn or kaolin etc. are added to these, mixed with a binder and heated to 1600 in humidified hydrogen.
A method of heating the material to around ℃ to infiltrate Mo+W, applying N1 holes, holes, etc., and then locking it with the joining metal. The bonding mechanism is that Mn melts into the ceramic to form MnO, and Mo is slightly oxidized and penetrates into the glass phase of the ceramic phase and the N1 plating phase to bond.

■ Au、Pt、Pd等の塑性変型し易い貴金属箔をセ
ラミックスと金属の間に挾み圧着する方法。この場合ホ
ウトゲレス、熱間アイソスタティックプレス(熱間静水
圧プレス)等を利用するとよシ強固な接合が可能ともい
われている。
■ A method in which a precious metal foil such as Au, Pt, or Pd, which is easily deformed plastically, is sandwiched between ceramics and metal and crimped. In this case, it is said that even stronger bonding can be achieved by using hot gelless, hot isostatic press (hot isostatic press), or the like.

■ セラミックスと金属との間に容易に化学反応を起こ
す中間インサート材を介在させ、これを介して接合する
方法。該インサート材としては一般に酸化鋼、硫化鋼、
クロム酸ランタン、炭酸鋼、チタン酸鋼、さらKこれら
に接合するセラミ、クスの粉末又はカオリン等を添加し
たものが知られている。接合に際しては上記インサート
材をセラミックと金属との間に挿入し酸化雰囲気中で加
熱しセラミ、り相に浸透させた後還元雰囲気で接合せし
める方法ま九は酸化雰囲気のみで接合させる法すなわち
酸化鋼のように酸化雰囲気にてセラミックス相に浸透す
ると同時K、一方では熱分解によシ銅を析出させこれと
金属を結合させるといった方法がある。すなわち機構的
には一方でセラミ、クスと中間インサート材が融和浸透
し、他方では中間インサート材を還元し接合すべき金属
と接合させるものである。
■ A method of joining ceramics and metal by interposing an intermediate insert material that easily causes a chemical reaction. The insert materials are generally oxidized steel, sulfided steel,
Known materials include lanthanum chromate, carbonate steel, titanate steel, and K to which ceramic, camphor powder, kaolin, etc. are added. When joining, the above insert material is inserted between the ceramic and the metal, heated in an oxidizing atmosphere, permeated into the ceramic, and then joined in a reducing atmosphere. There is a method in which copper is simultaneously infiltrated into the ceramic phase in an oxidizing atmosphere, as in the above method, and on the other hand, copper is precipitated by thermal decomposition and the metal is bonded to the deposited copper. That is, mechanically, on the one hand, the ceramic, the wood, and the intermediate insert material are fused and penetrated, and on the other hand, the intermediate insert material is reduced and bonded to the metal to be joined.

以上の3つの方法については、■の方法は工数が多く、
■の方法では貴金属自体が高価である、■の方法、すな
わちインサート材を使用する方法が現在もっとも注目を
注びている。
Regarding the above three methods, method ■ requires a lot of man-hours;
In the method (2), the precious metal itself is expensive, and the method (2), that is, the method using an insert material, is currently attracting the most attention.

ハ)発明が解決しようとする問題点 インサート材を使用する方法においてアルミナ系、マグ
ネシア系、シリカ系などの酸化物系セラミックスでは接
合に成功している例は種々報告されている。しかしZr
O□を90%以上含むジルコニア系のセラミックスに関
しては前記■、■の方法での接合は種々報告されている
が、インサート材を利用する方法では接合は不可能か゛
または極めて脆弱なもので実用には至っていない。
C) Problems to be Solved by the Invention Various examples have been reported in which oxide-based ceramics such as alumina-based, magnesia-based, and silica-based ceramics have been successfully joined by methods using insert materials. However, Zr
Regarding zirconia ceramics containing 90% or more of O has not yet been reached.

本発明はこれら一般の酸化物系セラミックスのみならず
ジルコニア系セラミックスと金属との接合体およびその
接合方法の提供を目的とするものである。
The object of the present invention is to provide not only these general oxide ceramics but also a bonded body of zirconia ceramics and metal, and a method for bonding the same.

