JPS6124162A - Electrolyte layer for fused carbonate type fuel cell - Google Patents

Electrolyte layer for fused carbonate type fuel cell

Info

Publication number
JPS6124162A
JPS6124162A JP59145820A JP14582084A JPS6124162A JP S6124162 A JPS6124162 A JP S6124162A JP 59145820 A JP59145820 A JP 59145820A JP 14582084 A JP14582084 A JP 14582084A JP S6124162 A JPS6124162 A JP S6124162A
Authority
JP
Japan
Prior art keywords
type electrolyte
electrolyte
electrolyte layer
paste
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59145820A
Other languages
Japanese (ja)
Inventor
Hiroaki Urushibata
広明 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59145820A priority Critical patent/JPS6124162A/en
Publication of JPS6124162A publication Critical patent/JPS6124162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain an electrolyte layer having strong mechanical strength, low internal resistance, and the degree of freedom against deformation by staking and combining a matrix type electrolyte-holding agent and paste type electrolyte- holding agents. CONSTITUTION:A matrix type electrolyte-holding agent 16 and paste type electrolyte-holding agents 17 are stacked and combined. For example, LiAlO2 powder is mixed with an organic binder to form a green tape, which is calcined to sinter LiAlO2 grains, and the skeleton of the matrix type electrolyte-holding agent 16 is formed. On the other hand, a green tape made by molding LiAlO2 powder is used for the paste type electrolyte-holding agent 17. Then, the paste type electrolyte-holding agents 17 are stacked and combined on the matrix type electrolyte-holding agent 16 like a sandwich to form the skeleton of a hybrid type electrolyte layer 8, and gaps of the LiAlO2 skeleton are filled with fused carbonate to form the ion-conductive hybrid type electrolyte layer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は溶融炭酸塩形燃料実地の電解質層に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an electrolyte layer for molten carbonate fuel applications.

〔従来の技術〕[Conventional technology]

一般に、この種の燃料電池は、第4図の構成図に示した
部材で構成されている0図において、(1)は燃料側の
ガス流路板であり燃料ガス入口管(6)、出口管(6)
を備えている。(2)は燃料側電極の集電板であり、ガ
ス流路用の貫通孔(3)を備えている。一般には、ニッ
ケル系金属が用いられ1〜2mの厚さである。(4)は
、燃料側電極であり、ニッケル系金属粉の焼結体からな
る多孔質電極である。(8)は、電解質層と呼ばれ、 
LiAlO2を主成分とする多孔質構造体にL j2 
COB e K2CO2などの炭酸塩を混入させたもの
からなっている。(9)は、酸化剤側電極であり、燃料
側電極同様、多孔質な構造を持っている。この酸化剤側
電極はニッケル焼結体を用いる場合と、 NiO焼結体
を用いる場合があるが、いずれにしろ電池の動作状態で
は、NfOに少しL1+イオンが入ったものN1p(L
+ )となっている。Q□は、酸化膜側電極の集電板で
あり、燃料側電極の集電板と同様の構造をもつステンレ
ス製のものである。
In general, this type of fuel cell is composed of the members shown in the configuration diagram of FIG. pipe (6)
It is equipped with (2) is a current collector plate of the fuel side electrode, and is provided with a through hole (3) for a gas flow path. Generally, a nickel-based metal is used and the thickness is 1 to 2 meters. (4) is a fuel-side electrode, which is a porous electrode made of a sintered body of nickel-based metal powder. (8) is called the electrolyte layer,
L j2 in a porous structure mainly composed of LiAlO2
COB is made of carbonate mixed with carbonate such as K2CO2. (9) is the oxidizer side electrode, and like the fuel side electrode, it has a porous structure. This oxidizer-side electrode may use a nickel sintered body or a NiO sintered body, but in any case, under the operating conditions of the battery, N1p (L
+ ). Q□ is a current collector plate for the oxide film side electrode, which is made of stainless steel and has the same structure as the current collector plate for the fuel side electrode.

(ロ)は、酸化剤側のガス流路板であり、酸化剤ガス入
口管(至)、出口管o4を備えている。
(B) is a gas flow path plate on the oxidizing agent side, and is provided with an oxidizing gas inlet pipe (to) and an outlet pipe o4.

