JPS61241736A - Photoelectric converter formed on base board - Google Patents

Photoelectric converter formed on base board

Info

Publication number
JPS61241736A
JPS61241736A JP8221685A JP8221685A JPS61241736A JP S61241736 A JPS61241736 A JP S61241736A JP 8221685 A JP8221685 A JP 8221685A JP 8221685 A JP8221685 A JP 8221685A JP S61241736 A JPS61241736 A JP S61241736A
Authority
JP
Japan
Prior art keywords
optical
wave guide
optical waveguide
optical wave
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8221685A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP8221685A priority Critical patent/JPS61241736A/en
Publication of JPS61241736A publication Critical patent/JPS61241736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/293Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by another light beam, i.e. opto-optical deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To perform highly efficient photoelectric conversion by radiating the rays of light propagated through an optical wave guide in the direction of a high-refractive index layer mounted on the optical wave guide when the rays of light reach the part of the layer and causing the rays of light to be made incident on a photovoltaic element. CONSTITUTION:An input optical signal Iin is introduced to the 1st optical wave guide 11 and a reference light IinR is always inputted in the 2nd optical wave guide 12. An output optical signal Iout is obtained from the 3rd optical wave guide 13. Since no electromotive force is generated from a photovoltaic element 15 when the input optical signal Iin is '0', no voltage is applied across electrodes 14. Therefore, 100% of the rays of light propagated through the optical wave guide 12 are shifted from a directional coupler to the optical wave guide 13 and the output optical signal Iout becomes '1'. When the input optical signal Iin is '1', a voltage is generated across the photovoltaic element 15 by the rays of light propagated through the optical wave guide 11 and the voltage is applied across the electrodes 14. Therefore, the rays of light propagated through the optical wave guide 12 are not shifted from the directional coupler to the optical wave guide 13, but propagated through the optical wave guide 12. Accordingly, the output optical signal Iout becomes '0'.

Description

【発明の詳細な説明】 発明の背景 この発明は、基板に形成された光電変換装置に関し、特
に基板に集積化された光論理回路のために有用であり、
光信号から起電力を発生させるための装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a photoelectric conversion device formed on a substrate, and is particularly useful for optical logic circuits integrated on a substrate.
The present invention relates to a device for generating electromotive force from an optical signal.

近年、オプトエレクトロニクス技術の進展はめざましく
、光ICの実現も開発課題の1つにあげられている。事
実、光ICの基本となる論理回路、たとえば光論理和(
OR)回路や光排他的論理和回路が提案されている。出
願人も電気光学効果をもつ基板上に集積化された種々の
光論理回路を提案している(たとえば特願昭59−11
7552〜117554号など)。これらの光論理回路
では、光信号を電気量に変換し、基板のもつ電気光学効
果を利用してこの電気量により種々の光の制御が達成さ
れている。所望の光の制御を達成するためには充分な電
気量、たとえば充分に高い電圧が必要である。
In recent years, optoelectronic technology has made remarkable progress, and the realization of optical ICs has been raised as one of the development issues. In fact, the basic logic circuits of optical ICs, such as optical OR (
OR) circuits and optical exclusive OR circuits have been proposed. The applicant has also proposed various optical logic circuits integrated on a substrate with an electro-optic effect (for example, Japanese Patent Application No.
7552-117554 etc.). In these optical logic circuits, an optical signal is converted into an electrical quantity, and various types of light control are achieved using this electrical quantity by utilizing the electro-optic effect of the substrate. A sufficient amount of electricity, such as a sufficiently high voltage, is required to achieve the desired light control.

発明の概要 この発明は、基板に形成された光導波路を伝播する光を
効果的に利用して、光論理回路等の動作のために必要か
つ充分な電気量が得られるような光電変換装置を提供す
るものである。
Summary of the Invention The present invention provides a photoelectric conversion device that effectively utilizes light propagating through an optical waveguide formed on a substrate to obtain a sufficient amount of electricity necessary for operating an optical logic circuit, etc. This is what we provide.

この発明による光電変換装置は、基板に形成された光導
波路の表面にこの光導波路の屈折率より高い屈折率の材
料から成る層が装荷され、この高屈折率層の上に光起電
力素子が形成されているこ4を特徴とする。
In the photoelectric conversion device according to the present invention, a layer made of a material having a refractive index higher than that of the optical waveguide is loaded on the surface of an optical waveguide formed on a substrate, and a photovoltaic element is placed on the high refractive index layer. It is characterized by 4.