二)問題点を解決するだめの手段 本発明者らは、ジルコニアの安定性に着目し、強力還元
による生成相を考慮した結果、重量%で少なくともCa
15〜80チ、SiおよびUのうちla!又は2種で2
0〜85%を含有する合金の薄板または粉末または該粉
末にバインダーを添加したもの等をインサート材として
接合すべき酸化物系セラミックスと金属との間に挾みこ
み、非酸化性雰囲気中で900℃以上該接合すべき金属
の融点以下の加熱処理することにょシ従来接合が不可能
であったジルコニア系セラミックスを含め酸化物系セラ
ミックスと金属が前記インサート材の構成元素と酸化物
系セラミックスならびに該金属の構成元素を含有する属
を介して1体化している接合体を得ることに成功した。
2) Means to solve the problem The present inventors focused on the stability of zirconia, and as a result of considering the phase formed by strong reduction, the inventors found that at least Ca
15-80 Chi, Si and U of la! Or 2 types
A thin plate or powder of an alloy containing 0 to 85% or a binder added to the powder is inserted as an insert material between the oxide ceramics to be joined and the metal, and heated at 900°C in a non-oxidizing atmosphere. The heat treatment below the melting point of the metals to be joined allows oxide ceramics and metals, including zirconia ceramics, which conventionally have been impossible to join, to the constituent elements of the insert material, oxide ceramics, and metals. We succeeded in obtaining a zygote that is integrated through the genus containing the constituent elements.

ホ)作用 ジルコニア系セラミックスは化学的に安定であシ、かつ
融点が高いため酸化銅、硫化銅などがアルミナ系セラミ
、クスに比較して浸透しがたいために拡散層が成長せず
酸化還元接合ははく離してしまう。しかし本発明におい
ては強力な還元剤であるカルシワムによってイオン結合
のジルコニアを還元し、セラミックス表面に直接Zrの
金属接合ないしこれに近い組織を生せしめ、これとイン
サート材との化合物によ多金属とを接合させるものと予
想される。  ゛ ジルコニア系セラミックス表面を有効に還元しうるもの
としてはCa r Be r Sr * Y r希土類
元素など考えられるが、Ca以外は取扱いに難点がある
e) Function Zirconia ceramics are chemically stable and have a high melting point, so it is difficult for copper oxide, copper sulfide, etc. to penetrate compared to alumina ceramics and glass, so a diffusion layer does not grow and oxidation reduction occurs. The bond will separate. However, in the present invention, the ionic bonded zirconia is reduced using calcium, which is a strong reducing agent, to form a Zr metal bond or a structure similar to this directly on the ceramic surface, and the compound of this and the insert material forms a multi-metal bond. It is expected that the two will be joined together. Rare earth elements such as CarBerSr*Yr can be considered as elements that can effectively reduce the surface of zirconia ceramics, but there are difficulties in handling them other than Ca.

酸化防止策を購すれば有効となろう。Purchasing antioxidant measures may be effective.

ジルコニアを還元するため、生成ジルコニウムと金属と
の拡散のためには900℃以上の温度が必要であり、ま
たこの接合反応が起こる以前にインサート材が融化する
とぬれ性の関係で均一な接合を得ることが出来なくなる
ので、インサート材の融点は900℃以上の必要がある
。Caの融点はおよそ800℃であるが、これを合金化
して900℃以上に融点を上昇させておく必要があプ、
適当なものとして還元性能を考慮して8に、Alの1種
又は2wIを適宜添加した組成の合金が考えられる。
In order to reduce zirconia, a temperature of 900°C or higher is required for the diffusion of the generated zirconium and metal, and if the insert material melts before this joining reaction occurs, a uniform bond can be obtained due to wettability. Therefore, the melting point of the insert material must be 900°C or higher. The melting point of Ca is approximately 800°C, but it is necessary to alloy it to raise the melting point to 900°C or higher.
A suitable alloy may be an alloy having a composition in which one type of Al or 2wI is appropriately added to 8 in consideration of reducing performance.