ここで、電解質層(8)の構造についてもう少し詳しく
説明す。従来、この電解質層(8)には2つのタイプが
ある。第1は、電解質層の多孔質構造を形成するLiA
l0g粒子を高温(1100°C)で焼結し、LiAl
O2焼結体骨格を形成させ、後に、炭酸塩電解質を含浸
させたマトリクスタイプと呼ばれるものである。したが
って、この場合、電池運転状態において電解質である炭
酸塩が溶融しても、LiAlO2の多孔質骨格は、強固
な状態にある。一方、第2は、L4ATOz粒子を焼結
せずに、単に、LiAlO2粉を板状に成形し、炭酸塩
を含浸させたペーストタイプと呼ばれるものである。こ
の場合、その名のとうり、電池運転状態で電解質層は硬
いペースト状で、容易に変形する。
Here, the structure of the electrolyte layer (8) will be explained in more detail. Conventionally, there are two types of this electrolyte layer (8). The first is LiA, which forms the porous structure of the electrolyte layer.
10g particles were sintered at high temperature (1100°C) to form LiAl
This is called a matrix type in which an O2 sintered body skeleton is formed and later impregnated with carbonate electrolyte. Therefore, in this case, even if the carbonate that is the electrolyte melts during battery operation, the porous skeleton of LiAlO2 remains strong. On the other hand, the second type is called a paste type in which L4ATOz particles are not sintered but LiAlO2 powder is simply formed into a plate shape and impregnated with carbonate. In this case, as the name suggests, the electrolyte layer is in the form of a hard paste and easily deforms during battery operation.

次に、この種の溶融炭酸塩形燃料電池の動作について説
明する。燃料電池は、水素などの燃料ガスと空気などの
酸化剤ガスのもつ化学エネルギーを、電気化学的な反応
によって、直接電気エネルギーに変換し、電力を得る装
置である。この電気−化学反応を効率良く行なわせるた
めに、一般には、多孔質な!極が使われる。
Next, the operation of this type of molten carbonate fuel cell will be explained. A fuel cell is a device that directly converts the chemical energy of a fuel gas such as hydrogen and an oxidant gas such as air into electrical energy through an electrochemical reaction to obtain electric power. In order to carry out this electro-chemical reaction efficiently, porous materials are generally used. poles are used.

燃料a!I電極および酸化剤側電極における反応は次の
通りである。
Fuel a! The reactions at the I electrode and the oxidizer side electrode are as follows.

燃料極側 H2+COB” H2O+CO2+2e  
 <1)酸化剤側 CO2+802 + 2e →Co
g    (2)燃料極側では、(1)式の様に、燃料
のH2は、電解質中のCOa  と反応し、水とCO2
と電子を生成する。
Fuel electrode side H2+COB” H2O+CO2+2e
<1) Oxidizer side CO2+802 + 2e →Co
(2) On the fuel electrode side, as shown in equation (1), H2 in the fuel reacts with COa in the electrolyte, forming water and CO2.
and generate electrons.

この電子は、燃料側電極を通して、外部負荷に送られた
後、酸化剤側電極に流れこむ。酸化剤側電極では、この
電子とCO2B’よび酸化剤02から、COニーを生成
し、電解質中に溶解することによって電池反応が進行す
る。
These electrons are sent to an external load through the fuel side electrode, and then flow into the oxidant side electrode. At the oxidizing agent side electrode, CO2 is generated from the electrons, CO2B', and oxidizing agent 02, and is dissolved in the electrolyte, whereby a battery reaction progresses.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の溶融炭酸塩形燃料電池は、以上のように構成され
、電解質層にマトリクスタイプ、あるいはペーストタイ
プのものが使われていた。マトリクスタイプは、機械的
強度は強いが、電解質層としての内部抵抗が大きく、電
極が収縮した場合、同時に変形して収縮を吸収できない
という問題点があった。またペーストタイプの場合、内
部抵抗はマトリクスタイプより小さく、変形に対する自
由度もあるが、機械的強度が弱いという問題があった。
Conventional molten carbonate fuel cells are constructed as described above, and use a matrix type or paste type electrolyte layer. Although the matrix type has strong mechanical strength, it has a large internal resistance as an electrolyte layer, and when the electrode contracts, it simultaneously deforms and cannot absorb the contraction. Further, in the case of the paste type, the internal resistance is lower than that of the matrix type, and there is a degree of freedom for deformation, but there is a problem in that the mechanical strength is weak.

この発明は、かかる問題点を解決するためになされたも
ので、機械的強度が強く、内部抵抗が低く、かつ変形に
対する自由度もある溶融炭酸塩形燃料電池用電解質層を
提供するものである。
The present invention was made to solve these problems, and provides an electrolyte layer for molten carbonate fuel cells that has strong mechanical strength, low internal resistance, and a high degree of freedom in deformation. .

〔間°照点を質決するための手段〕[Means for determining the point of view]

この発明は溶融炭酸塩形燃料電池用電解質層はマトリク
スタイプとペーストタイプの電解質保持材を重ね合わせ
複合したものである。
In this invention, the electrolyte layer for a molten carbonate fuel cell is a composite of a matrix type and a paste type electrolyte holding material stacked on top of each other.

