JPS61242402A - Circular polarizing grating - Google Patents

Circular polarizing grating

Info

Publication number
JPS61242402A
JPS61242402A JP8526785A JP8526785A JPS61242402A JP S61242402 A JPS61242402 A JP S61242402A JP 8526785 A JP8526785 A JP 8526785A JP 8526785 A JP8526785 A JP 8526785A JP S61242402 A JPS61242402 A JP S61242402A
Authority
JP
Japan
Prior art keywords
grating
woven fabric
threads
polarization
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8526785A
Other languages
Japanese (ja)
Inventor
Takanari Terakawa
隆成 寺川
Yoshiaki Kurihara
栗原 義昭
Yasuo Sagane
嵯峨根 康生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABE DENZAI KK
Tokyo Keiki Inc
Sakai Sangyo KK
Original Assignee
ABE DENZAI KK
Tokyo Keiki Co Ltd
Sakai Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABE DENZAI KK, Tokyo Keiki Co Ltd, Sakai Sangyo KK filed Critical ABE DENZAI KK
Priority to JP8526785A priority Critical patent/JPS61242402A/en
Publication of JPS61242402A publication Critical patent/JPS61242402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To facilitate the manufacture of a circular polarizing grating and to reduce its weight by weaving metallic wires with longitudinal or lateral threads made of nonmetallic fiber and setting and molding synthetic resin in the fabric into the polarizing grating. CONSTITUTION:A polarizing grating G is provided on both sides of a foamed material U in the same grating direction and the foamed material U uses a material with a low dielectric constant close to 1.0 such as foamed polyurethane and foamed polystyrene. The polarizing grating G is manufacture by sandwiching one sheet of fabric which operates as a susceptance element to radio waves between two sheets N of fabric made of only nonmetallic fiber and setting and molding the synthetic resin material P in them. The internal fabric has flexibility, the polarizing grating is formed in an optional shape. The fabric C is formed by weaving longitudinal threads and latitudinal threads 2 made of nonmetallic fiber and latitudinal threads 3 made of metallic wires together. The threads 1 and 3 are woven regularly at intervals determined properly according to the wavelength of an object electromagnetic wave.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電波に対してサセプタンス特性を示す織布で
構成される円偏波格子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a circularly polarized grating made of a woven fabric that exhibits susceptance characteristics to radio waves.

[従来の技術] 従来、この種の円偏波格子としては、例えば、第5図に
示すようなものがある。
[Prior Art] Conventionally, as this type of circularly polarized grating, there is one shown in FIG. 5, for example.

同図に示す従来の円偏波格子は、2枚の偏波格子Hを、
その格子方向を揃え、円形導波管T内に適宜の間隔をお
いて配置して構成される。
The conventional circularly polarized grating shown in the figure has two polarized gratings H,
The gratings are arranged in the circular waveguide T at appropriate intervals with their grating directions aligned.

上記偏波格子Hは、金属板を格子状に打ち抜いたり、剛
性を有する枠に金属線を張って構成される。
The polarization grating H is constructed by punching out a metal plate in a grid shape or by stretching metal wires around a rigid frame.

円偏波格子としては、この他1円形導波管を使用せず、
各格子を何らかの手段、例えば、枠等で空間に固定して
構成されるものもある。
In addition to this, a circular waveguide is not used as a circularly polarized wave grating.
Some are constructed by fixing each grid in space by some means, such as a frame.

しかし、これら従来の円偏波格子には、次のような問題
点があった。
However, these conventional circularly polarized gratings have the following problems.

[発明が解決しようとする問題点] 従来の円偏波格子は、偏波格子と円形導波管とを用意し
なければならず、しかも、偏波格子を円形導波管内に所
定間隔で配置するため、製作工程数が多く、組立に手間
がかかって高価になるという問題点がある。
[Problems to be Solved by the Invention] Conventional circularly polarized gratings require the provision of a polarized grating and a circular waveguide, and moreover, the polarized gratings are arranged at predetermined intervals within the circular waveguide. Therefore, there are problems in that the number of manufacturing steps is large, and assembly is time-consuming and expensive.

