JPS61241629A - Infrared radiation thermometer - Google Patents

Infrared radiation thermometer

Info

Publication number
JPS61241629A
JPS61241629A JP8406385A JP8406385A JPS61241629A JP S61241629 A JPS61241629 A JP S61241629A JP 8406385 A JP8406385 A JP 8406385A JP 8406385 A JP8406385 A JP 8406385A JP S61241629 A JPS61241629 A JP S61241629A
Authority
JP
Japan
Prior art keywords
detector
wavelength
infrared
circuit
infrared radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8406385A
Other languages
Japanese (ja)
Inventor
Toshiki Seto
瀬戸 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8406385A priority Critical patent/JPS61241629A/en
Publication of JPS61241629A publication Critical patent/JPS61241629A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/601Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using spectral scanning

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure a temperature of a material body under noncontact state by using a diffraction grating and a peak detecting circuit and not knowing an absolute value of emissivity and infrared radiation electric power of the material body. CONSTITUTION:The titled thermometer is provided with the diffraction grating 7, a servomotor 8, an angle detector 9, a sample and hold circuit 10, the peak detection circuit 11 and an optical cut-off filter 12 of higher order, etc. Then, incident infrared rays are divided spectrally with the grating 7 and made basic wave components alone with the filter 12 and condensed by an infrared lens 1 and detected by an infrared detector 2. The grating 7 is turned by the motor 8 and the spectral wavelength is changed to measure a wavelength characteristic of the infrared radiation electric power. When a maximum point of the wavelength characteristic is detected with the circuit 11, an output signal of the detector 9 is held with the circuit 10. Then, the output of the circuit 10 as it is displayed on a display part 4. Further, in order to eliminate the influence which is given to the wavelength characteristic of the infrared radiation electric power by respective wavelength characteristics of the sensitivity of the detector 2, the diffraction efficiency of the grating 7 and the transmissivity of the lens 1, a gain of a detector amplifier 3 is changed and compensated every wavelength with an amplifier gain variable device 5 responding to wavelength information from the detector 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は物体の放射する赤外線を利用し、非接触で温
度測定可能な赤外線放射温度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an infrared radiation thermometer that can measure temperature in a non-contact manner using infrared rays emitted by an object.

〔従来の技術〕[Conventional technology]

第3図は従来の赤外線放射温度針を示す構成図であ凱第
3図において、(1)は赤外レンズ、(2)は赤外レン
ズ(1)で集光さnた赤外線に応じた信号を出力する赤
外線検出器、(3)は赤外線検出器(2)の出力を増幅
する検出器アンプ、 +6)抹被測定物体の放射率デー
タ、(5)は放射率データ(6)により検出器アンプ(
3)のゲインを調整するアンプゲイン可変装置。
Figure 3 is a configuration diagram showing a conventional infrared radiation temperature needle. An infrared detector that outputs a signal, (3) a detector amplifier that amplifies the output of the infrared detector (2), +6) Emissivity data of the object to be measured, and (5) detected by the emissivity data (6) instrument amplifier (
3) An amplifier gain variable device that adjusts the gain.

(41U温度表示部である。(This is a 41U temperature display section.

従来の赤外線放射温度計は上記のように構成され1例え
に温度両足しようとする物体の放射率データ(6)を予
めアンプゲイン可変装置(5)にセットしておいて、物
体の放射する赤外線を赤外線検出器(2)で検出し、ゲ
イン調整された検出器アンプ(3)を通して放射率補正
さ詐た物体温度が温度表示部(41に表示される。
A conventional infrared radiation thermometer is constructed as described above.For example, the emissivity data (6) of the object to be measured is set in advance in the amplifier gain variable device (5), and the infrared radiation emitted by the object is measured. is detected by an infrared detector (2), and the emissivity-corrected object temperature is displayed on a temperature display section (41) through a gain-adjusted detector amplifier (3).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の赤外線放射温度計では、温度測定を
行う前に、対象とする物体の放射率を知らねばならず、
その放射率も物体の材質や表面状態によって大きく変化
するために正確な把握は難しく、精度ある温度測定がさ
扛にくいという問題点があった。
With conventional infrared radiation thermometers such as those mentioned above, the emissivity of the target object must be known before temperature measurement.
The emissivity also varies greatly depending on the material and surface condition of the object, making it difficult to grasp accurately and making it difficult to accurately measure temperature.

この発明は、このような問題点を解決するためになされ
たもので、放射率に影響さ扛ずに温度測定が可能な赤外
線放射温度計の実現を目的とするものである。
The present invention was made to solve these problems, and aims to realize an infrared radiation thermometer that can measure temperature without being affected by emissivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る赤外線放射温度計は、物体より放射され
る赤外線を回折格子によって分光径検出し、放射電力が
最大となる赤外線波長を検出する回路を加えたものであ
る。
The infrared radiation thermometer according to the present invention includes a circuit that detects the spectral diameter of infrared rays emitted from an object using a diffraction grating, and detects the infrared wavelength at which the radiated power is maximum.

