JPS61241700A - Decontamination method using fixed-bed electrolytic cell - Google Patents

Decontamination method using fixed-bed electrolytic cell

Info

Publication number
JPS61241700A
JPS61241700A JP8248485A JP8248485A JPS61241700A JP S61241700 A JPS61241700 A JP S61241700A JP 8248485 A JP8248485 A JP 8248485A JP 8248485 A JP8248485 A JP 8248485A JP S61241700 A JPS61241700 A JP S61241700A
Authority
JP
Japan
Prior art keywords
decontamination
electrolytic cell
fixed bed
particles
bed electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8248485A
Other languages
Japanese (ja)
Inventor
一郎 片岡
大角 克己
小林 政人
俊雄 沢
佐藤 広文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP8248485A priority Critical patent/JPS61241700A/en
Publication of JPS61241700A publication Critical patent/JPS61241700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属表面に付着した酸化皮膜を除去する除染法
に関するもので、特に原子力プラントの機器・配管に付
着した放射性核種を含む酸化皮膜を効率的に溶解すると
共に溶解に伴い発生した廃生を同一電解槽内で処理する
除染法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a decontamination method for removing oxide films adhering to metal surfaces, and in particular to decontamination methods for removing oxide films containing radionuclides adhering to nuclear power plant equipment and piping. This invention relates to a decontamination method that efficiently dissolves and processes waste products generated during dissolution in the same electrolytic cell.

〔発明の背景〕[Background of the invention]

原子力プラントの一次冷却系の機器・配管等において、
金属表面に酸化皮膜が形成される時に冷却水中のC’o
 ” y M n ”等の放射性核種が、この皮膜中に
取り込まれ機器・配管表面の線層率が高くなり、定期定
検時及び修理時に作業員の被曝線量が増大する傾向にあ
ることが知られている。作業員等の被曝線量を代弁する
ためには、放射性核′、種〜含む酸化皮膜を溶解・除去
する除染技術が必:婆となってくる。当初、酸化皮膜を
溶解除去する除染液は特開昭53−731号記載のよう
に酸及び錯化剤が主に使用されてきた。この除染液は酸
性が強いため酸化皮膜の除去の観点からは効果的である
が母材すなわち金属材料も溶解する危険性があると共に
除染残留液による母材腐食の危険性が残る。原子プラン
トには高度な安全性が要求されるため、これらの除染法
は必ずしも原子力プラントに適したものではなかった。
In the equipment and piping of the primary cooling system of nuclear power plants,
C'o in the cooling water when an oxide film is formed on the metal surface.
It is known that radioactive nuclides such as ``yMn'' are incorporated into this film, increasing the linear layer ratio on the surface of equipment and piping, which tends to increase the radiation dose of workers during periodic inspections and repairs. It is being In order to represent the exposure doses of workers, etc., decontamination technology that dissolves and removes the oxide film containing radioactive nuclei and seeds is essential. Initially, acids and complexing agents were mainly used as decontamination solutions for dissolving and removing oxide films, as described in JP-A-53-731. Since this decontamination liquid is highly acidic, it is effective from the viewpoint of removing the oxide film, but there is a risk that the base material, that is, the metal material, will also be dissolved, and there remains a risk that the base material will be corroded by the residual decontamination liquid. Because nuclear plants require a high level of safety, these decontamination methods were not necessarily suitable for nuclear plants.

そこで、母材の腐食を緩和するために除染液濃度を下げ
て除染する方法が研究開発された。しかし、除染液の濃
度を下げたことにより除染効果が低下した。これに対し
、還元剤をさらに添加して酸化皮膜の溶解速度を−ヒげ
て除染効果を高める方法が考案された。還元剤は、酸化
皮膜の溶解に消費されてしまい、除染効果を高めるため
には酸化された還元剤を還元して再生する方法が必要と
なる。この方法の一つに、特開昭57−85980号に
記載されている除染液を電解還元する方法がある。
Therefore, a method of decontamination by lowering the concentration of decontamination solution was researched and developed in order to alleviate the corrosion of the base material. However, by lowering the concentration of the decontamination solution, the decontamination effect decreased. In response to this, a method has been devised in which a reducing agent is further added to reduce the dissolution rate of the oxide film and thereby enhance the decontamination effect. The reducing agent is consumed in dissolving the oxide film, and in order to enhance the decontamination effect, a method is required to reduce and regenerate the oxidized reducing agent. One such method is a method of electrolytically reducing a decontamination solution, which is described in JP-A-57-85980.