また、偏波格子と円形導波管とに各々重量があるため、
全体として重量が嵩むという問題点がある。
In addition, since the polarization grating and the circular waveguide each have their own weight,
There is a problem in that the weight increases as a whole.

さらに、従来のものは、偏波格子を、その周縁部のみで
支持する構造であるから、偏波格子の機械的強度が不十
分で1機械的外力に対して十分な強度を保つことが困難
である。また、任意の形態に構成することも困難である
Furthermore, because the conventional structure supports the polarization grating only at its periphery, the mechanical strength of the polarization grating is insufficient and it is difficult to maintain sufficient strength against external mechanical forces. It is. Furthermore, it is difficult to configure it into an arbitrary shape.

この他、従来のものは、偏波格子と円形導波管とが金属
により構成されているので、海上等の悪環境下での使用
により、錆を生ずることが多く、保守に手間がかかると
いう問題がある。
In addition, in conventional models, the polarization grating and circular waveguide are made of metal, so they often rust when used in harsh environments such as at sea, and require maintenance. There's a problem.

本発明は、これらの問題点を解決すべくなされたもので
、製作が容易で安価に形成でき、軽量であり、また、任
意の形態に形成でき、しかも、十分な機械的強度があり
、また、耐環境性に優れた円偏波格子を提供することを
目的とする。
The present invention was made to solve these problems; it is easy to manufacture, can be formed at low cost, is lightweight, can be formed into any shape, and has sufficient mechanical strength. The purpose of this invention is to provide a circularly polarized grating with excellent environmental resistance.

[問題点を解決するための手段] 本発明は、円偏波格子に関するもので、その問題点解決
手段として、次の構成要件を備えることを特徴とする。
[Means for Solving the Problems] The present invention relates to a circularly polarized grating, and as a means for solving the problems, it is characterized by having the following constituent requirements.

第1に、非金属繊維からなる織布の経または緯のいずれ
か一方に、金属製の線条(以下金属線条と称する。)を
所定間隔にて配置して織込むことにより、電波に対して
サセプタンス素子となる織布を形成する。
First, metal filaments (hereinafter referred to as metal filaments) are placed at predetermined intervals and woven into either the warp or weft of a woven fabric made of non-metallic fibers, making it more effective against radio waves. A woven fabric that becomes a susceptance element is formed.

第2に、該織布を、合成樹脂と共に、硬化成形して偏波
格子を形成する。
Second, the woven fabric is cured and molded together with a synthetic resin to form a polarization grating.

第3に、該偏波格子複数枚を、その格子方向を揃えて、
適宜の間隔にて配置し、各偏波格子間に低誘電率材料を
挿入または充填する。
Third, align the polarization gratings with their grating directions,
They are arranged at appropriate intervals, and a low dielectric constant material is inserted or filled between each polarization grating.

[作用] 上記第1の構成要件において、金属線条を、非金属繊維
からなる織布の経または緯のいずれか一方に、所定間隔
で織込んだことにより、電波に対してサセプタンス素子
となるようにしている。この偏波格子は、織布形式であ
るから、可撓性を有し、任意の形態とすることができる
。また、この織布は、通常の織布の製作と同じ工程で形
成できる。
[Function] In the first constituent element above, metal filaments are woven at predetermined intervals into either the warp or weft of the woven fabric made of non-metallic fibers, thereby becoming a susceptance element for radio waves. That's what I do. Since this polarization grating is in the form of a woven fabric, it has flexibility and can be formed into any desired shape. Moreover, this woven fabric can be formed in the same process as for manufacturing a normal woven fabric.

また、上記織布を合成樹脂材により硬化成形することに
より、軽量で、一定の形態を有する偏波′格子とするこ
とができる。この場合、金属線条を合成樹脂で覆うこと
になるので、錆の発生を防ぐことができ、悪環境下での
使用に耐え得る。
Further, by hardening and molding the woven fabric using a synthetic resin material, it is possible to obtain a polarized wave grating that is lightweight and has a certain shape. In this case, since the metal wire is covered with a synthetic resin, it is possible to prevent the occurrence of rust and it can withstand use under adverse environments.