〔作用〕[Effect]

この発明においては1回折光子によって入射赤外線を分
光し、放射赤外電力が最大となる波長を検出することに
より、放射理論に基づき物体温度に換算後表示する。
In this invention, incident infrared rays are spectrally dispersed using single diffracted photons, and the wavelength at which the radiated infrared power is maximum is detected, and the temperature is converted into an object temperature based on radiation theory and then displayed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す赤外線放射温度計の
構成図であり、 (11,+21. +31. (41
,(51は上記従来装置と同一のものである。(7)は
回折格子。
FIG. 1 is a block diagram of an infrared radiation thermometer showing an embodiment of the present invention. (11, +21. +31. (41
, (51 is the same as the above conventional device. (7) is a diffraction grating.

(8)はその駆動用のサーボモータ、(9)はサーボモ
ータ(8)の回転角検出用の角度検出器、 +IIは角
度検出器(9)の出力を保持するサンプルホールド回路
、aυは受光放射電力の最大を検出するピーク検出回路
(8) is the servo motor for driving it, (9) is the angle detector for detecting the rotation angle of the servo motor (8), +II is the sample hold circuit that holds the output of the angle detector (9), and aυ is the light receiving circuit. A peak detection circuit that detects the maximum radiated power.

Q2は回折格子による高次光発生の成分を除去する高次
元カットフィルタである。
Q2 is a high-dimensional cut filter that removes components of high-order light generated by the diffraction grating.

上記のように構成さnだ赤外線放射温度計においては1
次の放射理論に基づいて温度を求めている。
In an infrared radiation thermometer configured as described above, 1
The temperature is determined based on the following radiation theory.

黒体の放射発散度W(λ、T)は次式で表わせる。The radiant emittance W(λ, T) of a black body can be expressed by the following equation.

・・・(1) ただし、T:黒体の温度(’K) λ:波長(μm) aI=3.74X10番 (Watfyfdi −μ?
FF’ )0、 =1.44 Xi G’ (μm−’
K)上記第(1)式を波長λで偏微分すると・・・(2
) 上記式(2)より、無体がある温度TOのとき、最大の
放射電力を持つ波長λmaxは次式を満す。
...(1) Where, T: Blackbody temperature ('K) λ: Wavelength (μm) aI=3.74X10 (Watfyfdi -μ?
FF' ) 0, = 1.44 Xi G'(μm-'
K) When the above equation (1) is partially differentiated with respect to the wavelength λ...(2
) From the above equation (2), when the inorganic body is at a certain temperature TO, the wavelength λmax having the maximum radiation power satisfies the following equation.

上記第(3)式よQ、最大の放射電力を持つ波長λma
xが得らすれば、そのときの黒体の温度TOが求まる。
According to the above equation (3), Q is the wavelength λma having the maximum radiation power.
Once x is obtained, the blackbody temperature TO at that time can be found.

  □ 黒体でなく一般の物体では、放射率ε=1一定でなく波
長め関数であるが、ある範囲の波長帯では6〈1なる定
数(灰色体)と近似できる。したがう゛て一般′の物体
からの放射に関しても上記第(3)式は成り立つ。つま
り、赤外放射電力の各波長−分が最大となる波長を知る
ことにより、゛放射率の値に無関係に物体の温度が測定
できる。
□ For general objects, not black bodies, the emissivity ε is not constant at 1 but is a function of wavelength, but in a certain wavelength band it can be approximated as a constant of 6 < 1 (gray body). Therefore, the above equation (3) also holds true for radiation from a general object. In other words, by knowing the wavelength at which each wavelength-minute of infrared radiation power is maximum, it is possible to measure the temperature of an object regardless of the emissivity value.

第1図で入射赤外線は回折格子(7)で分光され。In Fig. 1, the incident infrared rays are separated by a diffraction grating (7).

高次光カットフィルタHで基本波成分のみとなル。High-order optical cut filter H eliminates only the fundamental wave component.