液を還元再生するためには、通常の電解槽構造及び電極
材では効率が悪い等の問題が残されていた。
In order to reductively regenerate the liquid, problems such as inefficiency remain with conventional electrolytic cell structures and electrode materials.

また、除染に伴ない発生した廃液等の処理を行う必要が
ある。カナダで開発された代表的な除去法CAN−DE
CON法は、除染液及び溶解汚染物質をアニオン樹脂及
びカチオン樹脂の混合物を使用し、除去する方法をとっ
ている。このように、廃液を処理する場合、別途、廃液
処理装置が必要となり除染装置の簡易化が難しい状況に
あった。
Additionally, it is necessary to dispose of waste fluids generated as a result of decontamination. CAN-DE, a typical removal method developed in Canada
The CON method uses a mixture of anionic and cationic resins to remove decontamination fluid and dissolved contaminants. As described above, when treating waste liquid, a separate waste liquid treatment device is required, making it difficult to simplify the decontamination device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、機器・配管等の表面に放射性核種を含
んだ酸化皮膜を母材の腐食を抑制し、効率的に溶解する
と共に溶出した放射性核種を含んで除染液を同一電解槽
内で処理することのできる機能を有する除染法を提供す
ることにある。
The purpose of the present invention is to efficiently dissolve the oxide film containing radionuclides on the surfaces of equipment, piping, etc. by suppressing corrosion of the base material, and to dissipate the decontamination solution containing the eluted radionuclides in the same electrolytic tank. The purpose of the present invention is to provide a decontamination method that has the function of allowing treatment.

〔発明の概要〕[Summary of the invention]

本発明の方法は、原子力プラントの機器・配管等の表面
に付着したG o ” HM n ”等の放射性核種を
含んだ酸化皮膜を溶解・除去すると共に酸化皮膜の溶解
に伴ない発生した放射性核種を含む溶液を同一電解槽内
で処理するものである。除染対象物に対しバイパス配管
を接続し、除染剤の調整及び脱気タンク、固定層電解層
、循環装置を設置するものである。固定層電解槽は平板
電極間に設けられた隔膜により陽極室と陰極室に仕切ら
れ、それぞれの極室に導電性を有する固体粒子を充てん
した構造から成る。陽極室と陰極室を仕切る膜は、電解
により発生した酸素の拡散を防ぐことができ、かつ水素
イオンを選択的に透過できる陽イオン交換膜あるいは、
その機能を備えた隔膜を使用する。
The method of the present invention dissolves and removes an oxide film containing radionuclides such as G o "HM n " attached to the surfaces of nuclear power plant equipment and piping, etc., and also removes radionuclides generated due to the dissolution of the oxide film. The solution containing the above is processed in the same electrolytic cell. Bypass piping will be connected to the object to be decontaminated, and a decontamination agent adjustment and degassing tank, fixed bed electrolyte layer, and circulation device will be installed. A fixed bed electrolytic cell is divided into an anode chamber and a cathode chamber by a diaphragm provided between flat electrodes, and each electrode chamber is filled with conductive solid particles. The membrane that separates the anode chamber and the cathode chamber is a cation exchange membrane that can prevent the diffusion of oxygen generated by electrolysis and selectively transmit hydrogen ions, or a cation exchange membrane that can selectively permeate hydrogen ions.
Use a diaphragm that has this function.

機器・配管に付着している酸化皮膜はマグネタイト(F
e304)、ヘマタイト(a −F e z Oa )
が主成分であって不均一に付着していることが多い。こ
れらの酸化皮膜は還元することにより、溶解しイオン化
する。
The oxide film that adheres to equipment and piping is magnetite (F
e304), hematite (a-Fez Oa)
is the main component and is often deposited non-uniformly. These oxide films are dissolved and ionized by reduction.