さらに、該偏波格子複数枚を、その格子方向を揃えて、
適宜のrtn隔にて配置することにより、格子に対する
電界成分の方向により生ずる位相差によって直線偏波を
円偏波に変換する円偏波格子を構成する。
Furthermore, aligning the grating directions of the plurality of polarization gratings,
By arranging them at appropriate rtn intervals, a circularly polarized grating is constructed that converts linearly polarized waves into circularly polarized waves by a phase difference caused by the direction of the electric field component with respect to the grating.

この場合、各偏波格子間に低誘電率材料を挿入または充
填することにより、偏波格子間隔を、各偏波格子の全面
で一定に保持すると共に、円偏波格子全体を、堅固にし
ている。
In this case, by inserting or filling a low dielectric constant material between each polarization grating, the polarization grating spacing is kept constant over the entire surface of each polarization grating, and the entire circular polarization grating is made rigid. There is.

このように、本発明は、織布形式のサセプタンス素子を
合成樹脂材で硬化成形して偏波格子を形成し、これを低
誘電率材料を介在させて複数枚を一定間隔で配置して円
偏波格子を構成しているので、製作工程数が少なく、し
かも、各工程が簡単であるため、安価に製作できる。
In this way, the present invention forms a polarization grating by hardening and molding a woven cloth-type susceptance element with a synthetic resin material, and then arranges a plurality of the susceptance elements at regular intervals with a low dielectric constant material interposed in a circular shape. Since it is composed of a polarization grating, the number of manufacturing steps is small, and each step is simple, so it can be manufactured at low cost.

[実施例] 本発明の実施例について図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

〈実施例の構成〉 第1 A −I C図に本発明に係る円偏波格子の一実
施例の構成を示す、第1A図はその部分破断斜視図、t
51B図はその部分断面図、tiSIC図は本実施例の
構成に使用するサセプタンス素子となる織布の部分拡大
斜視図である。
<Configuration of Example> Figures 1A-IC show the configuration of an example of the circularly polarized grating according to the present invention, and Figure 1A is a partially cutaway perspective view thereof.
51B is a partial sectional view thereof, and the tiSIC diagram is a partially enlarged perspective view of the woven fabric serving as the susceptance element used in the configuration of this embodiment.

本実施例の円偏波格子は、第1A図および第1B図に示
すように、発泡性材料Uの両側に、偏波格子Gを、その
格子方向を揃えて接着して構成する。
As shown in FIGS. 1A and 1B, the circularly polarized wave grating of this embodiment is constructed by bonding polarized wave gratings G to both sides of a foamable material U with their grating directions aligned.

発泡性材料Uは、発泡ポリウレタンや、発泡ポリスチレ
ンなど、比誘電率が1.0に近い低誘電率材料を使用す
る。この発泡性材料Uは、予め発泡させた材料に偏波格
子を接着する他に、各偏波格子を治具で固定した後1発
泡性材料の原料と溶剤とを充填または注入し1発泡させ
て形成してもよい。
As the foamable material U, a low dielectric constant material having a dielectric constant close to 1.0 is used, such as foamed polyurethane or foamed polystyrene. This foamable material U is made by bonding a polarization grating to a pre-foamed material, as well as fixing each polarization grating with a jig and then filling or injecting raw materials for the foamable material and a solvent to foam the material. It may be formed by

偏波格子Gは、第1B図に示すように、電波に対してサ
セプタンス素子となる織布C1枚を、2枚の非金属繊維
のみからなる織布(以下、非金属織布と称する。)Nで
挟み、これらを合成樹脂材Pで硬化成型して製作する。
As shown in FIG. 1B, the polarization grating G has one woven fabric C that serves as a susceptance element for radio waves, and a woven fabric consisting only of two nonmetallic fibers (hereinafter referred to as nonmetallic woven fabric). These are sandwiched between N and then hardened and molded with a synthetic resin material P.