光導波路を伝搬する光が光導波路上に装荷された高屈折
率層の部分に至るとこの層の方向に放射され、その上に
形成された光起電力素子に入射するので、光導波路を伝
搬してきた光の多くが起電力発生のために利用され、効
率の高い光電変換が達成される。
When the light propagating through the optical waveguide reaches the part of the high refractive index layer loaded on the optical waveguide, it is radiated in the direction of this layer and enters the photovoltaic element formed on top of it, causing the light to propagate through the optical waveguide. Much of the emitted light is used to generate electromotive force, achieving highly efficient photoelectric conversion.

実施例の説明 この発明による光電変換装置を、光論理回路の基本要素
である光NOT回路に適用した実施例について以下に詳
述する。
DESCRIPTION OF EMBODIMENTS An embodiment in which a photoelectric conversion device according to the present invention is applied to an optical NOT circuit, which is a basic element of an optical logic circuit, will be described in detail below.

まず、光NOT論理について説明しておく。光NOT論
理は、電気信号のNOT論理と同じである。第1図にお
いて、入力光信号がl inで表わされている。この人
力光信号が光NOT論理演算された結果出力される出力
光信号が1outで示されている。光弁が論理値の「1
」を表わし、光無が論理値の「0」を表わしている。入
力光信号11nが「0」の場合に出力光信号1outは
「1」となり。
First, optical NOT logic will be explained. Optical NOT logic is the same as electrical signal NOT logic. In FIG. 1, the input optical signal is represented by lin. An output optical signal output as a result of optical NOT logical operation performed on this human-powered optical signal is indicated by 1out. The light valve has a logical value of “1”
”, and the absence of light represents the logical value “0”. When the input optical signal 11n is "0", the output optical signal 1out is "1".

入力が「1」の場合に出力は「0」となる。When the input is "1", the output is "0".

第2図において、基板10としてLiNb03結晶が用
いられ、この基板10上に3つの光導波路11.12□
  および13が形成されている。これらの光導波路の
作製は、たとえば基板10表面全面にTiを蒸着または
スパッタし、このT1膜を利用してT1による光導波路
パターンをリフトオフ法により形成し、さらにこのTi
を酸素雰囲気中において970℃で5時間、基板10内
に熱拡散させることにより行なわれる。
In FIG. 2, a LiNb03 crystal is used as the substrate 10, and three optical waveguides 11, 12□
and 13 are formed. These optical waveguides are manufactured by, for example, depositing or sputtering Ti on the entire surface of the substrate 10, using this T1 film to form an optical waveguide pattern of T1 by a lift-off method, and then depositing Ti on the entire surface of the substrate 10.
This is carried out by thermally diffusing into the substrate 10 at 970° C. for 5 hours in an oxygen atmosphere.

第1の光導波路11は、基板lOの一端から基板10の
中央付近または基板IOの他端まで形成されており、光
導波路11の終端部または途上には光起電力索子15が
作製されている。光起電力素子15としてはたとえばC
dTeがよい。第3図に拡大して示されているように、
光導波路11の表面上に高屈折率材料の層17が形成さ
れ、この層17の上にCdTeが蒸着されかつ適切な箇
所(たとえばCdTeの上面両側)に端子を形成するこ
とにより光起電力素子15ができあがる。
The first optical waveguide 11 is formed from one end of the substrate IO to near the center of the substrate 10 or the other end of the substrate IO, and a photovoltaic cable 15 is fabricated at the terminal end of the optical waveguide 11 or along the way. There is. For example, as the photovoltaic element 15, C
dTe is good. As shown enlarged in Figure 3,
A layer 17 of high refractive index material is formed on the surface of the optical waveguide 11, CdTe is evaporated onto this layer 17, and terminals are formed at appropriate locations (for example, on both sides of the top surface of the CdTe) to form a photovoltaic element. 15 is completed.

第4図に示すように光導波路11上にCdTeを単に蒸
着するだけでも、光導波路ll内の光の界分布は光起電
力素子15にも及ぶので、光起電力素子15からは起電
力が発生する。しかしながら、この場合には発生する起
電力は低いと考えられる。光導波路は光を閉じ込めるた
めのものであり、外部に漏れる光の界分布は小さいから
である。そこで、第3図に示すように、光導波路11よ
りも屈折率の大きな材料による中間層17を光起電力素
子15と光導波路11との間に介在させる。すると、光
導波路11の光はこれよりも高い屈折率の層17中に漏
れ出す。
As shown in FIG. 4, even if CdTe is simply deposited on the optical waveguide 11, the field distribution of light within the optical waveguide ll extends to the photovoltaic element 15, so that an electromotive force is generated from the photovoltaic element 15. Occur. However, the electromotive force generated in this case is considered to be low. This is because the optical waveguide is for confining light, and the field distribution of light leaking to the outside is small. Therefore, as shown in FIG. 3, an intermediate layer 17 made of a material having a higher refractive index than the optical waveguide 11 is interposed between the photovoltaic element 15 and the optical waveguide 11. Then, the light in the optical waveguide 11 leaks into the layer 17 having a higher refractive index.