固定層電解槽の陰極室では、酸化皮膜の溶解により劣化
した除染液中に含まれている還元剤の再生及び還元力の
強化を行う機能を有している。陰極室内の充てん物は劣
化した還元剤を効率的に再生・強化し得る固体粒子が望
ましく、黒鉛粒子及び水素過電圧の大きい金属粒子また
はこれら金属を表面に被覆した固体粒子が適している。
The cathode chamber of the fixed bed electrolytic cell has the function of regenerating the reducing agent contained in the decontamination liquid that has deteriorated due to dissolution of the oxide film and strengthening the reducing power. The filling material in the cathode chamber is preferably solid particles that can efficiently regenerate and strengthen the degraded reducing agent, and graphite particles, metal particles with a large hydrogen overvoltage, or solid particles whose surfaces are coated with these metals are suitable.

これに対し固定層電解槽の陽極室では酸化皮膜の溶解に
より発生した放射性核種を含んだ溶液を電気的に吸着・
吸蔵処理する機能を有する。この陽極室に充てんする固
体粒子は活性炭及び黒鉛粒子あるいは無機吸着材が適し
ている。
On the other hand, in the anode chamber of a fixed bed electrolyzer, the solution containing radionuclides generated by the dissolution of the oxide film is electrically adsorbed and
It has the function of occlusion processing. Activated carbon and graphite particles or inorganic adsorbents are suitable as the solid particles to fill this anode chamber.

また本発明に使用する除染液は錯化剤、還元剤から成る
。錯化剤としてエチレンジアミン四酢酸、クエン酸等、
還元剤として酸化還元電位の低いしく6) −アスコルビン酸、Cr”+またはV2+のような低酸
化状態の金属イオン等が望ましい。除染液は除染対象物
に供給する前に60〜90℃に加温すると共に十分に溶
算酸索濃度を低ばておくことが望ましい。
Further, the decontamination liquid used in the present invention comprises a complexing agent and a reducing agent. As a complexing agent, ethylenediaminetetraacetic acid, citric acid, etc.
As a reducing agent, a metal ion with a low oxidation-reduction potential such as 6) - ascorbic acid, Cr"+ or V2+ is preferable. The decontamination solution should be heated at 60 to 90°C before being supplied to the object to be decontaminated. It is desirable to keep the dissolved acid concentration sufficiently low.

以」二のように平板電極間に導電性を有する固体粒子を
充てんすることにより、各極室の電極面積を大きくする
ことができ電解効率が向上する。これにより、還元剤の
還元力の再生・強化及び酸化皮膜の溶解に伴ない発生し
た放射性核種を含んだ溶液の処理を同一電解槽内で行う
ことができる特徴を有している。また溶液の処理も兼ね
備えているため溶液処理の付帯設備が不要となり、除染
装置を小型化にすることが可能となる。
By filling conductive solid particles between the flat plate electrodes as described above, the electrode area of each electrode chamber can be increased and the electrolysis efficiency can be improved. As a result, it is possible to regenerate and strengthen the reducing power of the reducing agent and to treat a solution containing radionuclides generated due to the dissolution of the oxide film in the same electrolytic cell. Furthermore, since it also processes solutions, there is no need for incidental equipment for solution processing, making it possible to downsize the decontamination equipment.

〔発明の実施例〕[Embodiments of the invention]

本発明について実施例を挙げ下記に説明する。 The present invention will be described below with reference to Examples.

まず、本発明の方法を実機プラントに適用する場合の除
染フローを第1図に示す。
First, FIG. 1 shows a decontamination flow when the method of the present invention is applied to an actual plant.