上記合成樹脂材Pは、例えば、ポリエステル樹脂、エポ
キシ樹脂、アクリル樹脂等を使用する。
As the synthetic resin material P, for example, polyester resin, epoxy resin, acrylic resin, etc. are used.

この合成樹脂Pによる成型は、内部の織布が可撓性を有
するため、任意の形態とすることが可能である。
The molding using the synthetic resin P can be made into any desired shape because the internal woven fabric has flexibility.

上記偏波格子Gを構成する、サセプタンス素子となる織
布Cは、第1C図に示すように、非金属fa維からなる
経糸lおよび緯糸2と、金属線条からなる経糸3とを混
繊して形成される。上記経糸1と3は、対象となる電磁
波の波長に応じて適宜法められた間隔で、規則正しく織
込まれている。
As shown in FIG. 1C, the woven fabric C that constitutes the polarization grating G and serves as a susceptance element is a mixture of warp threads L and weft threads 2 made of non-metallic fa fibers and warp threads 3 made of metal filaments. It is formed by The warp threads 1 and 3 are regularly woven at intervals determined appropriately depending on the wavelength of the target electromagnetic waves.

即ち、本実施例では、経糸lを2本に、経糸3を1本の
割合で配置している。
That is, in this embodiment, two warp threads 1 and one warp thread 3 are arranged.

上記経糸1および緯糸2と非金属織布Nは、上記合成樹
脂材Pと固着可能な非金属繊維を用いて製作する。なお
、望ましくは強固に固着するものがよい、従って、経糸
lおよび緯糸2は、使用する樹脂との関係において適宜
選定する0例えば、上記例示した樹脂に対しては、ガラ
スm#Iを用いることができる。
The warp 1 and weft 2 and the non-metallic woven fabric N are manufactured using non-metallic fibers that can be fixed to the synthetic resin material P. Note that it is preferable that the warp threads 1 and weft threads 2 be firmly fixed. Therefore, the warp threads 1 and weft threads 2 should be selected appropriately in relation to the resin used. For example, for the resins listed above, glass m#I may be used I can do it.

一方、上記織布Cの構成に使用する金属線条とCては、
アルミニウム、銅等の金属線、または、1種もしくは2
種以上の金属線を撚合せたものや、金属繊維または炭素
繊維を使用することができる。従って1本明細書におい
て、金属線条とは、狭義の金属に限らず、炭素等の導体
からなるものを含む意味に使用する。
On the other hand, the metal filaments used in the construction of the woven fabric C are as follows:
Metal wire such as aluminum or copper, or type 1 or 2
A combination of two or more metal wires twisted together, metal fibers, or carbon fibers can be used. Therefore, in this specification, the term "metal wire" is used not only to mean metal in the narrow sense but also to include things made of conductors such as carbon.

〈実施例の作用〉 次に、本実施例の円偏波格子の作用について。<Effects of Examples> Next, let's talk about the effect of the circularly polarized grating of this example.

第2図および第3図を参照すると共に、理論モデルを用
いて説明する。
This will be explained with reference to FIGS. 2 and 3 and using a theoretical model.

なお、以下の理論は、 “Broadband  C1rcular  Po1
arjsera  ”by  A、J、LAI↑Z、M
、A。
The following theory is based on “Broadband C1rcular Po1
arjsera ”by A, J, LAI↑Z, M
,A.

丁he  Marconi  review  jec
ond  quarter、1989からの引用である
Marconi review project
This is a quotation from Ond Quarter, 1989.

第2図に示すように、金属線条等の導電性線条′Wから
なる格子Kl、に2を、距離見だけ離して配置し、該格
子Kl、に2に、偏波方向がθである直線偏波電界Eを
、Z軸方向から垂直入射する場合を考える。
As shown in FIG. 2, gratings Kl and 2 made of conductive wires such as metal wires are placed at a distance apart, and the polarization direction of the gratings Kl and 2 is θ. Consider a case where a linearly polarized electric field E is vertically incident from the Z-axis direction.

