JPS6124238A - Selective forming process of oxide thin film - Google Patents

Selective forming process of oxide thin film

Info

Publication number
JPS6124238A
JPS6124238A JP14442484A JP14442484A JPS6124238A JP S6124238 A JPS6124238 A JP S6124238A JP 14442484 A JP14442484 A JP 14442484A JP 14442484 A JP14442484 A JP 14442484A JP S6124238 A JPS6124238 A JP S6124238A
Authority
JP
Japan
Prior art keywords
thin film
sample
oxide thin
light
selectively forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14442484A
Other languages
Japanese (ja)
Inventor
Keiji Horioka
啓治 堀岡
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14442484A priority Critical patent/JPS6124238A/en
Priority to US06/736,211 priority patent/US4595601A/en
Priority to EP85303599A priority patent/EP0162711B1/en
Priority to DE8585303599T priority patent/DE3572085D1/en
Publication of JPS6124238A publication Critical patent/JPS6124238A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76281Lateral isolation by selective oxidation of silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To selectively grow and form an insulative thin film efficiently at low temperature by a method wherein a silicon specimen is left in the atmosphere mixed with oxidizing gas and halogen element containing gas each other to be irradiated with beams exciting the halogen element containing gas for making the halogen radical react by the beams. CONSTITUTION:A thermal oxide film 42 is formed on a single crystal silicon substrate 41 to be partly removed by patterning process. A specimen of this film 42 placed in a vacuum container of photooxidizing device is exposed to 95vol% of oxygen, 5vol% of chlorine in the atmosphere under pressure of 200Torr at the specimen temperature of 250 deg.C for 60min. Resultantly, the oxide film 42 if further formed only on the exposed part of silicon substrate 41 into the pattern as shown in the figure (b). In other words, silicon dioxide films 43 for separating elements may be selectively formed with oxygen chlorine ratio of 20:1.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、光化学反応を利用して試料上に酸化物薄膜を
選択的に成長形成する酸化物薄膜の選択形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for selectively forming an oxide thin film by selectively growing an oxide thin film on a sample using a photochemical reaction.

[発明の技術的背景とその問題点] 絶縁性薄膜は、半導体集積回路素子の重要な構成部分の
一つである。シリコンを基板とする半導体集積回路を例
にとると、このような絶縁性薄膜成長方法として最も一
般的なものは、酸素ガスを流した炉の中で加熱してシリ
コン基板の表面層を酸化する方法であるが、そのために
は800〜1000[℃コまで昇温する必要がある。こ
のため、シリコンウェハの出入れの際にウェハが割れた
り、反る等の問題があるー。近年、ウェハは大形化する
傾向にあるので、この問題は今後特に深刻となる。
[Technical background of the invention and its problems] An insulating thin film is one of the important components of a semiconductor integrated circuit element. Taking semiconductor integrated circuits using silicon as an example, the most common method for growing such insulating thin films is to oxidize the surface layer of the silicon substrate by heating it in a furnace flowing oxygen gas. However, for this purpose, it is necessary to raise the temperature to 800 to 1000°C. For this reason, there are problems such as cracking or warping of silicon wafers when they are taken in and out. As wafers tend to become larger in recent years, this problem will become particularly serious in the future.

また、MO8型シリコン集積回路においては、素子同志
を分離するために1[2m1弱の素子分離酸化領域を設
ける必要がある。従来素子分離方法としては、LOCO
8法が一般的であるが、この方法は酸化時に816N4
膜を拡散障壁として用いるので、 8iBN4膜の堆積
、エツチング及び剥離等の工程が必要な上に、816N
4膜と基板s五との熱応力を緩和するため酸化層を設け
ることが必要となり、全体の工程が複雑となる。従って
、84BN4膜でなく、 sio、膜を拡散障壁として
絶縁膜を選択的に形成する方法が開発されれば、その工
程が短縮し、製造コストを低減することが可能となる。
Further, in an MO8 type silicon integrated circuit, it is necessary to provide an element isolation oxidized region of a little less than 1 [2 m1 in size to isolate the elements from each other. As a conventional element isolation method, LOCO
8 method is common, but this method uses 816N4 during oxidation.
Since the film is used as a diffusion barrier, steps such as deposition, etching, and peeling of the 8iBN4 film are required, and the 816N
It is necessary to provide an oxide layer to relieve thermal stress between the 4th film and the substrate s5, which complicates the entire process. Therefore, if a method for selectively forming an insulating film using a sio film instead of an 84BN4 film as a diffusion barrier is developed, the process can be shortened and manufacturing costs can be reduced.