除染対象物の機器・配管1に対し、大別して脱気タンク
2及び固定層電解槽3から構成され除染液を循環させ酸
化皮膜を溶解槽除去するものである。脱気タンク2には
除染液調整タンク4及び脱気用N2 またはアルゴンボ
ンベ5を備えている。
The decontamination tank is roughly divided into a deaeration tank 2 and a fixed bed electrolytic tank 3 for the equipment and piping 1 of the object to be decontaminated, and the decontamination liquid is circulated to remove the oxide film in the dissolution tank. The degassing tank 2 is equipped with a decontamination liquid adjustment tank 4 and a degassing N2 or argon cylinder 5.

また加熱用ヒータ6を備えている。この除染フローのポ
イントになる固定層電解槽3は隔膜によって陽極室と陰
極室に仕切られ両極室には各々固体粒子が充てんされて
おり、電解用に直流電源7を接続している。除染液は錯
化剤及び還元剤(Cr”、V”等の低酸化状態金属イオ
ンも含む)の組成からなり、除染液調整タンク4で調整
され脱気タンク2に移し加熱及び脱気を行い循環ポンプ
8で固定層電解槽3に供給される。電解槽3に供給され
た除染液は電解還元され還元力を強化されると共に劣化
した還元剤を再生する。この除染剤は除染対象物に供給
される。この結果剥離したクラッドはフィルター9で除
去すると共に酸化皮膜の溶解に伴ない錯化剤と錯体を形
成した放射性核種を含んだ除染液は電解槽3に送られ回
収される。以上のように、同一電解槽内で除染液中の還
元剤の再生・強化及び溶出した放射性物質を含んだ除染
液を処理することを特徴としており、実機プラントへの
適用に際して本発明の除染法は効果的である。
It is also provided with a heater 6 for heating. The fixed bed electrolytic cell 3, which is the key point in this decontamination flow, is partitioned by a diaphragm into an anode chamber and a cathode chamber, each of which is filled with solid particles, and connected to a DC power source 7 for electrolysis. The decontamination solution consists of a complexing agent and a reducing agent (including metal ions in a low oxidation state such as Cr" and V"), and is adjusted in the decontamination solution adjustment tank 4 and transferred to the degassing tank 2 where it is heated and degassed. is carried out and supplied to the fixed bed electrolytic cell 3 by the circulation pump 8. The decontamination liquid supplied to the electrolytic cell 3 is electrolytically reduced to strengthen its reducing power and to regenerate the degraded reducing agent. This decontamination agent is supplied to the object to be decontaminated. The resulting peeled cladding is removed by a filter 9, and the decontamination solution containing the radionuclide complexed with the complexing agent as the oxide film is dissolved is sent to the electrolytic cell 3 and recovered. As described above, the present invention is characterized by regenerating and strengthening the reducing agent in the decontamination solution and treating the decontamination solution containing eluted radioactive materials in the same electrolytic cell, and when applied to an actual plant. Decontamination methods are effective.

さらに除染フローには除染液の監視のために、溶存酸素
計10、pH11を設置している。
Furthermore, a dissolved oxygen meter 10 and a pH 11 meter are installed in the decontamination flow to monitor the decontamination solution.

第2図は除染液の還元力再生(還元力の強化も含む)及
び溶出物の除去を目的とした固定層電解槽8の構造を示
してものである。電解槽3は平板電極12の間に隔膜1
3を設け、陰極室14と溶極室15に仕切られている。
FIG. 2 shows the structure of a fixed bed electrolytic cell 8 for the purpose of regenerating the reducing power of the decontamination solution (including strengthening the reducing power) and removing eluted substances. The electrolytic cell 3 has a diaphragm 1 between flat electrodes 12.
3, which is partitioned into a cathode chamber 14 and a melt chamber 15.