次にCaの成分限定理由を述べる。Ca含有量が1st
s未満では十分な還元反応が得られず、また80係を越
えると融点が900℃以下になり、良好な接合が翁1ら
れなくなるのでCa含有量は15係以上80qb以下と
した。なお本発明において、上記Ca、Sl、AA以外
の元素が含有されていても、Caの強力な還元力と、融
点900℃以上になっていればその他の元素の存在はと
くに間堰とならないと考えられる。
Next, the reason for limiting the Ca content will be described. Ca content is 1st
If the Ca content is less than 80%, a sufficient reduction reaction cannot be obtained, and if it exceeds 80%, the melting point will be 900° C. or less, making it impossible to achieve good bonding. In the present invention, even if elements other than the above-mentioned Ca, Sl, and AA are contained, as long as Ca has a strong reducing power and a melting point of 900°C or higher, the presence of other elements will not act as a barrier. Conceivable.

加熱処理温度は、前述したよう忙ジルコニアを還元する
ためにも、また生成ジルコニウムと金属 ゛との拡散の
ためにも900℃以上が必要とされる。
The heat treatment temperature is required to be 900° C. or higher, as mentioned above, in order to reduce the zirconia and also to diffuse the produced zirconium and metal.

また上限としては接合すべき金属の融点以下とした。The upper limit was set to be below the melting point of the metals to be joined.

加熱雰囲気は、乾燥水素雰囲気、不活性ガス雰囲気、真
空中などインサート材中のCaの酸化消費のない雰囲気
、つまシ非酸化性雰囲気であることが大切である。
It is important that the heating atmosphere be a dry hydrogen atmosphere, an inert gas atmosphere, a vacuum, or other atmosphere in which Ca in the insert material is not consumed by oxidation, or a non-oxidizing atmosphere.

また、加熱処理時に、わずかな圧力を接合体にかけるこ
とも本発明では考えられ、接合強度向上に寄与する。
The present invention also considers applying a slight pressure to the bonded body during heat treatment, which contributes to improving the bonding strength.

へ)実施例 本発明を以下実施例に基づき説明する@〔実施例1〕 第1表の試料41.2に示す組成のCa−Si合金を1
50メツシユ以下に粉砕して、この粉末にイソプロピル
アルコールを添加1.−e−スト状にした。そしてこの
ペースト状になったCa−Si合金を90 % ZrO
2以上のジルコニアセラミ、クスとCu(厚さ0.4 
wm )板の間に50岬/art”の割合で塗布し10
50℃、水素雰囲気中で20分間保持、接合せしめた。
Example 1 The present invention will be explained based on the following example.
Grind into 50 mesh or less and add isopropyl alcohol to this powder.1. -e- It was made into a strip shape. Then, this pasty Ca-Si alloy was mixed with 90% ZrO.
Zirconia ceramic of 2 or more, Cu and Cu (thickness 0.4
wm) Apply between the boards at a rate of 50 cape/art” and 10
The bonding was carried out at 50° C. for 20 minutes in a hydrogen atmosphere.

この接合体のCu板表面に鋼製のφ10の棒材を銀ロー
付し、引張試験を行なった結果も第1表に示す。試料&
1,2ともに強固に接合しておりそれぞれ7.0ゆ一!
、7.2にシー2の接合強度を示している。
Table 1 also shows the results of a tensile test performed on a steel bar of diameter 10 with silver brazing on the surface of the Cu plate of this joined body. sample&
Both 1 and 2 are strongly connected and each has a rating of 7.0 Yuichi!
, 7.2 shows the bonding strength of Sea 2.

比較例として、第1表の試料A3に示す、Ca10%の
Ca −Si合金を用いて上記と同様の条件で接合を試
みたが、接合体は得られなかった。また、インサート材
としてこれまでに知られているCuO(試料A4 )、
CuS (試料扁5)の150メツシエ粉末とアルミナ
粉とを混合し、90 ’16 Z ro 2以上のジル
コニアセラミ、クスの表面に塗布径大気中で1250℃
、30分間保持しつぎに該塗布面にCu板(厚さ4 m
 )を重ね水素雰囲気中で1000℃、20分間保持し
接合を試みたが、やは多接合体は得られなかった。
As a comparative example, welding was attempted using a Ca-Si alloy containing 10% Ca as shown in Sample A3 in Table 1 under the same conditions as above, but no joined body was obtained. In addition, CuO (sample A4), which has been known as an insert material,
Mix 150 mesh powder of CuS (sample flat 5) and alumina powder, apply to the surface of zirconia ceramic of 90'16 Z ro 2 or more, and heat to 1250°C in the atmosphere.
, held for 30 minutes, and then a Cu plate (4 m thick) was placed on the coated surface.
) were stacked and held at 1000° C. for 20 minutes in a hydrogen atmosphere to attempt bonding, but a multi-bonded body could not be obtained.