また、集積回路素子製造工程におけるもう一つの問題は
、金属配線以外と他との間に段差が生じることである。
Another problem in the integrated circuit element manufacturing process is that a level difference occurs between non-metal wiring and other wiring.

多層配線を用いて、さらに配線を重ねて行く場合に、こ
のような段差はリングラフイーの精度を悪化させる等の
悪影響を及ばず。従って、金属配線以外の部分に選択的
に絶縁膜を形成する方法が開発されれば、素子の性能及
び歩留りを向上することが可能となる。
When using multilayer wiring and further layering the wiring, such a step does not have an adverse effect such as deteriorating the accuracy of the ring graph. Therefore, if a method for selectively forming an insulating film on parts other than metal wiring is developed, it will be possible to improve the performance and yield of devices.

このように従来、低温化で絶縁性薄膜を選択的に成長さ
せる方法の開発が強く望まれているが。
As described above, there has been a strong desire to develop a method for selectively growing insulating thin films at low temperatures.

未だこのような方法は実現されていない。Such a method has not yet been realized.

[発明の目的] 本発明の目的は、低温で効率良く絶縁性薄膜を選択的(
二成長形成することができ、素子分離や段差の埋込み等
に好適する酸化物薄膜の選択形成方法を提供することに
ある。
[Objective of the Invention] The object of the present invention is to efficiently form an insulating thin film selectively (
It is an object of the present invention to provide a method for selectively forming an oxide thin film that can be formed by two-layer growth and is suitable for element isolation, burying steps, and the like.

[発明の概要コ 本発明の骨子は、シリコン試料を酸化性ガスとハロゲン
元素含有ガスとの混合ガス雰囲気中(二おき、これにハ
ロゲン元素含有ガスを励起する光を照射してハロゲンラ
ジカルを解離させ、光とハロゲンラジカルとの作用によ
り、試料の酸化を促進して絶縁薄膜を形成することにあ
る。さらに、上記のハロゲンラジカルによる作用を受け
ないマスクを試料表面に選択形成しておき、該マスクで
覆われていない部分にのみ選択的に薄膜を形成すること
にある。
[Summary of the Invention] The gist of the present invention is to place a silicon sample in a mixed gas atmosphere of an oxidizing gas and a halogen element-containing gas (every second time, irradiate the silicon sample with light that excites the halogen element-containing gas to dissociate halogen radicals). The purpose is to form an insulating thin film by promoting oxidation of the sample through the action of light and halogen radicals.Furthermore, a mask that is not affected by the above-mentioned halogen radicals is selectively formed on the surface of the sample. The purpose of this method is to selectively form a thin film only on areas not covered by a mask.

即ち本発明は、試料上に2酸化シリコン薄膜を選択形成
する方法において、試料の表面上にマスクを選択的に形
成したのち、この試料を5〜33チの分圧を占める酸素
又は、酸素元素を含む原料ガスと少なくともハロゲン元
素を含む反応性ガスとの混合ガス雰囲気中に晒し、上記
反応性ガスを励起する光を照射し、前記試料の表面の前
記マスクで覆われていない部分に酸化物薄膜を選択的に
成長せしめるようにした方法である。
That is, the present invention is a method for selectively forming a silicon dioxide thin film on a sample, in which a mask is selectively formed on the surface of the sample, and then the sample is exposed to oxygen or an oxygen element occupying a partial pressure of 5 to 33 cm. and a reactive gas containing at least a halogen element, and irradiated with light that excites the reactive gas to form an oxide on the part of the surface of the sample that is not covered with the mask. This method allows thin films to grow selectively.

「発明の効果」 本発明によれば、光により解離したハロゲンラジカルと
光との作用(二より試料の酸化を促進し、通常の熱酸化
等に比較して、低温で絶縁薄膜を形成することができる
。これにより、ウェハの割れや反りに伴う不良率を低減
し、製造コストを下けることができる。また、試料上で
選択的に絶縁膜を成長させることによって、素子分離を
容易にし、工程を短縮することができる。さらに反応性
ガスの濃度を5−以上の適当な値(:設定することによ
って表面の凹凸が制御可能である。さらに、これを段差
の埋込みに応用して、素子の品質改善並びに歩留りの向
上をはかり得る等の利点がある。
"Effects of the Invention" According to the present invention, the action of light on halogen radicals dissociated by light (secondary action) promotes oxidation of the sample and forms an insulating thin film at a lower temperature than normal thermal oxidation. This reduces the defect rate associated with wafer cracking and warping, and lowers manufacturing costs.Also, by selectively growing an insulating film on the sample, element isolation becomes easier. The process can be shortened.Furthermore, by setting the concentration of the reactive gas to an appropriate value of 5- or higher, surface irregularities can be controlled.Furthermore, this can be applied to embedding steps to form elements. There are advantages such as improvement in quality and yield.