陰極室14には、黒鉛粒子及び水素過電圧の大きいPb
、Zn等の金属粒子あるいはこれらの金属を被覆した粒
子を充てんしている。これに対し、陽極室15には、黒
鉛粒子または活性炭粒子を充てんしている。以上のよう
に同一電解槽内の陰極室と陽極室では、除染液の還元力
再生と溶出物の除去を含む除染液の処理を目的としてい
る。陰極室では、粒子を充てんしているため、有効電極
が大きいため、劣化した除染液を効率的に電解還元する
のに適した構造となっている。また陽極室においても粒
子に充てんしているため酸化皮膜の溶解に伴ない発生し
た放射性核種を含む除染液を回収処理しやすい構造とな
っている。
The cathode chamber 14 contains graphite particles and Pb with a large hydrogen overvoltage.
, Zn, or other metal particles, or particles coated with these metals. On the other hand, the anode chamber 15 is filled with graphite particles or activated carbon particles. As described above, the purpose of the cathode chamber and anode chamber in the same electrolytic cell is to process the decontamination solution, including regenerating the reducing power of the decontamination solution and removing eluate. The cathode chamber is filled with particles and has a large effective electrode, making it suitable for efficient electrolytic reduction of degraded decontamination fluid. The anode chamber is also filled with particles, making it easy to collect and process the decontamination solution containing radionuclides generated as the oxide film dissolves.

また、陽極室は最終的な廃液処理に利用するこ次に本発
明の実施例とその結果について説明する。まず、本発明
の有効性検討を行った試験装置を第3図に示す。試験に
使用した固定層電解槽16は前記で述べたように陽極室
と陰極室に隔膜により仕切られており、平板電極として
、ptメッキ板を用いた。陽極室には活性炭粒子を充て
んし、陰極室には黒鉛粒子を充てんした電解槽を使用し
た。電解槽には直流電源を接続し、電解電流0.4Aで
行った。電解された除染剤は循環ポンプ18によりガラ
ス製の試験槽19に供給した。
Further, the anode chamber is used for final waste liquid treatment.Examples of the present invention and their results will now be described. First, FIG. 3 shows a test device used to examine the effectiveness of the present invention. As described above, the fixed bed electrolytic cell 16 used in the test was partitioned into an anode chamber and a cathode chamber by a diaphragm, and a PT plated plate was used as a flat electrode. The anode chamber was filled with activated carbon particles, and the cathode chamber was filled with graphite particles. A DC power source was connected to the electrolytic cell, and electrolysis was carried out at a current of 0.4 A. The electrolyzed decontamination agent was supplied to a glass test tank 19 by a circulation pump 18.

試験槽19には、加熱用のリボンヒーター20、脱気用
散気管21、及び試験片22の電位測定用に電位計23
を設けた。試験に使用した試験片22は原子力プラント
の配管から撤去したものを使用した。試験片は151m
×151m程度のものにリード線を接続して使用した。
The test chamber 19 includes a ribbon heater 20 for heating, a diffuser tube 21 for deaeration, and an electrometer 23 for measuring the potential of the test piece 22.
has been established. The test piece 22 used in the test was one removed from the piping of a nuclear power plant. The test piece is 151m
A lead wire was connected to a wire of approximately 151 m.

また、除染液は錯化剤として、0.006Mzl−ED
TA・2NH4、還元剤として0.002M / Q 
−L・アスコルビン酸及び金属還元イオン(c 、 2
 + )を十分脱気すると共に80℃まで加温し使用し
た。試験は電解槽の陰極室で電解還元された除染液を試
験槽に供給し、試験槽内に浸漬した試験片の放射能をG
e (Li)半導体検出器で測定しGo”の除去率で評
価した。
In addition, the decontamination solution contains 0.006Mzl-ED as a complexing agent.
TA・2NH4, 0.002M/Q as reducing agent
-L.ascorbic acid and metal reducing ion (c, 2
+) was thoroughly degassed and heated to 80°C before use. In the test, a decontamination solution electrolytically reduced in the cathode chamber of the electrolytic tank is supplied to the test tank, and the radioactivity of the test piece immersed in the test tank is reduced by G.
e (Li) It was measured with a semiconductor detector and evaluated by the Go'' removal rate.

その試験結果を第5図に示す。第5図は縦軸にCo@a
除去率(%)、横軸に除染時間(h)を示している。ま
た、比較のために、単に除染液中に浸漬した場合も示し
ている。単に浸漬した場合は、Co′。の除去率は10
%程度と低くなっている。
The test results are shown in FIG. Figure 5 shows Co@a on the vertical axis.
The removal rate (%) is shown, and the horizontal axis shows the decontamination time (h). For comparison, a case where the sample is simply immersed in a decontamination solution is also shown. Co' if simply immersed. The removal rate is 10
%, which is low.

