JPS61241001A - Forming process of optimum cutting path for shape of flute in numerical control lathe - Google Patents

Forming process of optimum cutting path for shape of flute in numerical control lathe

Info

Publication number
JPS61241001A
JPS61241001A JP7940985A JP7940985A JPS61241001A JP S61241001 A JPS61241001 A JP S61241001A JP 7940985 A JP7940985 A JP 7940985A JP 7940985 A JP7940985 A JP 7940985A JP S61241001 A JPS61241001 A JP S61241001A
Authority
JP
Japan
Prior art keywords
cutting
shape
path
data
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7940985A
Other languages
Japanese (ja)
Other versions
JPH0780112B2 (en
Inventor
Akira Hibi
日比 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP60079409A priority Critical patent/JPH0780112B2/en
Publication of JPS61241001A publication Critical patent/JPS61241001A/en
Publication of JPH0780112B2 publication Critical patent/JPH0780112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods

Abstract

PURPOSE:To remove useless portion of path cutting by dividing cut portion into those of the center-bottom, right-hand side and left-hand side, and making lathe carry out a cutting cycle including a preset shift motion depending on the shape raw material of a work and the shape of a flute. CONSTITUTION:Data such as the shape of a flute, that of raw material are input to an input controller 3 through a key board 2 following a guidance shown on a display 1. These data are discriminated in the controller 3, sent to memories 4-6, and the data read out from them are input to a controller 7. Cutting path data CP, obtained through collaboration among path forming units 8-10 and the output from the controller, are sent to a cutting path memory 11 and the data MD is read out when the numerical control lathe operates for cutting work, thereby, the flute cutting is carried out through the optimum cutting path formed by the controller 7.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、数値制御旋盤のミゾ加工におけるワークに
対する最適切削径路の生成方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for generating an optimal cutting path for a workpiece in groove machining using a numerically controlled lathe.

(発明の技術的背景とその問題点) 数値制御旋盤用の自動プログラム及び対話型手動データ
人力においては、従来よりミゾ加工の切削径路は内部で
自動生成されるようになっている。しかしながら、ミゾ
形状やミゾ部の素材形状に制限が有り、任意のミゾ形状
や素材形状に対しては無駄な動きの修正や加工範囲の微
細な分割を余儀なくされており、オペレータ等に多大な
負担をかけているのが実状である。
(Technical background of the invention and its problems) In automatic programs and interactive manual data for numerically controlled lathes, cutting paths for groove machining have conventionally been automatically generated internally. However, there are restrictions on the shape of the groove and the material shape of the groove, and for arbitrary groove shapes and material shapes, unnecessary movement corrections and fine division of the machining range are forced, which places a great burden on operators. The reality is that

(発明の目的) この発明は上述のような事情からなされたものであり、
この発明の目的は、任意のミゾ形状や素材形状において
形状を入力することにより、無駄のない最適な切削径路
を自動生成するようにした数値制御旋盤における最適ミ
ゾ形状切削径路の生成方式を提供することにある。
(Object of the invention) This invention was made under the above circumstances,
An object of the present invention is to provide a method for generating an optimal groove shape cutting path for a numerically controlled lathe, which automatically generates an optimal cutting path without waste by inputting the shape of an arbitrary groove shape or material shape. There is a particular thing.

(発明の概要) この発明は、数値制御旋盤における最適ミゾ形状切削径
路の生成方式に関するもので、鍛造品あるいは鋳造品の
ようなワークの素材形状とミゾ形状とを基に、切削部を
中央底部、右側部及び左側部に区分し、X軸あるいはX
軸に平行で且つ一定のシフト動作を含むミゾ切削サイク
ルを行なわせ、空切削径路部分を除去するようにしたも
のである。
(Summary of the Invention) The present invention relates to a method for generating an optimal groove-shaped cutting path in a numerically controlled lathe. , divided into right side and left side, X axis or
A groove cutting cycle that is parallel to the axis and includes a constant shift operation is performed to remove the empty cutting path portion.