C問題点を解決するための手段の作用〕この発明の電解
質層はマトリクスタイプとペーストタイプのt解質保持
材を重ね合わせ複合し、両者の足らない点を補いあって
いるので、機械゛的強度が強く、内部抵抗が低く、かつ
変形に対する自由度もあるものが得られる。
Effect of means for solving problem C] The electrolyte layer of the present invention is a composite of matrix type and paste type t-solite retention materials, which compensate for the deficiencies of both, so that mechanical A product with high strength, low internal resistance, and flexibility in deformation can be obtained.

〔実施例〕〔Example〕

以下この発明の一実施例について説明する。 An embodiment of this invention will be described below.

こCでは、電解質保持材素材のL i A 102粉の
成形法として近年電子材料技術分野で広く利用されてい
るセラミック基板の製造法である有機バインダーを使っ
たテープ成形法を用いる。
In C, a tape molding method using an organic binder, which is a method for manufacturing ceramic substrates that has been widely used in the field of electronic material technology in recent years, is used as a method for molding Li A 102 powder, which is a material for an electrolyte holding material.

まずマトリクスタイプの電解質保持材であるが、これは
LiAlO2パウダーを有機バインダーと混合しドクタ
ーブレードを用いて厚さ、0.05〜l■のグリーンテ
ープを形成する。これを約1400℃で処理しL 1A
102粒子を焼結し、マトリックスタイプ電解質保持材
の骨格を形成する。
First, a matrix type electrolyte holding material is prepared by mixing LiAlO2 powder with an organic binder and using a doctor blade to form a green tape with a thickness of 0.05 to 1cm. This was treated at about 1400°C and L 1A
The 102 particles are sintered to form the skeleton of the matrix type electrolyte holding material.

一方、ペーストタイプの電解質保持材は、やはりLiA
lO2パウダーをテープ成形法で成形した0、06〜1
mInのグリーンテープを使う。
On the other hand, paste type electrolyte holding material is still LiA
0,06-1 made by molding lO2 powder by tape molding method
Use mIn green tape.

次に、先に製造した、マトリクスタイプの電解質保持材
をペーストタイプのグリーンテープ即ち、ペーストタイ
プ電解質保持材でサンドウィッチのように重ねあわせ複
合したハイブリッド型電解質屑の骨格を形成する。
Next, the previously produced matrix type electrolyte holding material is laminated like a sandwich with a paste type green tape, ie, a paste type electrolyte holding material, to form a composite skeleton of hybrid electrolyte waste.

以上のようにして製作されたハイブリッドタイプ電解質
層は、従来のものと対比させて考えれば第1図の断面図
に示すようなマトリクスタイプ電解質保持材QQをペー
ストタイプ電解質保持材αηではさんだ構造をしている
。このようなハイブリッドタイプ電解質層(8)をfa
4図に示すような電池に組み込りだ場合、電池動作温度
650°Cに昇温した時点で、ペーストタイプ電解質保
持材の有機バインダーは除去されL 1AIO2骨格が
残る。ここで外部から電解質である炭酸塩を添付し、L
iAlO2骨格の空隙を溶融炭酸塩で満し、イオン伝導
性を有するハイブリッドタイプ電解質層(8)を形成す
る。
In contrast to the conventional type, the hybrid type electrolyte layer manufactured as described above has a structure in which matrix type electrolyte holding material QQ is sandwiched between paste type electrolyte holding materials αη as shown in the cross-sectional view of Figure 1. are doing. Such a hybrid type electrolyte layer (8) is fa
When incorporated into a battery as shown in Figure 4, the organic binder of the paste-type electrolyte holding material is removed when the battery operating temperature reaches 650°C, leaving the L1AIO2 skeleton. Attach carbonate, which is an electrolyte, from the outside and L
The voids in the iAlO2 skeleton are filled with molten carbonate to form a hybrid type electrolyte layer (8) having ionic conductivity.

電解質’麿(8)の機械的強度は、マトリクスタイプの
電解質保持材QQによって補強され、ペーストタイプの
lI#質保持材aVはある程度のやわらかさを持ち、か
つ第4図のように電極(4) 、 (9)に接触し電極
に電解質を供給する。
The mechanical strength of the electrolyte (8) is reinforced by the matrix-type electrolyte retaining material QQ, and the paste-type lI# retaining material aV has a certain degree of softness, and as shown in Fig. ), (9) to supply electrolyte to the electrode.

なお、上記実施例では三層構造のハイブリッドタイプ電
解質層(8)について説明したが、第2図。
In addition, in the above embodiment, a hybrid type electrolyte layer (8) having a three-layer structure was explained, but FIG.