これに対し、除染液を電解した場合は大きな除去率が得
られることがわかる。その中でも、固定層電解槽を用い
た場合は、平板電極を用いた隔膜電解槽より効果的であ
ることがわかる。
On the other hand, it can be seen that a large removal rate can be obtained when the decontamination solution is electrolyzed. Among these, it can be seen that when a fixed bed electrolytic cell is used, it is more effective than a diaphragm electrolytic cell using a flat plate electrode.

以上のように、本発明で用いる固定層電解槽が除染剤の
電解還元に適したものであり、除染に際して有効である
ことが実証された。
As described above, it has been demonstrated that the fixed bed electrolytic cell used in the present invention is suitable for electrolytic reduction of a decontamination agent and is effective in decontamination.

次に固定層電解槽のもう一つの機能の有効性について検
討した結果を示す。検討に用いた試験装置を第4図に示
す。試験装置は開放型の隔膜電解槽24の両極室に活性
炭粒子25を充てんしたもの用い、回分式で実施した。
Next, we will present the results of a study on the effectiveness of another function of the fixed bed electrolyzer. Figure 4 shows the test equipment used in the study. The test equipment was an open-type diaphragm electrolytic cell 24 filled with activated carbon particles 25 in both electrode chambers, and the test was carried out in a batch manner.

処理液(廃液)として、Feイオンの錯体〔Fe−ED
TA)−を110PPに調整し電解槽両極室に入れ、陽
極室内の溶液を各時間ごとにサンプリング、分析して、
廃液処理の有効性確認を実施した。また電解電流は前実
施例と同様に0.4A定電流電解とした。
As a treatment liquid (waste liquid), a complex of Fe ions [Fe-ED
TA)- was adjusted to 110 PP and placed in the electrolytic cell bipolar chamber, and the solution in the anode chamber was sampled and analyzed at each hour.
The effectiveness of waste liquid treatment was confirmed. Further, the electrolysis current was 0.4A constant current electrolysis as in the previous example.

その結果を第6図に示す。第6図は縦軸に廃液としての
Fe−EDTA濃度、横軸に電解時間を示す。図より明
らかなように電解時間の経過に伴い廃液中のFe−ED
TA濃度が低減しており、粒子表面に吸着されているこ
とを示している。これにより固体粒子を充てんした電解
槽の陽極室で廃液を処理することが可能であることが実
証された。
The results are shown in FIG. In FIG. 6, the vertical axis shows the concentration of Fe-EDTA as waste liquid, and the horizontal axis shows the electrolysis time. As is clear from the figure, Fe-ED in the waste liquid increases as the electrolysis time progresses.
The TA concentration decreased, indicating that it was adsorbed on the particle surface. This demonstrated that it is possible to treat waste liquid in the anode chamber of an electrolytic cell filled with solid particles.