赤外レンズ(1)により集光され、赤外線検出器(2)
で検出される。上記回折格子(7)をサーボモータ(8
)によって回転させ1分光波長を変え、赤外放射電力の
波長%性を測定する。ピーク検出回路1で波長特性の最
大点を検出すると、角度検出器(9)の出力信号、すな
わち波長情報をサンプルホールド回路員に保持する。被
測定物温度と、上記最大点の波長とは、上記第(3)式
によフ1:1に対応しているので、上記サンプルホール
ド回路QIの出力をそのまま温度表示部(4)にて表示
する。なお、この実施例では、赤外検出器(2)の感度
2回折格子(7)の回折効・率、赤外°レンズ(1)の
透過率それぞれの波長特性が、赤外放射電力の波長特性
測定に与える影響を排除するために、上記角度検出器(
9)より波長情報を受けてアンプゲイン可変装置(5)
で検出67ンプ(3)のゲインを波長ごとに変え補償す
る。 “この発明での、ピーク検出回路の一実施例な第
2図に示す。図で(IIはコンパレータ、(14)t−
tバッファ、 OUt、ゲート、aeは検出器アンプ出
力、αηはサンプルホールド信号である。検出器アンプ
出力00とバッファa4の出力とをコンパレータで比較
し。
The light is focused by an infrared lens (1) and sent to an infrared detector (2)
Detected in The above diffraction grating (7) is moved by a servo motor (8
) to change the wavelength for one minute, and measure the wavelength % characteristic of the infrared radiation power. When the peak detection circuit 1 detects the maximum point of the wavelength characteristic, the output signal of the angle detector (9), that is, the wavelength information, is held in the sample and hold circuit member. The temperature of the object to be measured and the wavelength at the maximum point have a 1:1 correspondence according to equation (3) above, so the output of the sample and hold circuit QI can be directly displayed on the temperature display section (4). indicate. In this example, the wavelength characteristics of the diffraction efficiency/rate of the two-sensitivity diffraction grating (7) of the infrared detector (2) and the transmittance of the infrared lens (1) are determined by the wavelength of the infrared radiation power. In order to eliminate the influence on the characteristic measurement, the above angle detector (
9) Amplifier gain variable device (5) that receives wavelength information from
The gain of the detection 67 amplifier (3) is changed for each wavelength to compensate. "An embodiment of the peak detection circuit according to the present invention is shown in FIG. 2. In the figure, (II is a comparator, (14) t-
t buffer, OUT, gate, ae is the detector amplifier output, αη is the sample and hold signal. A comparator compares the detector amplifier output 00 and the output of buffer a4.

検出器アンプ出力tteO方が大きければサンプルホー
ルド信号0?)が出力されるとともに、ゲーH1が開い
てバックγα荀の内容が現在の検出器アンプ出力Hへと
更新さ扛る。したがって最終的にはバックγα黴の内容
は検出赤外線の最大値となっており。
If the detector amplifier output tteO is larger, is the sample hold signal 0? ) is output, and the game H1 is opened and the contents of the back γα line are updated to the current detector amplifier output H. Therefore, in the end, the content of back γα mold becomes the maximum value of detected infrared rays.

サンプルホールド回路Q1mも、最大点の波長信号を保
持している。
The sample and hold circuit Q1m also holds the wavelength signal at the maximum point.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおシ1回折格子とピーク検出
回路を用いることにより、物体の放射率や赤外線放射電
力の絶対値を知ることなしに、物体の温度を非接触で測
定できるという効果がある。
As explained above, this invention has the effect of being able to measure the temperature of an object without contact, without knowing the emissivity of the object or the absolute value of the infrared radiation power, by using the diffraction grating and the peak detection circuit. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す赤外線放射温度計の
構成図、第2図は第1図で示すピーク検出回路の構成図
、第3図は従来の赤外線放射温度計を示す構成図である
。 図において、(2)は赤外扉検出器、(3)は検出器ア
ンプ、(4)は温度表示部、(5)はアンプゲイン可変
装置、mn回折格子、(8)はサーボアンプ、(9)は
角度検出器、 (11はサンプルホールド回路、0υは
ピーク検出回路である。 なお1図中同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram of an infrared radiation thermometer showing an embodiment of the present invention, Fig. 2 is a block diagram of the peak detection circuit shown in Fig. 1, and Fig. 3 is a block diagram of a conventional infrared radiation thermometer. It is. In the figure, (2) is an infrared door detector, (3) is a detector amplifier, (4) is a temperature display section, (5) is an amplifier gain variable device, mn diffraction grating, (8) is a servo amplifier, ( 9) is an angle detector, (11 is a sample hold circuit, and 0υ is a peak detection circuit. The same reference numerals in Figure 1 indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 物体より放射される赤外線を分光する回折格子と、この
回折格子を回転させ、入射赤外線に対する角度を変化さ
せるサーボモータと、このサーボモータの回転角を検出
する角度検出器と、この角度検出器の出力を保持するサ
ンプルホールド回路と、上記回折格子により分光された
赤外線を検出する赤外線検出器と、この赤外線検出器の
出力信号を増幅する検出器アンプと、この検出器アンプ
の出力の最大値を検出し、上記サンプルホールド回路に
サンプル信号を送るピーク検出器と、上記角度検出器の
出力を入力し、上記回折格子の回転角に応じて上記検出
器アンプのゲインを調整するアンプゲイン可変手段と、
上記サンプルホールド回路の出力を表示する温度表示部
とを具備したことを特徴とする赤外線放射温度計。
A diffraction grating that separates infrared rays emitted from an object, a servo motor that rotates this diffraction grating and changes its angle with respect to the incident infrared rays, an angle detector that detects the rotation angle of this servo motor, and an angle detector that detects the rotation angle of this servo motor. A sample hold circuit that holds the output, an infrared detector that detects the infrared rays separated by the above-mentioned diffraction grating, a detector amplifier that amplifies the output signal of this infrared detector, and a maximum value of the output of this detector amplifier. a peak detector for detecting and sending a sample signal to the sample hold circuit; and amplifier gain variable means for inputting the output of the angle detector and adjusting the gain of the detector amplifier according to the rotation angle of the diffraction grating. ,
An infrared radiation thermometer comprising: a temperature display section that displays the output of the sample and hold circuit.
JP8406385A 1985-04-19 1985-04-19 Infrared radiation thermometer Pending JPS61241629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8406385A JPS61241629A (en) 1985-04-19 1985-04-19 Infrared radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8406385A JPS61241629A (en) 1985-04-19 1985-04-19 Infrared radiation thermometer