[発明の実施例コ まず、本発明の詳細な説明する前に、該実施例方法に使
用した装置及び発明の基本原理について説明する。
[Embodiments of the Invention] First, before giving a detailed explanation of the present invention, the apparatus used in the method of the embodiments and the basic principle of the invention will be explained.

第1図は実施例方法に使用した光酸化装置を示す概略構
成図である。図中11F!反応室を構成する真空容器で
、この容器11内には試料12を載置するサセプタ13
が収容されている。サセプタ13にはヒータ14が取付
けられており゛、試料12が加熱されるものとなってい
る。また、容器11には、酸素ガス等の原料ガスを導入
するためのガス導入口15及びハロゲン元素を含む反応
性ガスを導入するためのガス導入口16が設けられてい
る。さらに、容器11には上記ガスを排気するためのガ
ス排気口17が設けられている。
FIG. 1 is a schematic configuration diagram showing a photooxidation apparatus used in the example method. 11F in the diagram! A vacuum container constituting a reaction chamber, and a susceptor 13 on which a sample 12 is placed inside the container 11.
is accommodated. A heater 14 is attached to the susceptor 13 to heat the sample 12. Further, the container 11 is provided with a gas introduction port 15 for introducing a source gas such as oxygen gas and a gas introduction port 16 for introducing a reactive gas containing a halogen element. Further, the container 11 is provided with a gas exhaust port 17 for exhausting the gas.

一方、容器11の上方には反応性ガスを解離するための
光18を発する光源19が設けられている。この光源1
9は、例えば波長308 [nm]のパルスエキシマレ
ーザであり、 1秒Ma ?) 8 Qハ−ガス、平均
出力2 [W/d]で使用されるものとなっている。
On the other hand, above the container 11, a light source 19 is provided that emits light 18 for dissociating the reactive gas. This light source 1
9 is a pulse excimer laser with a wavelength of 308 [nm], for example, and 1 second Ma? ) 8 Q Hargas, is used with an average output of 2 [W/d].

上記装置を用いた酸化膜形成方法について説明する。試
料12としては単結晶シリコン及びリンをドープした多
結晶シリコンを用いた。原料ガスとしては酸素を、反応
性ガスとしては塩素を用いた。まず、容器ll内に酸素
ガスのみを導入し、試料12を250[’C]に加熱し
て光18を30分間照射したが、試料12表面には変化
が生じなかった。一方、酸素ガス中に5[Volチコの
塩素ガスを混入し、全圧を200 [torr]、試料
温度を250[’C]として光を30分間照射したとこ
ろ、第2図に示すように試料12上に二酸化シリコン層
21が形成されることが判明した。試料12として単結
晶シリコンを用いても、リンドープ多結晶シリコンを用
いても二酸化シリコン層21の膜厚は等しく4000[
X]であった。
An oxide film forming method using the above apparatus will be explained. As sample 12, single crystal silicon and phosphorus-doped polycrystalline silicon were used. Oxygen was used as the raw material gas, and chlorine was used as the reactive gas. First, only oxygen gas was introduced into the container 11, and the sample 12 was heated to 250 ['C] and irradiated with the light 18 for 30 minutes, but no change occurred on the surface of the sample 12. On the other hand, when chlorine gas of 5 [Vol. It has been found that a silicon dioxide layer 21 is formed on top of 12. Whether monocrystalline silicon or phosphorus-doped polycrystalline silicon is used as the sample 12, the thickness of the silicon dioxide layer 21 is the same, 4000 [
X].

熱酸化により同程度の成長速度を行うには。To achieve comparable growth rates by thermal oxidation.

1000℃で水素燃焼酸化を行うことが必要であり、本
発明が絶縁膜形成プロセスの低温化に有効であることが
明らかになった。
It is necessary to perform hydrogen combustion oxidation at 1000° C., and it has become clear that the present invention is effective in lowering the temperature of the insulating film forming process.

ところ゛で、本発明における絶縁膜形成過程は、次のよ
うに説明することができる。
However, the process of forming an insulating film in the present invention can be explained as follows.