(発明の実施例) この発明は、任意の素材形状及びミゾ形状を入力すると
共に、クリアランスデータ等のパートデータを入力し、
上記素材形状、ミゾ形状及びクリアランスデータから中
央底部切削加工のための仮想サイクル開始点を求め、こ
の仮想サイクル開始点を通る第1の切削ラインを設定し
、この第1の切削ラインと上記素材形状及びワーク形状
との第1及び第2の交点を求め、上記第1の交点より上
記クリアランスデータだけ移動した第3の点を実サイク
ル開始点として求め、上記実サイクル開始点(第3の点
)→第2の交点を第1の切削径路として設定し、次に左
側部切削加工のために入力シフト量Sだけ中央部より左
側部にシフトした第2の切削ラインを設定し、この第2
の切削ラインと上記素材形状及びワーク形状との第4及
び第5の交点を求め、上記第4の交点より上記クリアラ
ンスデータだけ移動した第6の点を求め、上記第6の点
と上記仮想サイクル開始点を通るラインとから第7の交
点を求め、上記第2の交点→第7の交点−第6の点を早
送り径路とし、上記第6の交点→第5の交点を第2の切
削径路と設定し、上記第5の交点→上記第2の交点を第
3の切削径路として設定する。以下上記シフト量Sだげ
シフトした第3.第4・・・の切削ラインを順次設定し
、次に右側部についても順次上記切削径路を設定するこ
とにより、上記!R1,第2及び第3の切削径路を最適
な切削径路として設定する。
(Embodiment of the invention) This invention inputs an arbitrary material shape and groove shape, and also inputs part data such as clearance data.
A virtual cycle start point for central bottom cutting is determined from the material shape, groove shape, and clearance data, a first cutting line passing through this virtual cycle start point is set, and this first cutting line and the material shape are and the workpiece shape, and find a third point moved by the clearance data from the first intersection point as the actual cycle start point, and determine the actual cycle start point (third point). → Set the second intersection as the first cutting path, then set a second cutting line shifted from the center to the left side by the input shift amount S for left side cutting, and
Find the fourth and fifth intersections between the cutting line and the material shape and workpiece shape, find a sixth point moved by the clearance data from the fourth intersection, and connect the sixth point and the virtual cycle. A seventh point of intersection is determined from the line passing through the starting point, the second point of intersection -> the seventh point of intersection - the sixth point is set as the rapid feed path, and the point of sixth intersection -> the fifth point of intersection is set as the second cutting path. The fifth intersection point→the second intersection point is set as the third cutting path. Below, the 3rd shift is shifted by the above shift amount S. By sequentially setting the fourth cutting line and then sequentially setting the cutting path for the right side, the above! R1, the second and third cutting paths are set as the optimum cutting paths.

この発明方式を実現する装置は第1図に示すような構成
となっており、入力制御部3にはキーボード2から切削
部におけるミゾ形状、切削部における素材形状及びバイ
ト幅、シフト量。
The apparatus for realizing the method of this invention has a configuration as shown in FIG. 1, and an input control unit 3 is provided with information from a keyboard 2 such as the shape of the groove in the cutting part, the shape of the material in the cutting part, the width of the cutting tool, and the amount of shift.

ステップ量1Mり量又は停止時間、クリアランス等のパ
ートデータが入力され、これら入力データがミゾ形状記
憶部4.素材形状記憶部5及びパートデータ記憶部6に
それぞれ記憶される。入力制御部3にはCRT等のディ
スプレイ1が接続されており、ディスプレイ1で対話型
入力用のガイド表示及び入力データの確認表示が行なわ
れる。つまり、オペレータはディスプレイlの対話案内
に従ってキーボード2からデータを入力し、この入力デ
ータが入力制御1部3で判別されて対応する記憶部4〜
6へ記憶されるのである。また、記憶部4〜6から読出
されたデータは径路生成全体の制御を行なう径路生成主
制御部7に入力され、中央底部径路生成部8、左側部径
路生成部9及び右側部径路生成郡10と協働して、後述
する手法で生成された切削径路データCPが切削径路記
憶部11に与えられる。そして、この記憶部11に記憶
された切削径路データNOは数値制御旋盤の切削加工時
に読出され、径路生成主制御部7で生成された最適な切
削径路のミゾ加工が行なわれることになる。
Part data such as step amount 1M or stop time, clearance, etc. are input, and these input data are stored in the groove shape memory section 4. The data are stored in the material shape memory section 5 and the part data memory section 6, respectively. A display 1 such as a CRT is connected to the input control unit 3, and a guide display for interactive input and a confirmation display of input data are performed on the display 1. In other words, the operator inputs data from the keyboard 2 according to the dialogue guidance on the display l, and this input data is determined by the input control unit 1 3 and the corresponding storage unit 4 to
6 is stored. Further, the data read from the storage units 4 to 6 is input to a route generation main control unit 7 that controls the entire route generation, including a center bottom route generation unit 8, a left side route generation unit 9, and a right side route generation group 10. Cutting path data CP generated by a method described later is provided to the cutting path storage section 11 in cooperation with the cutting path storage section 11. The cutting path data No. stored in the storage section 11 is read out during cutting by the numerically controlled lathe, and groove machining is performed using the optimum cutting path generated by the path generation main control section 7.