光起電力素子15はこの漏れ出した光を感じて光起電力
を発生する。漏れる光の量は、高屈折率層17の屈折率
が高いほど、高屈折率層17の光導波路tiにそう長さ
が長いほど多い。基板10の異常屈折率が2.200で
あるから高屈折率層17の材料として常屈折率2.58
4のTlO2を使用するのがよい。リフトオフ法でTl
O2を作製後、 CdTeをスパッタで付けることによ
り、高屈折率層17上に正確に光起電力索子15を作製
できる。高屈折率層17の材料としてはTlO2以外に
、屈折率2.27のT e Oaや2.46のAS23
3などを使用してもよい。
The photovoltaic element 15 senses this leaked light and generates photovoltaic force. The amount of leaking light increases as the refractive index of the high refractive index layer 17 increases and as the length of the optical waveguide ti of the high refractive index layer 17 increases. Since the extraordinary refractive index of the substrate 10 is 2.200, the material for the high refractive index layer 17 has an ordinary refractive index of 2.58.
It is better to use 4 TlO2. Tl by lift-off method
After producing O2, by sputtering CdTe, the photovoltaic cable 15 can be accurately produced on the high refractive index layer 17. In addition to TlO2, materials for the high refractive index layer 17 include T e Oa with a refractive index of 2.27 and AS23 with a refractive index of 2.46.
3 etc. may also be used.

光起電力素子15に入射しなかった光は光導波路11を
さらに伝搬していって他の用途に用いられるか、または
他の用途が無い場合には光起電力素子15の位置が光導
波路11の終端とされる。この場合には、光導波路11
の端面で反射した光の一部もまた光起電力素子15に入
射するであろう。
The light that did not enter the photovoltaic element 15 may further propagate through the optical waveguide 11 and be used for other purposes, or if there is no other use, the position of the photovoltaic element 15 may be changed to the optical waveguide 11. It is considered to be the end of In this case, the optical waveguide 11
A portion of the light reflected at the end face of the photovoltaic element 15 will also be incident on the photovoltaic element 15.

第2図において、第2の光導波路12は基板10の一端
がら他端まで形成されている。第3の光導波路13はそ
の一端部が第2の光導波路12の一部に近接し、かつ他
の部分においては第2の光導波路12から離れている。
In FIG. 2, the second optical waveguide 12 is formed from one end of the substrate 10 to the other end. One end of the third optical waveguide 13 is close to a part of the second optical waveguide 12, and the other part is away from the second optical waveguide 12.

第2の光導波路12と第3の光導波路■3との互いに近
接した部分は方向性結合器を構成している。この方向性
結合器を構成する光導波路部分上には1対の電極14が
設けられている。
Portions of the second optical waveguide 12 and the third optical waveguide 3 that are close to each other constitute a directional coupler. A pair of electrodes 14 are provided on the optical waveguide portion constituting this directional coupler.

この電極14には配線パターン1Bによって光起電力素
子15の両端子が接続され、素子15の起電力が電極1
4間に印加されるようになっている。電極14゜配線パ
ターン16および光起電力素子15の端子はA十を所定
のパターンにリフトオフすることにより作製される。
Both terminals of a photovoltaic element 15 are connected to this electrode 14 by a wiring pattern 1B, and the electromotive force of the element 15 is transferred to the electrode 14.
It is designed to be applied between 4 and 4 hours. The electrode 14° wiring pattern 16 and the terminal of the photovoltaic element 15 are fabricated by lifting off A0 into a predetermined pattern.

方向性結合器は近接した2本の平行光導波路間で光のパ
ワーのやりとりを生じさせるものである。
A directional coupler causes optical power to be exchanged between two parallel optical waveguides that are close to each other.

光導波路12と13との互いに近接した部分によって構
成される方向性結合器は、一方の光導波路12を伝搬す
る光の100%のパワーが他方の光導波路13に移行す
るようにその相互作用長、結合係数1位相定数等が設定
されている。
A directional coupler constituted by portions of optical waveguides 12 and 13 that are close to each other has an interaction length such that 100% of the power of light propagating through one optical waveguide 12 is transferred to the other optical waveguide 13. , a coupling coefficient, a phase constant, etc. are set.