以上の試験結果により除染に際して固定層電解を用いる
ことにより陰極室で除染液中の還元剤の還元力再生・強
化、陽極室では、溶出した放射性核種を含んだ廃液の回
収処理を同一電解槽内で行うことができることが実証さ
れた。
Based on the above test results, by using fixed bed electrolysis during decontamination, the reducing power of the reducing agent in the decontamination solution is regenerated and strengthened in the cathode room, and in the anode room, the waste liquid containing eluted radionuclides is collected using the same electrolysis method. It has been demonstrated that this can be done in a tank.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固定層電解槽を用い除染剤を電解還元
し、除染対象物に供給することにより、金属表表面の酸
化皮膜を効率的に除去することができる。また、除染液
側から酸化皮膜を還元し、溶解除去するため複雑な機器
・配管等にも適用可能である。さらに、酸化皮膜の溶解
に伴ない発生した、放射性核種を含んだ廃液を同一電解
槽内で回収処理することができる。廃液処理等の付帯設
備が不要となり除染装置の簡易化にも効果的である。
According to the present invention, an oxide film on a metal surface can be efficiently removed by electrolytically reducing a decontamination agent using a fixed bed electrolytic cell and supplying the decontamination agent to an object to be decontaminated. Furthermore, since the oxide film is reduced and dissolved away from the decontamination liquid side, it can be applied to complex equipment, piping, etc. Furthermore, waste liquid containing radioactive nuclides generated due to dissolution of the oxide film can be collected and processed within the same electrolytic cell. This eliminates the need for incidental equipment such as waste liquid treatment, which is effective in simplifying decontamination equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実機プラントに適用する場合の除染装
置を示す図、第2図は本発明に使用する固定層電解層の
構造図、第3図、第4図は本発明の有効性を実証するた
めの試験装置の概略図、第5図は本発明の有効性を示す
試験結果であり、除染液の電解還元によるCo”の除去
率と除染時間の関係を示す図、第6図は第5図と同様に
、本発明の有効性を示す試験結果であり、廃液処理の検
討結果を示す図である。 1・・・除染対象物、2・・・脱気タンク、3・・・固
定層電解槽、4・・・除染調整タンク、8・・・循環ポ
ンプ、9・・・フィルター、10・・・溶存酸素計、1
1・・・PH計、12・・・平板電極、13・・・隔膜
、14・・・陰極室、15・・・陽極室。
Figure 1 is a diagram showing a decontamination device when the present invention is applied to an actual plant, Figure 2 is a structural diagram of a fixed bed electrolyte layer used in the present invention, and Figures 3 and 4 are diagrams showing the effectiveness of the present invention. Fig. 5 is a schematic diagram of a test device for demonstrating the effectiveness of the present invention, and Fig. 5 is a test result showing the effectiveness of the present invention, and a diagram showing the relationship between the removal rate of Co" by electrolytic reduction of the decontamination solution and the decontamination time. FIG. 6, like FIG. 5, shows the test results showing the effectiveness of the present invention and is a diagram showing the study results of waste liquid treatment. 1. Object to be decontaminated, 2. Degassing tank , 3... Fixed bed electrolytic cell, 4... Decontamination adjustment tank, 8... Circulation pump, 9... Filter, 10... Dissolved oxygen meter, 1
DESCRIPTION OF SYMBOLS 1... PH meter, 12... Flat plate electrode, 13... Diaphragm, 14... Cathode chamber, 15... Anode chamber.

Claims (1)