塩素分子はXeClレーザー照射により解離して@性な
C1ラジカルが生成する。塩素ラジカルにはSMをエツ
チングする性質があり Sr + CI”N −+ 8iCIH↑雰囲気中には
、反応性の高いCI*と酸素とが存在するため、  5
iCIHは 8 r CI N + 02→5102↓+−CI 。
Chlorine molecules are dissociated by XeCl laser irradiation to generate @-type C1 radicals. Chlorine radicals have the property of etching SM, and the atmosphere contains highly reactive CI* and oxygen, so 5
iCIH is 8 r CI N + 02→5102↓+-CI.

と直ちに酸化されて5iOBとなり、基板上に再び堆積
する。
It is immediately oxidized to become 5iOB and deposited on the substrate again.

第2の反応において、エツチング生成物5iCInが酸
化する確率は、塩素と酸素の混合比により変化する。第
3図は、塩素分圧が一定(10Torr)の条件で10
分間酸化を行い、酸素分圧の変化に伴い酸化膜厚と、エ
ツチング深さの比率が変化する様子を示したものである
020 To r rから500Torr (02/C
12混合比2:1−50:1)の範囲で膜厚と、深さの
比は0.15から2.3まで変化する。
In the second reaction, the probability that the etching product 5iCIn is oxidized varies depending on the mixing ratio of chlorine and oxygen. Figure 3 shows the condition where the chlorine partial pressure is constant (10 Torr).
This figure shows how the ratio of oxide film thickness and etching depth changes as the oxygen partial pressure changes after oxidation is performed for 500 Torr (02/C
12 mixing ratio (2:1 to 50:1), the film thickness to depth ratio varies from 0.15 to 2.3.

変化1420Torr −200Torrの範囲で大き
く、2QQTorr以上ではほぼ一定の値に近づく。こ
れは200Torr以上ではほぼ100チの5iC1n
が酸化して再堆積していることを示す。変化のはげしい
02分圧2QQTorr以下(CI2濃度5%以上)、
2QTorr以上(Clsg度33チ)の範囲内の領域
で、適切な混合比を選択することによって、任意の表面
形状を得ることができる。
The change is large in the range of 1420 Torr to 200 Torr, and approaches a nearly constant value above 2QQTorr. This is almost 100cm 5iC1n at 200Torr or more.
This indicates that oxidized and redeposited. Partial pressure of 02 with rapid changes less than 2QQTorr (CI2 concentration 5% or more),
Any desired surface shape can be obtained by selecting an appropriate mixing ratio within the range of 2QTorr or more (Clsg degree 33 degrees).

第4図はこのような例を図示したものである。FIG. 4 illustrates such an example.

7試料12としては、第4図(a)に示す如く単結晶シ
リコン基板41上に1000[A]の熱酸化膜42を形
成した後、パターンニングによりその一部を取り除いた
ものを用いた。ここで、残存した熱酸化膜42は、後述
の工程でマスクとして作用するものである。この試料を
前記第1図に示す光酸化装置の真空容器11内に配置し
、酸素95[Vo1%]、塩素5[Vo1%]、圧力2
00 [torrコの雰囲気中に晒し、試料温度250
[℃]で2 [W/ClTlコのエキシマレーザ光を6
0分間照射した。なお、このときの光照射方向は、試料
表面に対し垂直方向とした。その結果、シリコン基板5
1が露出していた部分でのみ酸化膜形成が進行し、第5
図(b)に示す如き構造が得られた。即ち、素子分離の
ための二酸化シリコン!M43 (厚さ600oA)を
選択的に形成することができた。この時の酸素と塩素の
混合比は、20:1である。第3図から明らかなように
この条件では、膜圧/深さ比は1.8:1なので、酸化
した部分が盛り上がってしまう。
7 As the sample 12, a thermal oxide film 42 of 1000 [A] was formed on a single crystal silicon substrate 41 as shown in FIG. 4(a), and then a portion of the film was removed by patterning. Here, the remaining thermal oxide film 42 acts as a mask in the process described later. This sample was placed in the vacuum container 11 of the photooxidation apparatus shown in FIG.
00[torr] sample temperature 250
Eximer laser light of 2 [W/ClTl] at [°C]
It was irradiated for 0 minutes. Note that the direction of light irradiation at this time was perpendicular to the sample surface. As a result, the silicon substrate 5
Oxide film formation progresses only on the exposed part of No. 1, and the No. 5
A structure as shown in Figure (b) was obtained. In other words, silicon dioxide for device isolation! M43 (thickness: 600oA) could be selectively formed. The mixing ratio of oxygen and chlorine at this time was 20:1. As is clear from FIG. 3, under these conditions, the film thickness/depth ratio is 1.8:1, so the oxidized portions rise.