LiNb03は電気光学効果をもつ結晶であるから。This is because LiNb03 is a crystal with an electro-optic effect.

この結晶に電界を印加するとその屈折率が変化する。光
起電力素子15から発生した電圧が電極14に印加され
ると、光導波路12.13の電極直下における屈折率が
変化し光導波路12.13のこれらの部分における位相
定数が変化する(ZカットLiNb03の場合)、また
は光導波路12.13におけるこれらの光導波路部分間
の屈折率が変化することにより結合の強さが変化する(
YカットLxNbOaの場合)。このような結合の強さ
2位相整合の変化によって、光導波路12.13の近接
部分によって構成される方向性結合器においては光パワ
ーの移行が生じなくなる。
When an electric field is applied to this crystal, its refractive index changes. When a voltage generated from the photovoltaic element 15 is applied to the electrode 14, the refractive index of the optical waveguide 12.13 directly below the electrode changes, and the phase constant in these parts of the optical waveguide 12.13 changes (Z-cut). (in the case of LiNb03), or the strength of the coupling changes by changing the refractive index between these optical waveguide sections in the optical waveguide 12.13 (
In the case of Y-cut LxNbOa). Due to such a change in coupling strength and phase matching, no optical power shift occurs in the directional coupler formed by the adjacent portions of the optical waveguides 12 and 13.

さて、第2図に示された光NOT回路の動作を統一的に
説明する。入力光信号11nは第1の光導波路11に導
入される。第2の光導波路■2には、基準光1 inR
が常時人力している。出力光信号1outは第3の光導
波路13から得られる。
Now, the operation of the optical NOT circuit shown in FIG. 2 will be explained in a unified manner. The input optical signal 11n is introduced into the first optical waveguide 11. The second optical waveguide ■2 has a reference light of 1 inR
is always manned. The output optical signal 1out is obtained from the third optical waveguide 13.

人力光信号Innが「0」の場合には、光起電力素子1
5から起電力は発生しないので、電極14間には電圧は
印加されない。したがって、光導波路12を伝搬する光
は方向性結合器から光導波路13にその100%が移行
し、出力光信号1outは「1」となる。
When the human power optical signal Inn is "0", the photovoltaic element 1
Since no electromotive force is generated from the electrode 5, no voltage is applied between the electrodes 14. Therefore, 100% of the light propagating through the optical waveguide 12 is transferred from the directional coupler to the optical waveguide 13, and the output optical signal 1out becomes "1".

人力光信号1fnがrlJの場合には、光導波路11を
伝搬する光によって光起電力素子15に電圧が発生し、
これが電極14間に印加される。したがって、光導波路
12を伝搬する光は、方向性結合器から光導波路13に
移行せずに、光導波路12を伝搬していく。このため、
出力光信号1outは「0」となる。
When the human-powered optical signal 1fn is rlJ, a voltage is generated in the photovoltaic element 15 by the light propagating through the optical waveguide 11,
This is applied between the electrodes 14. Therefore, the light propagating through the optical waveguide 12 continues to propagate through the optical waveguide 12 without transferring from the directional coupler to the optical waveguide 13. For this reason,
The output optical signal 1out becomes "0".

上述の説明においては方向性結合器における先パワーの
移行量を理想的に100%としているが、もちろん10
0%である必要なない。なぜなら、光導波路[3から出
力される光信号1outのパワーをレベル弁別して論理
値rlJ、rOJを判別すればよいからである。
In the above explanation, the amount of power transfer in the directional coupler is ideally 100%, but of course it is 100%.
It doesn't need to be 0%. This is because the logical values rlJ and rOJ can be determined by level-discriminating the power of the optical signal 1out output from the optical waveguide [3.

いずれにしても、光起電力素子15は光導波路11上面
に形成された高屈折率層17上に形成されているので、
光導波路11を伝搬してきた光の多くが光起電力素子1
5に入力して利用される。したがって。
In any case, since the photovoltaic element 15 is formed on the high refractive index layer 17 formed on the upper surface of the optical waveguide 11,
Most of the light that has propagated through the optical waveguide 11 reaches the photovoltaic element 1
5 to be used. therefore.

効率が高く、かつ大きな起電力が得られ、上述のような
電気光学効果を利用した光信号の制御用に適用すること
ができる。
It has high efficiency and a large electromotive force, and can be applied to control optical signals using the electro-optic effect as described above.