〔実施例2〕 第1表の試料扁6の501Caを含有するCa−8五合
金を150メツシエに粉砕して、イソプロピルアルコー
ルを添加しく一スト状にした。この(−スト状になった
Ca−Si合金をアルミナセラミックスとNl板(厚さ
4 wr )の間に70岬2−の割合で塗布し水素雰囲
気中、1200℃で201”76rtt”の圧力をかけ
た状態で30分間加熱、保持した。
[Example 2] The Ca-8 pentalloy containing 501Ca of sample plate 6 in Table 1 was ground to 150 pieces and made into a single stroke shape with the addition of isopropyl alcohol. This Ca-Si alloy in the form of a strip was applied between the alumina ceramics and the Nl plate (thickness 4 wr) at a ratio of 70 to 2, and a pressure of 201"76 rtt" was applied at 1200°C in a hydrogen atmosphere. The mixture was heated and held for 30 minutes.

冷却後に、実施例1と同様な引張試験を実施した結果、
接合強度は7.0 kg/1m”を示した。
After cooling, a tensile test similar to Example 1 was conducted, and the results were as follows:
The bonding strength was 7.0 kg/1m''.

本発明において接合時に前述のようにわずかな圧力をか
けることによシ良好な接合を得ることが可能であろう。
In the present invention, it may be possible to obtain a good bond by applying a slight pressure during bonding as described above.

第1表の試料S7,8のCa−Al、 Ca−8k−A
1合金を150メツシユに粉砕して、イソプロピルアル
コールを添加しペースト状にした。このペースト状にな
ったCa−A1合金およびCa−8t−Al合金を、z
rO□50%、AA20.50%のジルコニアアルミナ
系セラミックスとCu板(厚さ4■)の間に50 m1
7cm”の厚さで塗布しアルがン雰囲気中、1050℃
で実施例2と同様に2097cm2の圧力をかけた状態
で20分間加熱、保持した。その後、実施例1と同様に
引張試験を行なった結果、第1弄に示すようにそれぞれ
7.4 、8.0 kg7m2の接合強度を獲得した。
Ca-Al, Ca-8k-A of samples S7 and 8 in Table 1
1 alloy was ground into 150 meshes, and isopropyl alcohol was added to form a paste. This paste-like Ca-A1 alloy and Ca-8t-Al alloy were
50 m1 between zirconia alumina ceramics with rO□50% and AA20.50% and Cu plate (thickness 4□)
Coated to a thickness of 7 cm and heated at 1050°C in an argon atmosphere.
As in Example 2, the mixture was heated and held for 20 minutes under a pressure of 2097 cm2. Thereafter, a tensile test was conducted in the same manner as in Example 1, and as a result, joint strengths of 7.4 and 8.0 kg7m2 were obtained, respectively, as shown in the first test.

また従来インサート材であるCuS f:インサート材
として従来方法に従い接合体を得た(試料扁9)。
Further, CuS f, which is a conventional insert material, was used as an insert material to obtain a bonded body according to a conventional method (sample plate 9).

この時の接合強度は6. Oky/−で本発明による接
合強度の方が優っている。
The bonding strength at this time is 6. The bonding strength according to the present invention is superior in Oky/-.

ト)発明の詳細 な説明したように、本発明によれば、従来インサート材
における接合が不可能であったジルコニア系のセラミ、
クスを含め酸化物系のセラミックスと金属との接合を可
能ならしめセラミックスの用途を拡大するものである0
g) As described in detail, according to the present invention, zirconia ceramic, which has conventionally been impossible to bond with insert materials,
It enables the joining of oxide-based ceramics, including metals, and expands the applications of ceramics.