次に、径路生成主制御部7でのこの発明による切削径路
の生成の様子を、第2図、第3図のフローチャート及び
第4図〜第7図を参照して説明する。
Next, how the path generation main control section 7 generates a cutting path according to the present invention will be explained with reference to the flowcharts of FIGS. 2 and 3 and FIGS. 4 to 7.

第2図はこの発明の一実施例をフローチャートに示すも
のであり、先ずワークのミゾ形状の中央底部(ミゾの最
小径部)を設定しくステップS1)、この切削径路を設
定する(ステップ52)0次にミゾ左側部の形状を設定
しくステップS3)、この切削径路を設定する(ステッ
プ54)0次にミゾ右側部について形状及び径路を設定
する(ステップS5.SS)ことを表わしている。第3
図は上記切削径路設定の詳細をフローチャートに表わし
たものであり、以下に動作とともに説明する。
FIG. 2 shows a flowchart of an embodiment of the present invention. First, the central bottom of the groove shape of the workpiece (the minimum diameter part of the groove) is set (step S1), and this cutting path is set (step 52). This shows that the shape of the left side of the 0th-order groove is set (Step S3), the cutting path is set (Step 54), and the shape and path of the right side of the 0th-order groove are set (Step S5.SS). Third
The figure shows the details of the cutting path setting described above in a flowchart, and will be explained below along with the operation.

この発明においてミゾ加工であるので切削加工に用いる
切削工具の先端面はミゾの中央底部と平行であることは
言うまでもない、(第5図において、切削工具の先端G
Hはミゾの中央底部と平行をなす、) 先ず、第4図で示すようなディスプレイlの画面からA
、B、C,D、E、Fc7)7−1形状とA、イ、口、
ハ、二、ホ、へ、Fの素材形状とに基づいてワークの中
央底部(ミゾの最小径部)のX軸方向の最小値点Cと、
Cを通りX軸方向の最大値点POを求める。そして、第
5図に示すように、最大値点POからキーボード2で入
力された入力データのクリアランス旦1だけX軸方向に
移動した仮想のサイクル開始点PSを求める(ステップ
5IO)、次に、仮想のサイクル開始点PSを通り、X
軸方向の垂線、即ち切削ラインLOを設定しくステップ
912)、素材形状及びミゾ形状との交点P1及びP2
を求め(ステップ513)、素材形状との交点Piから
クリアランス見2だけ移動した点P3を設定する。そし
て、この点P3を実際のサイクル開始点とする。したが
って、早送り径路はPJ4P3、切削径路はP3→P2
となる(ステップ!914)、なお、交点PIはP3→
P2の径路上にあるため、出力データとして省かれる。
Since this invention involves groove machining, it goes without saying that the tip surface of the cutting tool used for cutting is parallel to the center bottom of the groove (in Fig. 5, the tip G of the cutting tool is
H is parallel to the center bottom of the groove.) First, from the screen of the display l as shown in Figure 4,
, B, C, D, E, Fc7) 7-1 Shape and A, A, Mouth,
The minimum value point C in the X-axis direction at the center bottom of the workpiece (minimum diameter part of the groove) based on the material shape of C, 2, E, H, F,
Find the maximum point PO in the X-axis direction through C. Then, as shown in FIG. 5, a virtual cycle start point PS is determined by moving in the X-axis direction by 1 after the clearance of the input data input using the keyboard 2 from the maximum point PO (step 5IO). Next, Passing through the virtual cycle starting point PS,
Set the perpendicular line in the axial direction, that is, the cutting line LO (step 912), and the intersection points P1 and P2 with the material shape and the groove shape.
is determined (step 513), and a point P3 is set, which is moved by a clearance of 2 from the intersection point Pi with the material shape. This point P3 is then set as the actual cycle start point. Therefore, the rapid feed path is PJ4P3, and the cutting path is P3→P2.
(Step!914), and the intersection PI is P3→
Since it is on the path of P2, it is omitted as output data.