この場合、電界の大きさをEとすると、そのX成分Ex
、Fm分EVは、各々 Eg =E cogθ E、 =E 5ine となる。
In this case, if the magnitude of the electric field is E, its X component Ex
, Fm minute EV becomes Eg = E cogθ E and = E 5ine , respectively.

格子に垂直な電界は、格子の影響を受けないことが分か
っているので、電界成分E、の変化は、伝播距離に比例
した位相変化のみである。
Since the electric field perpendicular to the grating is known to be unaffected by the grating, the only change in the electric field component E is a phase change proportional to the propagation distance.

一方、格子に平行な電界に対して、格子の与える影響は
、回路理論上、al導性サセプタンスとし+# k−h
−f L Jf官嶋< 4L f  ! MIJ’t 
D 111酊畳界波長λ0.線条Wの直径d、格子間隔
aの関数として第1式のように表わせる。
On the other hand, in circuit theory, the influence of the lattice on the electric field parallel to the lattice is assumed to be al conductive susceptance +# kh
-f L Jf Kanjima < 4L f! MIJ't
D 111 drunken world wavelength λ0. It can be expressed as a first equation as a function of the diameter d of the filament W and the lattice spacing a.

木理論モデルでは、格子を2枚使用しているため、その
等価回路は、長さ文の伝送線路の両端にサセプタンスB
を接続した形となる。簡便上、該回路の両端に各々長さ
!L/2の伝送線路を付加すると、第3図に示す回路が
得られる。
In the tree theory model, two lattices are used, so the equivalent circuit has susceptance B at both ends of the transmission line of length.
It becomes a form in which the are connected. For convenience, each end of the circuit has a length! By adding an L/2 transmission line, the circuit shown in FIG. 3 is obtained.

同図から、偏波変換格子の等価回路は1回路aを単位と
したカスケード接続からなることが分かる。− 次に1回路aの散乱行列Sを求める。
From the figure, it can be seen that the equivalent circuit of the polarization conversion grating consists of a cascade connection in which each circuit a is a unit. - Next, find the scattering matrix S of one circuit a.

サセプタンスBのみの回路の四端子定数F。Four-terminal constant F for a circuit with only susceptance B.

は。teeth.

1゛“(−3B?) であり、これを変換すると、散乱行列Sgが第2式のよ
うに求まる。
1''(-3B?), and by converting this, the scattering matrix Sg is obtained as shown in the second equation.

8・ “ (j斐ヅ)3二j、B(、?、/A2:jB
()    (2)また、サセプタンスBの前後につな
がっている伝送線路は、位相変化を与えるだけであるか
ら、回路aの散乱行列Sは1次式となる。
8. “(j斐ㅅ)32j,B(,?,/A2:jB
() (2) Furthermore, since the transmission line connected before and after the susceptance B only provides a phase change, the scattering matrix S of the circuit a becomes a linear expression.

S  =  exp(−jφ )  Sq  expc
−jφ )“(X ψ)(3) 散乱行列は、入出力端の入射電界および反射電界を規定
するものであるから、第3図のように、入射電界、反射
電界をとると1次式の関係が成立する。
S = exp(-jφ) Sqexpc
−jφ ) “(X ψ) (3) Since the scattering matrix defines the incident electric field and reflected electric field at the input and output terminals, as shown in Figure 3, if we take the incident electric field and reflected electric field, we obtain the linear equation The relationship holds true.

Era−Y& +ZE12             
(4)EoxZEX+YEI2           
  (5)E2+=YE22+ZErb       
      (8)Eo =ZE22+YErb   
          (7)上記第4〜7式において、
第3図から Ell雪E22 E12”E21 であることは明らかである。また、出力端が整合してい
る場合は。
Era-Y & +ZE12
(4) EoxZEX+YEI2
(5) E2+=YE22+ZErb
(8) Eo=ZE22+Yerb
(7) In the above formulas 4 to 7,
It is clear from FIG. 3 that Ell Snow E22 E12''E21. Also, if the output terminals are matched.

Erb+=。Erb+=.