Claims (1)

【特許請求の範囲】 1、酸化物系セラミックスと接合すべき金属とが、重量
%で少なくともCa15〜80%、SiおよびAlのう
ち1種又は2種で20〜85%を含有するインサート材
の構成元素と、酸化物系セラミックスの構成元素ならび
に接合すべき金属の構成元素を含む層を介して1体化し
ていることを特徴とする酸化物系セラミックスと金属と
の接合体。 2、酸化物系セラミックスと接合すべき金属との間に重
量%で少なくともCa15〜80%、SiおよびAlの
うち1種又は2種で20〜85%を含むインサート材を
挾み非酸化性雰囲気中で900℃以上該接合すべき金属
の融点以下の温度にて加熱処理することを特徴とする酸
化物系セラミックスとの接合方法。 3、酸化物系セラミックスがZrO_2が90%以上の
ZrO_2系セラミックスであることを特徴とする特許
請求の範囲第1項記載の酸化物系セラミックスと金属と
の接合体。4、酸化物系セラミックスがZrO_290
%以上のZrO_2系セラミックスであることを特徴と
する特許請求の範囲第2項記載の酸化物系セラミックス
と金属との接合方法。
[Claims] 1. An insert material in which the oxide ceramic and the metal to be bonded contain at least 15 to 80% Ca and 20 to 85% of one or two of Si and Al by weight. A bonded body of an oxide ceramic and a metal, characterized in that the constituent elements are integrated through a layer containing the constituent elements of the oxide ceramic and the constituent elements of the metal to be bonded. 2. An insert material containing at least 15 to 80% Ca and 20 to 85% of one or both of Si and Al is placed between the oxide ceramic and the metal to be joined in a non-oxidizing atmosphere. A method for joining oxide-based ceramics, characterized in that heat treatment is performed at a temperature of 900° C. or higher and lower than the melting point of the metals to be joined. 3. The joined body of oxide ceramic and metal according to claim 1, wherein the oxide ceramic is a ZrO_2 ceramic containing 90% or more of ZrO_2. 4. Oxide ceramics are ZrO_290
% or more of ZrO_2-based ceramics. 3. The method of joining oxide-based ceramics and metal according to claim 2, wherein
JP8185185A 1985-04-17 1985-04-17 Joined body and joining method of oxide base ceramic and metal Pending JPS61242964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185185A JPS61242964A (en) 1985-04-17 1985-04-17 Joined body and joining method of oxide base ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185185A JPS61242964A (en) 1985-04-17 1985-04-17 Joined body and joining method of oxide base ceramic and metal

Publications (1)

Publication Number Publication Date
JPS61242964A true JPS61242964A (en) 1986-10-29

Family

ID=13757983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185185A Pending JPS61242964A (en) 1985-04-17 1985-04-17 Joined body and joining method of oxide base ceramic and metal

Country Status (1)

Country Link
JP (1) JPS61242964A (en)

Similar Documents

Publication Publication Date Title
CN100574953C (en) The soldering system that thermal coefficient of expansion is complementary
US4630767A (en) Method of brazing using a ductile low temperature brazing alloy
CA2630526A1 (en) Joining of dissimilar materials
JPS61242964A (en) Joined body and joining method of oxide base ceramic and metal
JP2794360B2 (en) Bonding method of materials to be bonded selected from metals and ceramics, and bonding agent used therefor
JPS6090875A (en) Ceramic and matal bonding method
JPH0378194B2 (en)
JPH10194860A (en) Brazing filler metal
JPH02217372A (en) Method for jointing silicon nitride and metal
JPS62166087A (en) Joining method for ceramics and metal
JPH0460946B2 (en)
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JPS6296373A (en) Joined body of non-oxide base ceramic and metal and joining method
JP2012532022A (en) Brazing method
JPS59174581A (en) Method of bonding aluminum to alumina
JPS6332759B2 (en)
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS6317267A (en) Solder material for joining ceramics each other or ceramic and metal
JPS62167265A (en) Joined body and joining method of oxide type ceramics to metal
JP3119759B2 (en) Ceramics-ceramic joints
JPH058146B2 (en)
JPS62166086A (en) Joint body of nonoxide ceramics and metal and joining method
JPS6369787A (en) Aluminum nitride sintered body with metallized surface and manufacture
JPS61261278A (en) Insert material for joining oxide base ceramic to metal and joining method