第8図の構成図に示すような二層、五層構造のハイブリ
ッドタイプ電解質層(8)も考えられる。またさらに拡
張して、多層構造のものであっても上記実施例と同様の
効果を奏する。
A hybrid type electrolyte layer (8) having a two-layer or five-layer structure as shown in the block diagram of FIG. 8 is also considered. Further, even if the structure is expanded to a multilayer structure, the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればマトリクスタイプ電解
質保持材とペーストタイプ電解質保持材を重ね合わせ複
合したものにすることにより、機械的強度が強く、内部
抵抗が低く、かつ変形に対する自由度もある溶融炭酸塩
形燃料電池用電解質層が得られる効果がある。
As described above, according to the present invention, the matrix type electrolyte holding material and the paste type electrolyte holding material are stacked together to form a composite material, which has strong mechanical strength, low internal resistance, and a degree of freedom in deformation. This has the effect of providing an electrolyte layer for a molten carbonate fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の8層の溶融炭酸塩形燃料
電池用電解質層を示す断面図、第2図及び第8図はそれ
ぞれこの発明の他の実施例の2層及び5層の電解質層を
示す断面図、第4図は一般的な溶融炭酸塩形燃料電池を
示す構成図である。 (8)・・・電解質層、a9・・・マトリクスタイプ電
解質保持材、αη・・・ペーストタイプ電解質保持材な
お、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing an 8-layer electrolyte layer for a molten carbonate fuel cell according to an embodiment of the present invention, and FIGS. 2 and 8 are 2-layer and 5-layer electrolyte layers according to another embodiment of the present invention, respectively. FIG. 4 is a cross-sectional view showing the electrolyte layer of FIG. 4, and FIG. 4 is a configuration diagram showing a general molten carbonate fuel cell. (8) Electrolyte layer, a9 Matrix type electrolyte holding material, αη Paste type electrolyte holding material Note that in the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)マイリクスタイプ電解質保持材とペーストタイプ
電解保持材を重ね合わせ複合した溶融炭酸塩形燃料電池
用電解質層。
(1) An electrolyte layer for a molten carbonate fuel cell, which is a composite of a Mylix type electrolyte holding material and a paste type electrolytic holding material.
(2)マトリクスタイプ電解質保持材は電解質保持材原
料となるセラミックスを板状に成形して焼結したもので
ある特許請求の範囲第1項記載の溶融炭酸塩形燃料電池
用電解質層。
(2) The electrolyte layer for a molten carbonate fuel cell according to claim 1, wherein the matrix type electrolyte holding material is obtained by molding ceramics, which is a raw material for the electrolyte holding material, into a plate shape and sintering it.
(3)ペーストタイプ電解質保持材は電解質保持材原料
となるセラミックスを焼結しないで成形したものである
特許請求の範囲第1項記載の溶融炭酸塩形燃料電池用電
解質層。
(3) The electrolyte layer for a molten carbonate fuel cell according to claim 1, wherein the paste type electrolyte holding material is formed by molding ceramics, which is a raw material for the electrolyte holding material, without sintering.
JP59145820A 1984-07-12 1984-07-12 Electrolyte layer for fused carbonate type fuel cell Pending JPS6124162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145820A JPS6124162A (en) 1984-07-12 1984-07-12 Electrolyte layer for fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145820A JPS6124162A (en) 1984-07-12 1984-07-12 Electrolyte layer for fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPS6124162A true JPS6124162A (en) 1986-02-01

Family

ID=15393887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145820A Pending JPS6124162A (en) 1984-07-12 1984-07-12 Electrolyte layer for fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS6124162A (en)

Similar Documents

Publication Publication Date Title
US4749632A (en) Sintering aid for lanthanum chromite refractories
US4329403A (en) Electrolyte-electrode assembly for fuel cells
US20070072070A1 (en) Substrates for deposited electrochemical cell structures and methods of making the same
US20110269047A1 (en) Metal-supported, segmented-in-series high temperature electrochemical device
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
JPH08509570A (en) Refractory fuel cell with improved solid electrolyte / electrode interface and method of making the interface
US8338025B2 (en) Self-sealed metal electrode for rechargeable oxide-ion battery cells
US20060275649A1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack
US5277995A (en) Electrode and method of interconnection sintering on an electrode of an electrochemical cell
CN106374120A (en) Structure of self-sealed flat-shaped solid oxide fuel cell/electrolytic cell
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
JP2001060462A (en) Cell-tube sealing structure
US9929452B2 (en) Energy conversion cell having an electrochemical conversion unit
JP2003263994A (en) Solid electrolyte fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
JPS6124158A (en) Electrode of fused carbonate type fuel cell
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JPH03134963A (en) Solid electrolyte type fuel cell
JPS6124162A (en) Electrolyte layer for fused carbonate type fuel cell
US6270536B1 (en) Method of fabricating solid oxide fuel cell electrodes
JP3040645B2 (en) Dimple type solid electrolyte cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JP2007005200A (en) Solid oxide fuel cell and manufacturing method of interconnector material