一方、他の条件を同一として、酸素分圧100Torr
で、酸化を行なわせたところ、この条件では膜圧、深さ
比が1に近いので、酸化後の表面はほぼ平らになってい
る。
On the other hand, assuming other conditions are the same, oxygen partial pressure is 100 Torr.
When oxidation was performed, the film thickness and depth ratio were close to 1 under these conditions, so the surface after oxidation was almost flat.

このように本方法を用いれば、熱酸化膜をマスクとして
選択酸化が可能である上に、酸化後の表面形状も制御可
能である。
As described above, by using the present method, selective oxidation can be performed using the thermal oxide film as a mask, and the surface shape after oxidation can also be controlled.

第5図及び第6図は、それぞれ膜厚対深さ比の全圧力及
び酸化時間依存性を示している。図から明らかなように
膜厚/深さ比は圧力及び時間により変化する。しかしそ
の変化は、ガス混合比を変えた場合に比べると/J%さ
い。従がって、表面形状の制御は、酸化時間及び圧力の
効果を考えながら、混合比を調整することによってより
正確になる。
Figures 5 and 6 show the dependence of film thickness to depth ratio on total pressure and oxidation time, respectively. As is clear from the figure, the film thickness/depth ratio changes with pressure and time. However, the change is /J% smaller than when changing the gas mixture ratio. Therefore, surface topography control becomes more precise by adjusting the mixing ratio while taking into account the effects of oxidation time and pressure.

ここで、熱酸化膜52と、本発明により形成された膜5
3とは共1m5i02であるが、熱酸化膜52が拡散障
壁となっている。熱酸化膜52が拡散障壁となるメカニ
ズムは明らかではないが、熱酸化膜52と形成膜53と
の形成条件(特に温度)が異なるからであると考えられ
る。即ち本実施例では、光酸化反応の基板温度は250
 [、’C]と比較的低温であるため、熱酸化膜を拡散
障壁として用いることができたのである。これに対し従
来は、素子分離領域の酸化層も熱酸化法により形成され
ており、基板温度は900〜1100[℃]に達し、8
108を拡散障壁とすることはできず、 8 i 、N
4を用いていたのである。従って本実施例方法を用いれ
ば、従来必要でおった8 i BH3膜の堆積と除去と
の過程を省略することができ、これによりその工程の簡
略化をはかり得、製造コストを著しく低減させることが
できる。
Here, a thermal oxide film 52 and a film 5 formed according to the present invention
3 and 3 are both 1m5i02, but the thermal oxide film 52 serves as a diffusion barrier. Although the mechanism by which the thermal oxide film 52 acts as a diffusion barrier is not clear, it is thought that this is because the formation conditions (especially temperature) of the thermal oxide film 52 and the formation film 53 are different. That is, in this example, the substrate temperature for the photooxidation reaction was 250°C.
Because of the relatively low temperature [,'C], the thermal oxide film could be used as a diffusion barrier. In contrast, in the past, the oxide layer in the element isolation region was also formed by thermal oxidation, and the substrate temperature reached 900 to 1100 [°C].
108 cannot be used as a diffusion barrier, 8 i , N
4 was used. Therefore, by using the method of this embodiment, it is possible to omit the process of depositing and removing the 8 i BH3 film, which was necessary in the conventional method, thereby simplifying the process and significantly reducing the manufacturing cost. I can do it.

第7図は本発明の第2の実施例に係わる絶縁膜埋込み工
程を示す断面図である。試料としては、第7図(−)に
示す如く単結晶シリコン基板61上に絶縁膜とし7ての
8 +02膜62.8000[X] のポリシリコン膜
73、配線層として70−00「X」のA1jlj74
を形成し、AI膜74をバターニングしたものを用いた
。ここでAI膜74は後述の工程でマスクとして作用す
るものである0この試料を。
FIG. 7 is a sectional view showing an insulating film embedding process according to a second embodiment of the present invention. As a sample, as shown in FIG. 7(-), a polysilicon film 73 of 8+02 film 62.8000 [X] as an insulating film 7 and a 70-00 "X" film as a wiring layer is formed on a single crystal silicon substrate 61. A1jlj74
was formed and the AI film 74 was patterned. Here, the AI film 74 acts as a mask in the process described later.