Publications (1)

Publication Number Publication Date
JPS61241629A true JPS61241629A (en) 1986-10-27

Family

ID=13820035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8406385A Pending JPS61241629A (en) 1985-04-19 1985-04-19 Infrared radiation thermometer

Country Status (1)

Country Link
JP (1) JPS61241629A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139533U (en) * 1987-03-05 1988-09-14
JPH0367135A (en) * 1989-08-04 1991-03-22 Chino Corp Radiation thermometer
EP0689078A1 (en) * 1994-06-21 1995-12-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same
EP0801319A1 (en) * 1995-11-01 1997-10-15 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
US5949570A (en) * 1995-06-20 1999-09-07 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139533U (en) * 1987-03-05 1988-09-14
JPH0367135A (en) * 1989-08-04 1991-03-22 Chino Corp Radiation thermometer
EP0689078A1 (en) * 1994-06-21 1995-12-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same
US5920418A (en) * 1994-06-21 1999-07-06 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
US5949570A (en) * 1995-06-20 1999-09-07 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
EP0801319A1 (en) * 1995-11-01 1997-10-15 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
EP0801319A4 (en) * 1995-11-01 1998-04-29 Matsushita Electric Ind Co Ltd Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
US6072620A (en) * 1995-11-01 2000-06-06 Matsushita Electric Industrial Co., Ltd. Output efficiency control device, projection-type display apparatus, infrared sensor, and non-contact thermometer
EP1278093A2 (en) * 1995-11-01 2003-01-22 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
EP1278093A3 (en) * 1995-11-01 2003-07-09 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer

Similar Documents

Publication Publication Date Title
US4005605A (en) Remote reading infrared thermometer
GB1412449A (en) Radiometry
JPH0328728A (en) Instrument and method of measuring electromagnetic radiation
US2674155A (en) Pyrometer
US5764684A (en) Infrared thermocouple improvements
CA1173273A (en) I.r. radiation pyrometer
US3794838A (en) Compensation means for ambient temperature changes of a radiation chopper in a radiometer
JPS61241629A (en) Infrared radiation thermometer
US5436443A (en) Polaradiometric pyrometer in which the parallel and perpendicular components of radiation reflected from an unpolarized light source are equalized with the thermal radiation emitted from a measured object to determine its true temperature
US3654809A (en) Temperature measurement technique and apparatus
US3474671A (en) Device for measuring the temperature of a body utilizing the infrared energy radiation therefrom
CN112504471A (en) Real-time infrared temperature measurement method applied to intelligent monitoring system
Gibson A two-colour infra-red radiation pyrometer
Asatryan et al. Universal infrared spectral radiometer
Wang et al. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments
Bielecki et al. Infrared pyrometer for temperature measurement of objects of both wavelength-and time-dependent emissivity
US3926522A (en) Far-infrared radiant intensity meter
JPS6190024A (en) Radiation thermometer
US3161775A (en) Radiation thermometer
US4985858A (en) Method and apparatus for temperature determination
Barron Application design features for non-contact temperature measurement
JPS62140036A (en) Radiation thermometer
Hao et al. Study on the infrared lens-free irradiation thermometer based on InGaAs detector at NIM
JPH06307927A (en) Radiation energy detector
JPH0510822A (en) Radiation temperature measuring instrument