【特許請求の範囲】 1、原子力プラントの機器・配管等の金属表面に付着し
た酸化皮膜の除去法において、導電性を有する固体粒子
を平板電極間に充てんした固定層電解槽を用いて除染液
中の劣化した還元剤を電解還元することにより再生し、
除染対象物に供給し酸化皮膜をイオン化させ除去すると
共に同一固定層電解槽内で放射性イオンを含む除染液を
電気的に吸着あるいは吸蔵処理することを特徴とする固
定層電解槽を用いた除染法。 2、前記除染法に用いる固定層電解槽は隔膜により陰極
室と陽極室に仕切られ、陰極室には黒鉛粒子及び水素過
電圧の大きな金属粒子あるいはこれら金属を被覆した粒
子を充てんすると共に陽極室には、活性炭粒子、黒鉛粒
子、あるいはフェライト、酸化チタン等の無機吸着材を
充てんすることを特徴とする特許請求の範囲第1項記載
の固定層電解槽を用いた除染法。 3、前記固定層電解槽は陰極室では劣化した除染液中の
還元剤の還元力再生、陽極室では放射性イオンを含む除
染液の処理をすることを特徴とする特許請求の範囲第1
項及び第2項記載の固定層電解槽を用いた除染法。 4、前記除染法に使用する除染液は、錯化剤及び還元剤
を含む溶液でpH5〜7の中性溶液であり、さらに、除
染液中の溶存酸素濃度を数10ppb程度に下げ、かつ
60〜90℃に加温して除染対象物に供給することを特
徴とする特許請求の範囲第1項及び第2項記載の固定層
電解槽を用いた除染法。
[Claims] 1. In a method for removing oxide films adhering to metal surfaces of nuclear power plant equipment, piping, etc., decontamination is performed using a fixed bed electrolytic cell in which conductive solid particles are filled between flat electrodes. The degraded reducing agent in the liquid is regenerated by electrolytic reduction,
A fixed-bed electrolytic cell is used, which is supplied to the object to be decontaminated, ionizes and removes the oxide film, and electrically adsorbs or occludes a decontamination solution containing radioactive ions in the same fixed-bed electrolytic cell. Decontamination method. 2. The fixed bed electrolytic cell used in the decontamination method is divided into a cathode chamber and an anode chamber by a diaphragm, and the cathode chamber is filled with graphite particles and metal particles with a large hydrogen overvoltage, or particles coated with these metals, and the anode chamber is filled with graphite particles and metal particles with a large hydrogen overvoltage, or particles coated with these metals. A decontamination method using a fixed bed electrolytic cell according to claim 1, characterized in that the cell is filled with activated carbon particles, graphite particles, or an inorganic adsorbent such as ferrite or titanium oxide. 3. The fixed bed electrolytic cell regenerates the reducing power of the reducing agent in the deteriorated decontamination solution in the cathode chamber, and processes the decontamination solution containing radioactive ions in the anode chamber.
A decontamination method using the fixed bed electrolytic cell described in Sections 1 and 2. 4. The decontamination solution used in the decontamination method is a neutral solution containing a complexing agent and a reducing agent with a pH of 5 to 7, and further reduces the dissolved oxygen concentration in the decontamination solution to about several tens of ppb. A decontamination method using a fixed bed electrolytic cell according to claims 1 and 2, characterized in that the electrolytic cell is heated to 60 to 90°C and supplied to the object to be decontaminated.
JP8248485A 1985-04-19 1985-04-19 Decontamination method using fixed-bed electrolytic cell Pending JPS61241700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8248485A JPS61241700A (en) 1985-04-19 1985-04-19 Decontamination method using fixed-bed electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8248485A JPS61241700A (en) 1985-04-19 1985-04-19 Decontamination method using fixed-bed electrolytic cell

Publications (1)

Publication Number Publication Date
JPS61241700A true JPS61241700A (en) 1986-10-27

Family

ID=13775784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8248485A Pending JPS61241700A (en) 1985-04-19 1985-04-19 Decontamination method using fixed-bed electrolytic cell

Country Status (1)

Country Link
JP (1) JPS61241700A (en)

Similar Documents

Publication Publication Date Title
US4537666A (en) Decontamination using electrolysis
JP5933992B2 (en) Decontamination method of radioactive waste ion exchange resin
JPS6331279B2 (en)
EP0032416B2 (en) Descaling process
US5262019A (en) Decontamination of radioactive metals
JP4438988B2 (en) Electrochemical method, system and apparatus for removing contamination by radioactive material.
JPH07280998A (en) Method for decontaminating transition metal
JP6439242B2 (en) Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
US5439562A (en) Electrochemical decontamination of radioactive metals by alkaline processing
JP4083607B2 (en) Radioactive chemical decontamination method and apparatus
JPS61241700A (en) Decontamination method using fixed-bed electrolytic cell
JPS62237398A (en) Method of processing waste water containing radioactive organic iodine
JPH0240200B2 (en)
JPS59162493A (en) Method of removing iron oxide adhering to ion exchange resin
JPS6195295A (en) Water treatment device for nuclear power plant
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPH0640153B2 (en) Decontamination method using divalent chromium ion reducing regenerant
KR0148088B1 (en) Process and apparatus for regeneration of reagent for decontamination using waste water treatment by electrodialysis
JPS59154398A (en) Method of recovering radioactive deconamination liquid waste
JPH024880B2 (en)
JPS58180284A (en) Cell for regeneration of reducible solvent and chemical decontamination method using said cell
JPS6093999A (en) Method of treating chemically decontaminated waste liquor
JPH07209489A (en) Radioactive waste solution disposing device
JPS6193999A (en) Method of decontaminating part for nuclear power plant
JPS61116699A (en) Method and device for regenerating ion exchange resin