先の実施例と同様に酸素95[Vo1%]、塩素5[V
o1%コ、合計200[torr]の雰囲気中に晒し、
250[’C]に保持して2[W/j]のXeClエキ
シマレーザ光を30分間照射した。その結果、ポリシリ
コン膜73が露出している部分が酸化され、この条件で
は第3図より膜厚/深さ比は1.8なので体積膨張し、
第7図(b)に示す構造が得られた。
As in the previous example, oxygen 95 [Vo1%], chlorine 5 [V
o1%, exposed to an atmosphere of a total of 200 [torr],
The temperature was maintained at 250 ['C] and XeCl excimer laser light of 2 [W/j] was irradiated for 30 minutes. As a result, the exposed portion of the polysilicon film 73 is oxidized, and under these conditions, as shown in FIG. 3, the film thickness/depth ratio is 1.8, so the volume expands.
A structure shown in FIG. 7(b) was obtained.

これにより、AI膜75の周囲に二酸化シリコン膜74
が埋込まれ、段差を無くすことができた。
As a result, the silicon dioxide film 74 is formed around the AI film 75.
was embedded, making it possible to eliminate the difference in level.

ここで、配線部分に段差があると、その後の工程におい
てパターンの誤差や上部配線層の段切れ等を引き起こす
ことがある。従って本実施例方法を用いると、段差を解
消して素子の性能向上と歩留りの改善をはかることがで
きる。そしてこの場合、絶縁膜の全面体積及び全面エツ
チング等の工程を必要とすることなく、極めて容易に絶
&膜を埋込むことができる。lfc、本実施例で用いた
A1膜74は波長308[nm]の光に対して不透明で
あるので、アンダーカットの少ない酸化形状を得ること
ができる。
Here, if there is a step difference in the wiring portion, it may cause pattern errors or step breaks in the upper wiring layer in subsequent steps. Therefore, by using the method of this embodiment, it is possible to eliminate the step difference and improve the performance and yield of the device. In this case, it is possible to embed the insulation film very easily without requiring steps such as etching the entire surface of the insulating film and etching the entire surface. lfc, since the A1 film 74 used in this example is opaque to light with a wavelength of 308 [nm], an oxidized shape with less undercut can be obtained.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記光を試料上に照射する手段として、
試料を一括照射する代りに長方形状のビームを用い、こ
れを試料上で走査するようにしてもよい。さらに、小径
の矩形状ビームを用いることにより、試料上の所定領域
で選択的に酸化を進行させることも可能である。また、
光源としては、レーザの他に、ハロゲンランプ、水銀ラ
ンプのような不連続複数波長光源を用いることも可能で
ある。葦た、光酸化装置は前記第1図に示す構成に何等
限定されるものではなく、適宜変更可能である。例えば
、第8図に示す如く石英管81中にボート82を配置し
、石英管81の上方にハロゲンランプ83と反射板84
を配置したものを用いることができる。この装置により
本発明者等が、大気圧の酸素99[Vo1%]、塩素1
 [Vo 1チコを流し、前記第1の実施例と同様の試
料を用い、石英管81を300[’Cコに加熱しながら
ハロゲンランプ83を点灯したところ、60分で200
0[X]の二酸化シリコン膜を形成することができた。
Note that the present invention is not limited to the embodiments described above. For example, as a means for irradiating the sample with the light,
Instead of irradiating the sample all at once, a rectangular beam may be used and scanned over the sample. Furthermore, by using a small-diameter rectangular beam, it is also possible to selectively progress oxidation in a predetermined region on the sample. Also,
As a light source, in addition to a laser, it is also possible to use a discontinuous multi-wavelength light source such as a halogen lamp or a mercury lamp. The photo-oxidation device is not limited to the configuration shown in FIG. 1, and can be modified as appropriate. For example, as shown in FIG. 8, a boat 82 is placed in a quartz tube 81, and a halogen lamp 83 and a reflector 84 are placed above the quartz tube 81.
It is possible to use one in which . With this device, the inventors were able to produce oxygen at atmospheric pressure of 99 [Vo1%] and chlorine of 1%.
When the quartz tube 81 was heated to 300 ['C] while the halogen lamp 83 was turned on, the quartz tube 81 was heated to 300['C] and the halogen lamp 83 was turned on.
A silicon dioxide film of 0[X] could be formed.

この場合、酸化膜の形成速度はレーザ光を垂直に照射す
る場合に比較して小さいが、多量の試料を同時に酸化す
ることができるので、スループット向上に有効である。
In this case, although the formation rate of the oxide film is lower than that in the case of perpendicular irradiation with laser light, it is effective in improving throughput because a large amount of samples can be oxidized at the same time.