この切削径路P3→P2において、第6図に示すように
入力されたクリアランス見2とステップidだけ、まず
点P3から切削ラインLOに沿って切削され切削加工し
た工具は、入力された戻り量tだけ戻り、次にその戻り
量tとステップ量dを加えた値だけ切削加工され、以下
同様にくり返される。
In this cutting path P3→P2, as shown in FIG. 6, the tool is cut along the cutting line LO from point P3 by the input clearance value 2 and step ID, and the cutting tool is cut by the input return amount t. Then, cutting is performed by the sum of the return amount t and the step amount d, and the process is repeated in the same manner.

次に第5図に示すようにワークのミゾの左側部に入力シ
フト量Sだけシフトした垂線Llを仮定し、上記ライン
Llと素材形状及びミゾ形状との交点P4及びP5を求
め、素材形状との交点P4からクリアランス13だけX
軸方向に移動した点P8を求める。この点P8よりX軸
方向に平行線LH1を仮定し、垂線LOとの交点P7を
求める。これにより、底部の切削後、工具は交点P7ま
で戻り、交点P2→交点P7→点P8まで早送り(ステ
ップ515)された後、点P8を左側部の切削径路の実
際の開始点として切削ラインL1に沿って上述の如く入
力ステップ量dについて戻り量tを加味した動作をくり
返しながら切削される。したがって早送り径路はP2→
P7→P8.切削径路はP64P5となる。
Next, as shown in Fig. 5, assuming a perpendicular line Ll shifted by the input shift amount S to the left side of the groove of the workpiece, find the intersections P4 and P5 of the line Ll with the material shape and the groove shape, and Clearance 13 from the intersection P4
A point P8 moved in the axial direction is determined. A parallel line LH1 is assumed in the X-axis direction from this point P8, and an intersection point P7 with the perpendicular line LO is determined. As a result, after cutting the bottom part, the tool returns to the intersection point P7, and after fast forwarding from the intersection point P2 to the intersection point P7 to the point P8 (step 515), the cutting line L1 is set with point P8 as the actual starting point of the cutting path on the left side. The cutting is performed while repeating the operation along the input step amount d while taking into account the return amount t as described above. Therefore, the rapid traverse path is P2→
P7→P8. The cutting path becomes P64P5.

なお、交点P4は→P8→P5の径路上にあるため、出
力データとして省かれる。また交点P5からはミゾ形状
に沿ってP5→P2が設定され、切削径路が生成される
(ステップ51B)。
Note that since the intersection P4 is on the path →P8→P5, it is omitted as output data. Further, from the intersection P5, P5→P2 is set along the groove shape, and a cutting path is generated (step 51B).

以下同様に、入力シフト量SだけシフトしたラインL2
.L3.・・・を順次設定し、上述と同様な径路生成処
理を行なう(ステップ517)。
Similarly, the line L2 shifted by the input shift amount S
.. L3. . . are set in sequence, and the same route generation process as described above is performed (step 517).

上記の切削径路工程は切削工具の左端Gを基準とするこ
とは言うまでもない0次に、ワークのミゾの右側部につ
いて切削工具の右端Hを基準として上述と同様な径路生
成処理を行なう。
It goes without saying that the above-mentioned cutting path process is based on the left end G of the cutting tool, and the same path generation process as described above is performed on the right side of the groove of the workpiece using the right end H of the cutting tool as a reference.