この発明が応用される光論理回路は上述の光NOT回路
に限らないのはいうまでもないし、この発明は光論理回
路以外の基板上に形成された素子等に応用可能である。
It goes without saying that the optical logic circuit to which this invention is applied is not limited to the above-mentioned optical NOT circuit, and the invention can be applied to elements formed on a substrate other than optical logic circuits.

光起電力素子は、 CdTeに限らず、プラズマCVD
法により作製されるa−9iなど種々のもので実現でき
る。
Photovoltaic elements are not limited to CdTe, but also plasma CVD
This can be realized with various products such as a-9i produced by the method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光NOT論理演算を示す波形図、第2図はこの
発明を光NOT回路に適用した実施例を示す斜視図、第
3図は第2図の■−■線にそう拡大断面図、第4図は高
屈折率層が設けられていない場合の第3図相当の断面図
である。 10・・・基板、      11.12.13・・・
光導波路。 15・・・光起電力素子、17・・・高屈折率層。 以上
Fig. 1 is a waveform diagram showing an optical NOT logic operation, Fig. 2 is a perspective view showing an embodiment in which the present invention is applied to an optical NOT circuit, and Fig. 3 is an enlarged sectional view taken along the line ■-■ in Fig. 2. , FIG. 4 is a cross-sectional view corresponding to FIG. 3 in the case where no high refractive index layer is provided. 10...Substrate, 11.12.13...
optical waveguide. 15... Photovoltaic element, 17... High refractive index layer. that's all

Claims (1)

【特許請求の範囲】[Claims] 基板に形成された光導波路の表面にこの光導波路の屈折
率より高い屈折率の材料からなる層が装荷され、この高
屈折率層の上に光起電力素子が形成されている、基板に
形成された光電変換装置。
A layer made of a material with a refractive index higher than the refractive index of the optical waveguide is loaded on the surface of the optical waveguide formed on the substrate, and a photovoltaic element is formed on the high refractive index layer. photoelectric conversion device.
JP8221685A 1985-04-19 1985-04-19 Photoelectric converter formed on base board Pending JPS61241736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8221685A JPS61241736A (en) 1985-04-19 1985-04-19 Photoelectric converter formed on base board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8221685A JPS61241736A (en) 1985-04-19 1985-04-19 Photoelectric converter formed on base board

Publications (1)

Publication Number Publication Date
JPS61241736A true JPS61241736A (en) 1986-10-28

Family

ID=13768220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8221685A Pending JPS61241736A (en) 1985-04-19 1985-04-19 Photoelectric converter formed on base board

Country Status (1)

Country Link
JP (1) JPS61241736A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164534A (en) * 1983-03-08 1984-09-17 Sumitomo Electric Ind Ltd Optical bistable device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164534A (en) * 1983-03-08 1984-09-17 Sumitomo Electric Ind Ltd Optical bistable device

Similar Documents

Publication Publication Date Title
JP5433919B2 (en) Optical functional element, driving method and manufacturing method thereof
US6668103B2 (en) Optical modulator with monitor having 3-dB directional coupler or 2-input, 2-output multimode interferometric optical waveguide
US7054512B2 (en) Optical waveguide, optical device, and method of manufacturing optical waveguide
JP2001154164A (en) Optical modulator and optical modulating method
CN111220963A (en) Multi-layer material phased array laser radar transmitting chip, manufacturing method and laser radar
CN106301587A (en) A kind of microwave photon link high linearity method based on dual wavelength micro-loop manipulator
CN111220964B (en) Mixed material phased array laser radar transmitting chip, manufacturing method and laser radar
CN110149153B (en) Optical modulator, modulation method and optical modulation system
EP1369741B1 (en) Resonant electro-optical modulator for optical short pulse generation
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JPS61241736A (en) Photoelectric converter formed on base board
JPS6134526A (en) Optical comparator
JPS6147929A (en) Photovoltage sensor
JPS5895330A (en) Optical switch
JPS6138938A (en) Photoelectric converter formed on substrate
JPS6138937A (en) Photoelectric converter formed on substrate
JPS6138936A (en) Photoelectric converter formed on substrate
JPWO2004086126A1 (en) Waveguide type optical modulator
JPS60202430A (en) Light and circuit
JPS6132823A (en) Optical not circuit
JPH05136734A (en) Optical modulator
JPS60263926A (en) Optical exor circuit
JPS60260925A (en) Optical "and" circuit
JPS6132822A (en) Optical logical circuit
JPS6188233A (en) Optical or circuit