とじて、これらの酸化物窒化物或いは複酸化物、複窒化
物等を形成することも可能である。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施することがで
きる。
Alternatively, it is also possible to form oxide nitrides, double oxides, double nitrides, etc. of these oxides. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に使用した光酸化装置を示す概
略構成図、第2図一本発明による薄膜堆積状態を示す断
面図、第3図#′18i02形成膜厚/エツチング深さ
比の酸素分圧依存性を示す特性図、第4図は本発明の第
1の実施例方法に係わる素子分離工程を示す断面図、第
5図は酸化膜/エツチング深さ比の全圧力依存性を示す
特性図、第6図は酸化時間依存性を示す図、第7図は本
発明の第2の実施例方法を示す工程断面図、第8図は光
酸化装置の変形例を示す概略構成図である。 11・・・真空容器    12・・・試料13・・・
サセプタ    14・・・ヒータ15、16・・・ガ
ス導入口 17・・・ガス排気口18・・・光    
   20・・・光導入窓41.71・・・単結晶シリ
コン基板 42・・・熱酸化膜43.75・・・二酸化
シリコン膜 72・・・8i0B膜73・・・ポリシリ
コン膜 74・・・AI膜代理人 弁理士 則 近 憲
 佑(はが1名)第1図 第2図 第3図 づ司唆j1介丁E    (Toとr〕第4図 第5図 全力スJE   (Toiト) 第6図 1ρ    2ρ    30   4Dテ匈イヒQF
J   (7Fl;n) 第7図 第8図
Fig. 1 is a schematic configuration diagram showing a photooxidation device used in an example of the present invention, Fig. 2 is a cross-sectional view showing a state of thin film deposition according to the present invention, and Fig. 3 is a ratio of #'18i02 formed film thickness/etching depth. FIG. 4 is a cross-sectional view showing the element isolation process according to the first embodiment method of the present invention, and FIG. 5 is a characteristic diagram showing the dependence of the oxide film/etching depth ratio on the total pressure. FIG. 6 is a diagram showing the oxidation time dependence, FIG. 7 is a process cross-sectional view showing the second embodiment method of the present invention, and FIG. 8 is a schematic configuration showing a modified example of the photooxidation device. It is a diagram. 11... Vacuum container 12... Sample 13...
Susceptor 14... Heater 15, 16... Gas inlet 17... Gas exhaust port 18... Light
20... Light introduction window 41.71... Single crystal silicon substrate 42... Thermal oxide film 43.75... Silicon dioxide film 72... 8i0B film 73... Polysilicon film 74... AI Membrane Agent Patent Attorney Noriyuki Chika (1 person) Figure 1 Figure 2 Figure 3 Suggestion J1 Intervention E (To and r) Figure 4 Figure 5 Full Power JE (Toi To) Fig. 6 1ρ 2ρ 30 4D TECHIHI QF
J (7Fl;n) Figure 7 Figure 8

Claims (9)