であるから、これらの条件を、上記第4〜7式に代入し
て整理すると1次式の関係が得られる。
Therefore, by substituting these conditions into the above-mentioned equations 4 to 7 and rearranging them, a linear relationship is obtained.

Era/Ex =Y EL+Z2 / (1−Y2)]
  (8)Eo / Ex =Z2/ (1−Y2) 
     (9)さらに、入力端も整合しているならば
、Era”0 モあり、Y≠0であることを考慮すると、1 +22 
/ (1−Y2)= 0      (10)である。
Era/Ex =YEL+Z2/(1-Y2)]
(8) Eo / Ex = Z2/ (1-Y2)
(9) Furthermore, if the input end is also matched, Era is 0, and considering that Y≠0, 1 +22
/ (1-Y2)=0 (10).

故に、上記第10式を上記第8.9式に代入して1次式
を得る。
Therefore, by substituting the above equation 10 into the above equation 8.9, a linear equation is obtained.

Eo =EX Z2/ (1−Y2) =−EX             (11)これは、
電界E×が偏波変換格子を通過する際、 (2n+1)
π(n:整数)の位相変化を受けることを意味している
Eo =EX Z2/ (1-Y2) =-EX (11) This is
When the electric field Ex passes through the polarization conversion grating, (2n+1)
This means that it undergoes a phase change of π (n: integer).

これに対し、格子に垂直な電界の位相変化量は4φ(r
ad)であるから、両電界成分間には、位相差が生じる
ことになる。
On the other hand, the amount of phase change of the electric field perpendicular to the lattice is 4φ(r
ad), a phase difference will occur between the two electric field components.

故に、入射電界の偏波方向0や、格子間距離文、および
、サセプタンスBの値を定める入射電界波長λ0、格子
の線径d9間隔aを調節することにより、直線偏波−円
偏波変換が可能となる。
Therefore, by adjusting the polarization direction 0 of the incident electric field, the distance between the gratings, the incident electric field wavelength λ0 that determines the value of the susceptance B, and the grating wire diameter d9 interval a, linear polarization-circular polarization conversion can be performed. becomes possible.

なお、上記実施例に関する作用の説明は、偏波格子を2
枚用いた場合について述べているが、偏波格子を3枚以
上用いる場合についても適用できる。その場合には、第
3図に示す回路aを偏波格子の数だけカスケード接続し
た回路を使って、同様の説明が可能である。
Note that the explanation of the operation of the above embodiment is based on the case where the polarization grating is
Although the case where two or more polarization gratings are used is described, the present invention can also be applied to a case where three or more polarization gratings are used. In that case, a similar explanation can be made using a circuit in which the circuit a shown in FIG. 3 is cascaded in the number of polarization gratings.

〈実施例の変形〉 上記実施例では、偏波変換格子Gを2枚用いているが、
偏波変換特性を向上させるため、3枚以上の偏波格子を
、その格子方向を揃えて適宜の間隔にて配置し、各偏波
格子間に低誘電率材料を挿入する構成としてもよい。
<Modification of the embodiment> In the above embodiment, two polarization conversion gratings G are used.
In order to improve polarization conversion characteristics, three or more polarization gratings may be arranged at appropriate intervals with their grating directions aligned, and a low dielectric constant material may be inserted between each polarization grating.

上記実施例では、非金属織布Nを使用しているが、これ
は、非金属綿で代用することもできる。
In the above embodiment, non-metallic woven fabric N is used, but non-metallic cotton can also be used instead.

必要に応じて、両者を適宜組合せて使用し、機械的強度
を増強することもできる。
If necessary, both can be used in appropriate combination to enhance mechanical strength.

また、非金属mixのみからなる織布や、非金属繊維の
みからなる綿と組合せることなく、サセプタンス素子特
性を有する織布のみを合成樹脂と共に、硬化成形して偏
波格子を形成することも可能である。
It is also possible to form a polarization grating by curing and molding only a woven fabric with susceptance element characteristics together with a synthetic resin, without combining it with a woven fabric made only of a non-metal mix or a cotton made only of non-metallic fibers. It is possible.

さらに、上記実施例では、金属線条を経方向に配置した
が、緯方向のみに配置して非金属製織布にサセプタンス
素子特性を付加することもできる。
Further, in the above embodiment, the metal filaments are arranged in the warp direction, but they can also be arranged only in the weft direction to add susceptance element characteristics to the non-metallic woven fabric.

く本発明の応用〉 本発明による円偏波格子は、軽量かつ堅固であり、しか
も、任意の形態に成形できるから、例えば、第4図に示
すように、直線偏波電界を放射するスロット導波管を用
いたレーダーアンテナAのレードームR兼用として使用
すれば、波源を変更することなく、容易に円偏波レーダ
ーアンテナに変更できる。この場合、レードームとして
も機能するので、別途レードームを設ける必要がなく、
経済的であると共に、便利である。
APPLICATIONS OF THE INVENTION The circularly polarized grating according to the present invention is lightweight and strong, and can be molded into any shape. For example, as shown in FIG. If the radar antenna A using a wave tube is used as the radome R, it can be easily changed to a circularly polarized radar antenna without changing the wave source. In this case, it also functions as a radome, so there is no need to provide a separate radome.
It is both economical and convenient.

[発明の効果] 以上説明したように本発明は、製作が容易で安価に形成
でき、軽量であり、また、任意の形態に形成でき、しか
も、十分な機械的強度があり、また、耐環境性に優れた
円偏波格子を実現できる効果がある。
[Effects of the Invention] As explained above, the present invention is easy to manufacture, can be formed at low cost, is lightweight, can be formed into any shape, has sufficient mechanical strength, and is environmentally resistant. This has the effect of realizing a circularly polarized grating with excellent properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は本発明に係る円偏波格子の一実施例の構成を
示す部分破断斜視図、第1B図はその部分断面図、第1
C図は本実施例の構成に使用するサセプタンス素子とな
る織布の部分拡大斜視図、第2図は本発明の実施例の作
用を説明するための理論モデルを示す斜視図、第3図は
上記理論モデルの等価回路を示す回路図、第4図は本発
明の円偏波格子をレードームに適用したマリンアンテナ
を示す斜視図、第5図は従来の円偏波格子の一例を示す
斜視図である。 H・・・偏波格子     T・・・円形導波管G・・
・偏波格子     U・・・発泡性材料C・・・電波
に対しサセプタンス素子となる織布N・・・非金属織布
    P・・・合成樹脂材W・・・導電性線条   
 Kl、に2・・・偏波格子1・・・経糸      
 2・・・緯糸3・・・経糸
1A is a partially cutaway perspective view showing the configuration of an embodiment of a circularly polarized grating according to the present invention, FIG. 1B is a partially sectional view thereof, and FIG.
Fig. C is a partially enlarged perspective view of a woven fabric serving as a susceptance element used in the configuration of this embodiment, Fig. 2 is a perspective view showing a theoretical model for explaining the operation of the embodiment of the present invention, and Fig. 3 is a perspective view showing a theoretical model for explaining the operation of the embodiment of the present invention. A circuit diagram showing an equivalent circuit of the above theoretical model, FIG. 4 is a perspective view showing a marine antenna in which the circularly polarized grating of the present invention is applied to a radome, and FIG. 5 is a perspective view showing an example of a conventional circularly polarized grating. It is. H...Polarization grating T...Circular waveguide G...
・Polarization grating U...Foamable material C...Woven fabric that acts as a susceptance element for radio waves N...Non-metal woven fabric P...Synthetic resin material W...Conductive filament
Kl, Ni 2...Polarization grating 1...Warp
2...Weft 3...Warp

Claims (2)

【特許請求の範囲】[Claims] (1)非金属繊維からなる織布の経または緯のいずれか
一方に、金属製の線条を所定間隔にて配置して織込むこ
とにより、電波に対してサセプタンス素子となる織布を
形成し、 かつ、該織布を、合成樹脂と共に、硬化成形して偏波格
子を形成し、 さらに、該偏波格子複数枚を、その格子方向を揃えて、
適宜の間隔にて配置し、各偏波格子間に低誘電率材料を
挿入または充填して構成することを特徴とする円偏波格
子。
(1) Metallic filaments are arranged at predetermined intervals and woven into either the warp or weft of a woven fabric made of non-metallic fibers to form a woven fabric that acts as a susceptance element for radio waves. , and the woven fabric is cured and molded together with a synthetic resin to form a polarization grating, and the plurality of polarization gratings are aligned in the grating direction,
A circularly polarized grating characterized by being arranged at appropriate intervals and having a low dielectric constant material inserted or filled between each polarized grating.
(2)上記織布を、非金属繊維のみからなる織布や、非
金属繊維のみからなる綿と組合せ、これらを合成樹脂と
共に硬化成形して偏波格子を形成した特許請求の範囲第
1項記載の円偏波格子。
(2) The above-mentioned woven fabric is combined with a woven fabric made only of non-metallic fibers or cotton made only of non-metallic fibers, and these are cured and molded together with a synthetic resin to form a polarization grating, as claimed in claim 1. Circularly polarized grating as described.
JP8526785A 1985-04-19 1985-04-19 Circular polarizing grating Pending JPS61242402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8526785A JPS61242402A (en) 1985-04-19 1985-04-19 Circular polarizing grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8526785A JPS61242402A (en) 1985-04-19 1985-04-19 Circular polarizing grating

Publications (1)

Publication Number Publication Date
JPS61242402A true JPS61242402A (en) 1986-10-28

Family

ID=13853797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8526785A Pending JPS61242402A (en) 1985-04-19 1985-04-19 Circular polarizing grating

Country Status (1)

Country Link
JP (1) JPS61242402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199499A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Antenna device and array antenna device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150205A (en) * 1981-03-11 1982-09-17 Nec Corp Linear/circular common polarizer
JPS5849498B2 (en) * 1973-03-30 1983-11-04 サン ゴ−バン アンダストリ Method and apparatus for producing fibers by "tortion" using slots

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849498B2 (en) * 1973-03-30 1983-11-04 サン ゴ−バン アンダストリ Method and apparatus for producing fibers by "tortion" using slots
JPS57150205A (en) * 1981-03-11 1982-09-17 Nec Corp Linear/circular common polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199499A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Antenna device and array antenna device

Similar Documents

Publication Publication Date Title
Lerner A wave polarization converter for circular polarization
US3780374A (en) Radome with matching layers
Wu Four-band frequency selective surface with double-square-loop patch elements
Arnaud et al. Global design of an EBG antenna and meander-line polarizer for circular polarization
US3864690A (en) Multifrequency operating radome
JP2004236289A (en) Low cost antenna using conductive composite material being conductive resin material
Wang et al. A multifunctional frequency-selective polarization converter for broadband backward-scattering reduction
Shawl et al. The characterization of conductive textile materials intended for radio frequency applications
Goussetis et al. Perturbed frequency selective surfaces for multiband high impedance surfaces
JPH01297905A (en) Plane antenna
JPS61242402A (en) Circular polarizing grating
US6906685B2 (en) Electromagnetic-field polarization twister
Luo et al. Frequency-selective surfaces with two sharp sidebands realised by cascading and shunting substrate integrated waveguide cavities
EP0109186B1 (en) Antenna
JP5598879B2 (en) Linear polarization control method and apparatus
JPS61216502A (en) Polarized wave converting grating
CN104347951B (en) A kind of Meta Materials
Clendinning et al. Dielectric embedded bandpass FSS linear to circular polarisation transformers
CN104347916A (en) Metamaterial
CN105928980A (en) Preparation method for fabric tension sensor
US5264064A (en) Method and system for radio frequency energy transmission in an imperforate composite structure
JP2003101328A (en) Helical antenna
Saikia et al. A broadband transmission polarization rotator using multi layer split rings
JP5376470B2 (en) Linear polarization control method and apparatus.
CN110034411B (en) Metamaterial structure and cover wall structure with metamaterial structure