このようにして生成された切削径路データCPは切削径
路記憶部11に一旦記憶され、加工時に数値制御旋盤の
加工部に送られて切削加工される。
The cutting path data CP generated in this manner is temporarily stored in the cutting path storage section 11, and is sent to the processing section of the numerically controlled lathe during processing to be subjected to cutting.

なお、上記の径路生成処理において、早送りの空送り部
を破線で示し、切削送り部を太い実線で示すと第7図の
ような切削径路データとなる。
In the above-mentioned path generation process, if the rapid feed portion is shown by a broken line and the cutting feed portion is shown by a thick solid line, cutting path data as shown in FIG. 7 will be obtained.

(発明の変形例) この発明においては一つの中央底部を有するミゾ形状と
し、第2に示すようにミゾ形状の中央底部→左側部→右
側部という加工実施例を示したが、ミゾ形状の中央底部
→右側部啼左側部という加工手順においても切削工具刃
物の基準点をかえるだけで適用されるものである。
(Modified example of the invention) In this invention, the groove shape has one center bottom, and as shown in the second example, the processing example is shown in which the center bottom of the groove shape → the left side → the right side, but the center of the groove shape This method can also be applied to the machining procedure from the bottom to the right side to the left side by simply changing the reference point of the cutting tool blade.

また、上述の如く、一つの中央底部を有するが一つのミ
ゾ形状に限定されず、複数個の底部を有するミゾ形状に
も当然適用されるものである。
Further, as described above, although the groove shape has one central bottom, it is not limited to one groove shape, but is naturally applicable to groove shapes having a plurality of bottoms.

(発明の効果) 以上のようにこの発明のミゾ形状切削径路生成方式によ
れば、素材形状とミゾ形状の入力により任意の素材形状
とミゾ形状に対応できるため、オペレータの負担が軽く
なると共に、プログラムの作成工数を大幅に削減できる
利点がある。
(Effects of the Invention) As described above, according to the groove-shaped cutting path generation method of the present invention, it is possible to deal with any material shape and groove shape by inputting the material shape and groove shape, which reduces the burden on the operator and This has the advantage of greatly reducing the man-hours required to create a program.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方式を実現する装置の一実施例を示す
ブロック構成図、第2図はこの発明の手順の一例を示す
フローチャート、第3図はこの発明の径路生成の手順を
示すフローチャート、第4図、第5図及び第6図はこの
発明の径路生成の様子を説明するための図、第7図は空
送りと切削とを区別した場合の径路データを示す図であ
る。 l・・・ディスプレイ、2・・・キーボード、3・・・
入力制御部、4・・・ワーク形状記憶部、5・・・素材
形状記憶部、6・・・パートデータ記憶部、7・・・径
路生成主制御部、8・・・中央底部径路生成部、9・・
・左側径路生成部、lO・・・右側径路生成部、11・
・・切削径路記憶部。 出願人代理人  安 形 雄 三 落2図 LI  Lθ
FIG. 1 is a block diagram showing an embodiment of an apparatus for realizing the method of this invention, FIG. 2 is a flowchart showing an example of the procedure of this invention, and FIG. 3 is a flowchart showing the procedure of route generation of this invention. FIG. 4, FIG. 5, and FIG. 6 are diagrams for explaining the state of path generation according to the present invention, and FIG. 7 is a diagram showing path data when idle feeding and cutting are distinguished. l...display, 2...keyboard, 3...
Input control section, 4... Workpiece shape memory section, 5... Material shape memory section, 6... Part data storage section, 7... Route generation main control section, 8... Center bottom route generation section , 9...
・Left path generation unit, lO...Right path generation unit, 11・
...Cutting path memory section. Applicant's agent Yu Yasugata Sanraku 2zu LI Lθ

Claims (1)