【特許請求の範囲】[Claims] (1)単結晶、多結晶もしくは、非晶質のシリコンより
なる試料の上にマスクを選択的に形成した後、この試料
を、酸素ガス又は、酸素元素を含む原料ガスとハロゲン
元素を含む反応性ガスとを、原料ガスが5%以上33%
以下の範囲の分圧を占めるように混合された混合ガス中
に晒し、前記反応性ガスを解離する光を照射し、前記試
料のマスクによつて覆われていない部分に選択的に二酸
化シリコン薄膜を成長せしめることを特徴とする酸化物
薄膜の選択形成方法。
(1) After selectively forming a mask on a sample made of single-crystal, polycrystalline, or amorphous silicon, this sample is reacted with oxygen gas or a source gas containing an oxygen element and a halogen element. The raw material gas is 5% or more and 33%
The sample is exposed to a mixed gas having a partial pressure in the following range, irradiated with light that dissociates the reactive gas, and selectively forms a silicon dioxide thin film on the portion of the sample that is not covered by the mask. A method for selectively forming an oxide thin film, characterized by growing oxide thin films.
(2)前記試料は、前記反応性ガスと前記光照射によつ
てエッチングされるものであることを特徴とする特許請
求の範囲第1項記載の酸化物薄膜の選択形成方法。
(2) The method for selectively forming an oxide thin film according to claim 1, wherein the sample is etched by the reactive gas and the light irradiation.
(3)前記反応性ガスとして、塩素ガスを用いることを
特徴とする特許請求の範囲第1項記載の酸化物薄膜の選
択形成方法。
(3) The method for selectively forming an oxide thin film according to claim 1, characterized in that chlorine gas is used as the reactive gas.
(4)前記マスクは、前記反応性ガスによりエッチング
を受けず、且つ酸化、窒化或いは硫化作用を受けないも
のであることを特徴とする特許請求の範囲第1項記載の
酸化物薄膜の選択形成方法。
(4) Selective formation of an oxide thin film according to claim 1, wherein the mask is not etched by the reactive gas and is not subjected to oxidation, nitridation, or sulfidation. Method.
(5)前記マスクは、前記光に対して透明若しくは不透
明であることを特徴とする特許請求の範囲第1項記載の
酸化物薄膜の選択形成方法。
(5) The method for selectively forming an oxide thin film according to claim 1, wherein the mask is transparent or opaque to the light.
(6)前記光は、単一波長光若しくは連続波長光、或い
は不連続複数波長光であることを特徴とする特許請求の
範囲第1項記載の酸化物薄膜の選択形成方法。
(6) The method for selectively forming an oxide thin film according to claim 1, wherein the light is single wavelength light, continuous wavelength light, or discontinuous multiple wavelength light.
(7)前記光は、前記試料に対して垂直或いは平行に照
射されることを特徴とする特許請求の範囲第1項記載の
酸化物薄膜の選択形成方法。
(7) The method for selectively forming an oxide thin film according to claim 1, wherein the light is irradiated perpendicularly or parallel to the sample.
(8)前記光は、前記試料上で集光され、この集光領域
が試料全面に亙つて走査されることを特徴とする特許請
求の範囲第1項記載の酸化物薄膜の選択形成方法。
(8) The method for selectively forming an oxide thin film according to claim 1, wherein the light is focused on the sample, and the focused area is scanned over the entire surface of the sample.
(9)前記試料は、前記薄膜の成長形成時に室温以上に
加熱されることを特徴とする特許請求の範囲第1項記載
の酸化物薄膜の選択形成方法。
(9) The method for selectively forming an oxide thin film according to claim 1, wherein the sample is heated above room temperature during growth and formation of the thin film.
JP14442484A 1984-05-25 1984-07-13 Selective forming process of oxide thin film Pending JPS6124238A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14442484A JPS6124238A (en) 1984-07-13 1984-07-13 Selective forming process of oxide thin film
US06/736,211 US4595601A (en) 1984-05-25 1985-05-20 Method of selectively forming an insulation layer
EP85303599A EP0162711B1 (en) 1984-05-25 1985-05-22 Method of selectively forming an insulation layer
DE8585303599T DE3572085D1 (en) 1984-05-25 1985-05-22 Method of selectively forming an insulation layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14442484A JPS6124238A (en) 1984-07-13 1984-07-13 Selective forming process of oxide thin film

Publications (1)

Publication Number Publication Date
JPS6124238A true JPS6124238A (en) 1986-02-01

Family

ID=15361864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14442484A Pending JPS6124238A (en) 1984-05-25 1984-07-13 Selective forming process of oxide thin film

Country Status (1)

Country Link
JP (1) JPS6124238A (en)

Similar Documents

Publication Publication Date Title
US4595601A (en) Method of selectively forming an insulation layer
KR100908784B1 (en) Manufacturing Method of Semiconductor Device
JPH0786271A (en) Manufacture of silicon oxide film
JPH0691014B2 (en) Semiconductor device manufacturing equipment
JPS63166219A (en) Manufacture of semiconductor device
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
US3926715A (en) Method of epitactic precipitation of inorganic material
JPS6124238A (en) Selective forming process of oxide thin film
JPS5994829A (en) Manufacture of semiconductor device
JPS6124237A (en) Selective forming process of oxide film
JPS60250634A (en) Selectively growing method for thin film
JPS6269613A (en) Hardening resist pattern
JPS60216555A (en) Manufacture of semiconductor device
KR100312971B1 (en) Method for reducing oxygen impurity density inside silicon wafer
JPS60249334A (en) Formation of thin film
JP2663523B2 (en) Method of forming semiconductor oxide thin film
JPH08330198A (en) Manufacture of semiconductor device
JPS61113238A (en) Selective surface processing method
JPH0160932B2 (en)
JPH05183050A (en) Manufacture of semiconductor device
JPS59194452A (en) Manufacture of semiconductor integrated device
JPH0611038B2 (en) Surface treatment method
JPS61196525A (en) Semiconductor epitaxial growth apparatus
JP2864806B2 (en) Method for manufacturing semiconductor device
JPH03201434A (en) Formation of silicon oxide film