【特許請求の範囲】[Claims] 数値制御旋盤におけるミゾ形状切削径路の生成方式にお
いて、鍛造品あるいは鋳造品のようなワークの素材形状
とミゾ形状とを基に、切削部を中央底部、右側部及び左
側部に区分し、X軸又はZ軸に平行でかつ一定のシフト
動作を含むミゾ切削サイクルを行なわせ、空切削径路部
分を除去するようにしたことを特徴とする数値制御旋盤
における最適ミゾ形状切削径路の生成方式。
In the generation method of the groove-shaped cutting path in a numerically controlled lathe, the cutting part is divided into the center bottom, right side, and left side based on the material shape of the workpiece such as a forged or cast product and the groove shape. Alternatively, a method for generating an optimum groove-shaped cutting path in a numerically controlled lathe, characterized in that a groove cutting cycle is performed that is parallel to the Z-axis and includes a constant shift operation, and an empty cutting path portion is removed.
JP60079409A 1985-04-16 1985-04-16 Generating Optimal Grooved Cutting Path on Numerically Controlled Lathe Expired - Fee Related JPH0780112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079409A JPH0780112B2 (en) 1985-04-16 1985-04-16 Generating Optimal Grooved Cutting Path on Numerically Controlled Lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079409A JPH0780112B2 (en) 1985-04-16 1985-04-16 Generating Optimal Grooved Cutting Path on Numerically Controlled Lathe

Publications (2)

Publication Number Publication Date
JPS61241001A true JPS61241001A (en) 1986-10-27
JPH0780112B2 JPH0780112B2 (en) 1995-08-30

Family

ID=13689060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079409A Expired - Fee Related JPH0780112B2 (en) 1985-04-16 1985-04-16 Generating Optimal Grooved Cutting Path on Numerically Controlled Lathe

Country Status (1)

Country Link
JP (1) JPH0780112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481044A (en) * 2012-06-11 2014-01-01 沈阳黎明航空发动机(集团)有限责任公司 Cutting and feeding path planning method applied to mechanical machining of metal components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128783A (en) * 1975-05-01 1976-11-09 Daihatsu Motor Co Ltd Machining apparatus of shaped material in numerical value controlling machine tool
JPS58120447A (en) * 1981-12-30 1983-07-18 Yamazaki Mazak Corp Control method of grooving work in numerically controlled lathe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128783A (en) * 1975-05-01 1976-11-09 Daihatsu Motor Co Ltd Machining apparatus of shaped material in numerical value controlling machine tool
JPS58120447A (en) * 1981-12-30 1983-07-18 Yamazaki Mazak Corp Control method of grooving work in numerically controlled lathe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481044A (en) * 2012-06-11 2014-01-01 沈阳黎明航空发动机(集团)有限责任公司 Cutting and feeding path planning method applied to mechanical machining of metal components

Also Published As

Publication number Publication date
JPH0780112B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
EP0002750A1 (en) Computerized numerical controller for a machine tool
JP3827951B2 (en) NC program optimization method and apparatus in NC machining
US7058473B2 (en) Method and device for generation of machining program
JPS5942248A (en) Nc machining system
US4713747A (en) Numerically controlled machining method using primary and compensating cutters
JPS59152043A (en) Three-dimensional tool path determination method
KR880001305B1 (en) Numerically controlled working method
EP0107794A1 (en) Numerical control system
JPS61241001A (en) Forming process of optimum cutting path for shape of flute in numerical control lathe
JPS63206804A (en) Numerical control system
US6745098B2 (en) Machining based on master program merged from parts programs
JPS63311408A (en) Numerical controller
JPS62246459A (en) Method for determining recombination of simultaneous machining of four shafts in automatic programming
EP0328665B1 (en) Numerical controller
JPS61219552A (en) Forming system of optimum cutting route in neutral control lathe
JPS62251044A (en) Nc program preparing method for four-spindle lathe
JPS61197147A (en) Optimum cutting path generating system in numerically controlled lathe
JPH0679580A (en) Numerical controller
JPS58219606A (en) Automatic shape working system
JP2607764B2 (en) Automatic parting path generation method
GB2237127A (en) Method for machining a corner section in a workpiece by means of NC electro-discharge machining apparatus
JP2985988B2 (en) Numerical control information creation device
JPH05324035A (en) Cutting path generating method
JP2730041B2 (en) How to create NC data
JPH0689109A (en) Numerical controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees