JPS6124092B2 - - Google Patents

Info

Publication number
JPS6124092B2
JPS6124092B2 JP55131033A JP13103380A JPS6124092B2 JP S6124092 B2 JPS6124092 B2 JP S6124092B2 JP 55131033 A JP55131033 A JP 55131033A JP 13103380 A JP13103380 A JP 13103380A JP S6124092 B2 JPS6124092 B2 JP S6124092B2
Authority
JP
Japan
Prior art keywords
inner ring
die
axial direction
ball groove
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131033A
Other languages
Japanese (ja)
Other versions
JPS5756132A (en
Inventor
Juichiro Hoshina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP13103380A priority Critical patent/JPS5756132A/en
Publication of JPS5756132A publication Critical patent/JPS5756132A/en
Publication of JPS6124092B2 publication Critical patent/JPS6124092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/762Coupling members for conveying mechanical motion, e.g. universal joints
    • B21K1/765Outer elements of coupling members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/762Coupling members for conveying mechanical motion, e.g. universal joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 この発明は駆動軸からそれと同じ角速度で従動
軸へ回転運動を伝える等速自在継手の内輪成形装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inner ring forming device for a constant velocity universal joint that transmits rotational motion from a drive shaft to a driven shaft at the same angular velocity as the drive shaft.

一般に、第1図乃至第3図に示す様に、駆動軸
1と従動軸2との間に、トルク伝達用の中間部材
としてボール3を用いる自在継手では、両軸間の
等速性を保つためには、ボール3の位置を常に駆
動軸1と従動軸2とがなす角の2等分面上に保持
することが必要である。このためには、駆動軸1
側の外輪5のボール溝6の曲率中心Aと、従動軸
2側の内輪7のボール溝8の曲率中心Bをジヨイ
ントの角度中心Oより左右に等距離だけずらすよ
いということが知られている。この場合ボール溝
内を転動するボールの中心点Cの軌跡は点A、B
に曲率中心を持つ曲線となる。ジヨイントの角度
中心Oは、外輪5の内径球面9と、内輪7の外径
球面10及びこれらの球面9,10間に配される
ケージ11の内外球面の中心であり、これにより
内外輪5,7はケージ11を介して、常にOを中
心として角度変位することになる。つまり、ジヨ
イントの角度中心Oはケージ11により常に一定
位置に決定される。
Generally, as shown in Figures 1 to 3, in a universal joint that uses a ball 3 as an intermediate member for torque transmission between a driving shaft 1 and a driven shaft 2, uniform velocity between both shafts is maintained. In order to achieve this, it is necessary to always maintain the position of the ball 3 on the bisecting plane of the angle formed by the drive shaft 1 and the driven shaft 2. For this purpose, drive shaft 1
It is known that the center of curvature A of the ball groove 6 of the outer ring 5 on the side and the center of curvature B of the ball groove 8 of the inner ring 7 on the driven shaft 2 side can be shifted by an equal distance left and right from the angular center O of the joint. . In this case, the locus of the center point C of the ball rolling in the ball groove is points A and B.
It becomes a curve with the center of curvature at . The angular center O of the joint is the center of the inner spherical surface 9 of the outer ring 5, the outer spherical surface 10 of the inner ring 7, and the inner and outer spherical surfaces of the cage 11 disposed between these spherical surfaces 9 and 10. 7 is always angularly displaced about O via the cage 11. In other words, the angular center O of the joint is always determined at a constant position by the cage 11.

而して外輪5のボール溝6の及び内輪7のボー
ル溝8の中心A、Bを夫々上記のように設定する
ことにより、ジヨイントの角度中心OからA及び
Bに至る距離(オフセツト)と、ボール中心Cか
らA及びBに至る距離は共に等しく、△OACと
△OBCとは三辺が相等しく合同となる。従つ
て、ボール中心Cの両軸1,2からの距離L1
びL2が等しくなり、ボール3は常に両軸1,2
のなす角の2等分面上に制御される。これは例え
ば第3図の中央のボールのようにボールが紙面上
にない場合でも同様である。従つて、この種の等
速ジヨイントでは、いかなる作動角、いかなる回
転角においても両軸の等速性を保つことが可能で
ある。
By setting the centers A and B of the ball groove 6 of the outer ring 5 and the ball groove 8 of the inner ring 7 as described above, the distances (offsets) from the angular center O of the joint to A and B, The distances from the ball center C to A and B are both equal, and △OAC and △OBC have three sides that are equal and congruent. Therefore, the distances L 1 and L 2 of the ball center C from both axes 1 and 2 are equal, and the ball 3 is always aligned with both axes 1 and 2.
It is controlled on the bisector of the angle formed by This is the same even when the ball is not on the paper, such as the ball in the center of FIG. 3, for example. Therefore, with this type of constant velocity joint, it is possible to maintain constant velocity of both shafts at any operating angle and any rotation angle.

ところで、この種の等速自在継手は上記のよう
に内外輪の形状に特殊な工夫かなされているた
め、単にミーリング加工等でそれらを製作した場
合には製作に多くの時間を要し、また使用する材
料の歩留りも悪いため、特殊な工程を経て行う必
要があつた。例えば従来における内輪7の製造
は、第4図に示す如き、内輪用素材をプレスして
それに副わせるべき所望の形状を有するダイス1
2、それと協動するパワチ13及びカウンターパ
ンチ14を含む鍛造型により行なつている。これ
であれば、内輪外周面に相当する部分及びボール
溝に相当する部分は、パンチ13を上方に抜く必
要から、球状に成形することができず、略ストレ
ート状にならざるを得なかつた。これがため、上
記鍛造型で内輪用素材を鍛造加工した後で、内輪
用素材の外径部及びボール溝部を所定の球面を仕
上げるために夫々の部分をフライス加工等で切削
除去する切削後処理加工を必要とする。しかも、
その切削後処理加工も曲線状の非常に複雑でかつ
非能率的な切削加工を強られるため、切削時間が
長くかかり、また材料歩留りも悪い不都合があつ
た。
By the way, as mentioned above, this type of constant velocity universal joint has a special design for the shape of the inner and outer rings, so if they were simply manufactured by milling, it would take a lot of time to manufacture, and Because the yield of the materials used was low, it was necessary to go through a special process. For example, in the conventional manufacturing of the inner ring 7, as shown in FIG.
2. This is carried out using a forging die that includes a power punch 13 and a counter punch 14 that cooperate with it. In this case, the portions corresponding to the outer peripheral surface of the inner ring and the portions corresponding to the ball grooves could not be formed into a spherical shape because the punch 13 had to be pulled out upwards, but had to be formed into a substantially straight shape. For this reason, after forging the inner ring material using the forging die, post-cutting processing is performed in which the outer diameter portion and ball groove of the inner ring material are removed by milling or the like in order to finish the respective spherical surfaces. Requires. Moreover,
The post-cutting process also requires a very complicated and inefficient curved cutting process, resulting in long cutting times and poor material yields.

そこで、現在では上記従来の等速自在継手にお
ける内輪製造の不都合を改良除去して次に述べる
2つの方法へと進展したものである。即ち、その
1つは第5図に示す如き、内輪用素材をプレスし
てそれに適合するべき所望の形状を有する合せ型
15,16、それと協動するポンチ17及びカウ
ンターポンチ18を含む鍛造型により行なつてい
る。これであれば、球状面の成形は可能である
が、製造しようとする内輪はボール溝の中心と外
径球面の中心とが軸方向にオフセツトされている
ため、同一平面にて合せ型15,16を割ること
ができず、ボール溝と外径球面とを同時に鍛造加
工で成形することが不可能であつた。これがた
め、ボール溝を鍛造加工にて成形した場合には鍛
造加工の後で外径球面の切削加工を必要とし、ま
た、外径球面を鍛造加工にて成形した場合には鍛
造加工の後でボール溝の切削加工を必要としてい
た。また、合せ型であるため型15と型16に芯
ズレが生じ、精度を悪化させたり、型15と型1
6の合せ面でボール溝及び外径球面にバリが発生
して後加工の障害となつていた。
Therefore, the following two methods have been developed to improve and eliminate the disadvantages of manufacturing the inner ring in the conventional constant velocity universal joint described above. Specifically, one of them is, as shown in FIG. 5, by pressing the inner ring material and using a forging die that includes mating dies 15 and 16 having a desired shape to fit therein, a punch 17 and a counter punch 18 that cooperate with the mating dies 15 and 16. I am doing it. With this, it is possible to form a spherical surface, but since the center of the ball groove and the center of the outer diameter spherical surface are offset in the axial direction in the inner ring to be manufactured, the mating mold 15 and 16, and it was impossible to forge the ball groove and the outer spherical surface at the same time. For this reason, if the ball groove is formed by forging, it is necessary to cut the outer diameter spherical surface after forging, and if the outer diameter spherical surface is formed by forging, it is necessary to cut the outer diameter spherical surface after forging. The ball groove required cutting. In addition, since they are mated molds, the centers of the molds 15 and 16 may be misaligned, which may deteriorate precision or cause molds 15 and 1
On the mating surface of No. 6, burrs were generated on the ball groove and the outer spherical surface, which was an obstacle to post-processing.

次に、他の1つは先ず第6図に示す如き、内輪
用素材をそれに適合するべき所望の形状を有する
ダイス19、それと協動するパンチ20及びカウ
ンターパンチ21を含む一次成形鍛造型により内
輪の軸方向略半分に関してボール溝及び外径球面
を各々所定の点を曲率中心とする曲線状に鍛造加
工し、次に第7図に示す如き、一次成形で得られ
た成形品をそれに適合するべき所望の形状を有す
るダイス22、それと協動するパンチ23及びカ
ウンターパンチ24を含む二次成形鍛造型により
残りの軸方向略半分に関してボール溝及び外径球
面を各々先に述べた曲線と連続する曲線状に鍛造
加工して製造するものである。これであれば、フ
ライス加工等の切削後処理加工が省略でき、ま
た、合せ型における芯ズレに起因するボール溝の
精度低下が防止され、更にはバリも発生しないた
め、バリによる後加工での障害もないが、ボール
溝が二次成形時に一次成形の部分を完全に拘束で
きないため、形状のクズレが発生する不都合があ
り、また鍛造工程も2工程必要であつた。
Next, as shown in FIG. 6, the inner ring material is first formed by a primary forming forging die that includes a die 19 having a desired shape to match the inner ring material, a punch 20 that cooperates with the die 19, and a counter punch 21. The ball groove and the outer diameter spherical surface are each forged into a curved shape with the center of curvature at a predetermined point, and then the molded product obtained by primary forming is adapted to it, as shown in Fig. 7. A secondary forming forging die including a die 22 having a desired shape, a punch 23 and a counter punch 24 cooperating with the die 22 makes the ball groove and the outer diameter spherical surface continuous with the curves described above for approximately the remaining half in the axial direction. It is manufactured by forging into a curved shape. With this, post-cutting processing such as milling can be omitted, and it also prevents a decrease in accuracy of the ball groove due to misalignment in the mating die, and also prevents burrs from occurring during post-processing. Although there were no problems, the ball groove could not completely restrain the primary molded part during secondary molding, resulting in the problem of deformation of the shape, and two forging steps were required.

この発明はこの種の等速自在継手の内輪製造に
おける上記従来の欠点に鑑み、これを改良除去す
るもので、以下この発明による等速自在継手の内
輪成形装置を図面に示す実施例について説明する
と次の通りである。
This invention is intended to improve and eliminate the above-mentioned conventional drawbacks in manufacturing the inner ring of constant velocity universal joints of this type.Hereinafter, an embodiment of the inner ring forming apparatus for a constant velocity universal joint according to the present invention will be described as shown in the drawings. It is as follows.

この発明による等速自在継手の内輪成形装置は
第8図及び第9図に示す実施例の如く、第9図の
割形ダイス25、テーパーベース26、補強リン
グ27、ダイスガイド28及び第8図のノツクア
ウトパンチ29にて構成された組合せダイス30
と、該組合せダイス30を下方に押し込む手段3
2及びパンチ31にて構成されたダイスセツト3
3からなる。
The inner ring forming device for a constant velocity universal joint according to the present invention is as shown in the embodiment shown in FIGS. 8 and 9, and includes a split die 25 in FIG. A combination die 30 composed of a knockout punch 29
and a means 3 for pushing the combination die 30 downward.
2 and a punch 31
Consists of 3.

上記組合せダイス30の一部を構成する割形ダ
イス25は、内周面に内輪のボール溝及び外径球
面が裏返しに形成してあると共に、外周面を下方
に向けて漸次小さくなるテーパー状に形成し、か
つ周方向にボール溝数の同じ数等分(図面に示す
実施例では6等分)に分割してその夫々の外周側
横面をダイスガイド28にて案内させ、上下移動
時に径方向に開閉可能な構造となつている。テー
パーベース26は割形ダイス25を上下にスライ
ド可能に嵌挿し、成形時の大きな圧力に耐える様
にダイス28と共に外周を補強リング27により
圧入又は焼バメされている。ダイスガイド28は
割形ダイス25を外周面に等分に位置決めすると
共に、割形ダイス25を案内してノツクアウト力
により該割形ダイス25を径方向に開かせる。補
強リング27はテーパーベース26及びダイスガ
イド28を圧入又は焼バメして固定し、成形時の
大きな圧力にテーパーベース26及びダイスガイ
ド28が耐え得るようにしている。ノツクアウト
パンチ29は割形ダイス25の中央に位置し、下
部を受圧板34にて保持されて加圧力を受けてワ
ークの下面を形成すると共に、ワークを排出する
ために上下方向に移動する。
The split die 25, which constitutes a part of the combination die 30, has an inner ball groove and an outer diameter spherical surface turned upside down on the inner circumferential surface, and the outer circumferential surface is tapered downward. The ball grooves are formed into equal parts in the circumferential direction (six equal parts in the example shown in the drawings), and the outer circumferential side of each part is guided by a die guide 28, so that when moving up and down, the diameter It has a structure that can be opened and closed in both directions. A split die 25 is vertically slidably inserted into the tapered base 26, and the outer periphery of the die 28 is press-fitted or shrink-fitted with a reinforcing ring 27 so as to withstand the large pressure during molding. The die guide 28 positions the split dies 25 equally on the outer circumferential surface, guides the split dies 25, and opens the split dies 25 in the radial direction by a knockout force. The reinforcing ring 27 fixes the tapered base 26 and the die guide 28 by press-fitting or shrink-fitting them, so that the tapered base 26 and the die guide 28 can withstand the large pressure during molding. The knockout punch 29 is located at the center of the split die 25, and its lower part is held by a pressure receiving plate 34 to form the lower surface of the workpiece under pressure, and also moves in the vertical direction to eject the workpiece.

ダイセツト33の一部を構成する位置決め手段
32はバネ・エアー等によるクツシヨン35を介
してプレススライド36に固定してあり、ワーク
成形前に割形ダイス25を下方に押し付けて軸方
向に位置決めする。また、パンチ31は割形ダイ
ス25に挿入可能にプレススライド36に固定し
ている。
A positioning means 32 constituting a part of the die set 33 is fixed to a press slide 36 via a cushion 35 made of springs, air, etc., and presses the split die 25 downward to position it in the axial direction before molding the workpiece. Further, the punch 31 is fixed to a press slide 36 so as to be insertable into the split die 25.

以上がこの発明による等速自在継手の内輪成形
装置の構成で、次に上記構成における作用動作に
ついて説明する。
The above is the configuration of the inner ring forming device for a constant velocity universal joint according to the present invention.Next, the function and operation of the above configuration will be explained.

先ず、等速自在継手の内輪用素材37を組合せ
ダイス30の割形ダイス25内にローデイングし
た後でプレススライド36を降下する。すると、
位置決め手段32が組合せダイス30を下方に押
し付けてダイスガイド28およびテーパーベース
26内に位置決めすると同時に割形ダイス25内
にパンチ31が挿入され、ノツクアウトパンチ2
9との間で素材37がプレスされて割形ダイス2
5の内周形状に成形される。このよようにして成
形品38が成形されると、プレススライド36に
よりパンチ31が上昇すると同時に、ノツクアウ
トパンチ29が上方に押し上げられる。すると、
ノツクアウトパンチ29のノツクアウト力により
成形品38は割形ダイス25と共に上方に移動
し、この上方への移動時に割形ダイス25がテー
パーベース26及びダイスガイド28により径方
向に開放して成形品38がノツクアウトパンチ2
9により上方に排出される。
First, the material 37 for the inner ring of the constant velocity universal joint is loaded into the split die 25 of the combination die 30, and then the press slide 36 is lowered. Then,
The positioning means 32 pushes the combination die 30 downward and positions it within the die guide 28 and the tapered base 26, and at the same time the punch 31 is inserted into the split die 25, and the knockout punch 2 is inserted into the split die 25.
9, the material 37 is pressed between the split die 2
It is molded into the inner circumferential shape of 5. When the molded product 38 is molded in this manner, the punch 31 is raised by the press slide 36, and at the same time, the knockout punch 29 is pushed upward. Then,
The knock-out force of the knock-out punch 29 causes the molded product 38 to move upward together with the split die 25, and during this upward movement, the split die 25 is opened radially by the taper base 26 and the die guide 28, and the molded product 38 Knock Out Punch 2
9 and is discharged upward.

このようにして成形された成形品38は、ボー
ル溝、外径球面及び幅部を同時に鍛造されるか
ら、後処理工程としての外周旋削、ボール溝ミー
リング、チヤンフアーミ―リング及びボール溝研
削工程が省略できる。これにより、後工程工数削
減と同時に取代減少による材料歩留り向上が計れ
る。更に、ボール溝研削工程の省略により、滲炭
材の場合には、滲炭熱処理時間の短縮が計れる。
In the molded product 38 formed in this way, the ball groove, outer diameter spherical surface, and width part are forged at the same time, so the post-processing steps of outer circumference turning, ball groove milling, chamfer milling, and ball groove grinding are omitted. can. This makes it possible to reduce post-process man-hours and at the same time improve material yield by reducing machining allowance. Furthermore, by omitting the ball groove grinding process, in the case of carbon-depleted materials, the time required for de-charcoal heat treatment can be shortened.

以上説明したように、この発明は両端面が軸方
向と直交した平行な端面とされ、外経面が中心軸
上に曲率中心をもつ球面をなし、この外径球面の
周方向等配位置に上記外径球面の曲率中心に対し
て中心軸上でオフセツトした位置に曲率中心をも
つ円弧状で軸方向に沿うボール溝を軸方向全長に
形成した形状をなす等速自在継手の内輪を内軸用
素材から鍛造成形するための装置であつて、周方
向に等分割され、かつ、径方向に拡縮可能とさ
れ、縮径時、上記内輪のボール溝及び外径球面と
同一形状の内輪成形用空洞部を内周面に形成する
割形ダイスと、各割形ダイスを上記内輪の軸方向
に摺動可能に案内収容するテーパー状の内周面を
有し、上記軸方向の摺動で各割形ダイスを径方向
に拡縮させるテーパーベースと、上記テーパーベ
ース内で各割形ダイス周方向等配位置に位置決め
案内するダイスガイドと、内輪成形中、上記割形
ダイスをテーパーベースの小径端側へ押圧して縮
径保持させる位置決め手段と、上記割形ダイスの
内周面で形成される内輪成形用空洞部の軸方向に
移動可能に対向配置され、相互の対向端面を内輪
の夫々の軸方向端面の成形面とすると共に、素材
両端を軸方向に圧縮して該素材を半径方向外方へ
塑性流動させて上記ダイスが形成する内輪成形用
空洞部内に充満させるための一対のパンチとで構
成したから、ダイスが形成する空洞部内で1対の
パンチを軸方向に相互に接近移動させて素材を軸
方向に圧縮し、これによつて素材を半径方向外方
へ塑性流動させて上記空洞部内に充満する如く変
形させることができ、これによつて、曲率中心が
軸方向にオフセツトしたボール溝と外径球面とを
もつ等速自在継手の内輪を1工程の鍛造だけで精
度良く成形でき、切削等の後処理加工を不要化で
き、かつ、材料歩留まもり向上させ得る。
As explained above, in this invention, both end faces are parallel end faces orthogonal to the axial direction, the outer diameter face is a spherical face with the center of curvature on the central axis, and the outer diameter face is arranged at equal positions in the circumferential direction of the outer diameter spherical face. The inner ring of a constant velocity universal joint is shaped like an arc with a center of curvature at a position offset on the center axis from the center of curvature of the outer diameter spherical surface, and a ball groove along the axial direction is formed over the entire axial length. It is a device for forging and forming from a raw material, which is equally divided in the circumferential direction and expandable and contractible in the radial direction, and for forming an inner ring that has the same shape as the ball groove and outer diameter spherical surface of the inner ring when the diameter is reduced. It has a split die with a cavity formed on its inner circumferential surface, and a tapered inner circumferential surface that guides and accommodates each split die so that it can slide in the axial direction of the inner ring. A tapered base that expands and contracts the split dies in the radial direction; a die guide that positions and guides each split die at equal circumferential positions within the tapered base; and a die guide that positions and guides each split die at equal circumferential positions within the tapered base; A positioning means for compressing and maintaining the diameter of the split die and a positioning means that are arranged so as to be movable in the axial direction of the inner ring forming cavity formed by the inner circumferential surface of the split die, and the opposing end surfaces are aligned with the respective axes of the inner ring. A pair of punches serve as forming surfaces for the directional end faces, and also compress both ends of the material in the axial direction to cause the material to plastically flow outward in the radial direction to fill the inner ring forming cavity formed by the die. Since the structure is configured, the pair of punches are moved axially close to each other within the cavity formed by the die to compress the material in the axial direction, thereby causing the material to plastically flow radially outward and compressing the material into the cavity. As a result, the inner ring of a constant velocity universal joint, which has a ball groove whose center of curvature is offset in the axial direction and an outer spherical surface, can be formed with high precision in just one forging process. , post-processing such as cutting can be eliminated, and material yield can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は等速自在継手の縦断面図で第2図のY
―Y線断面図、第2図は第1図のX―X線断面
図、第3図は第1図における両軸が角度変位した
場合を示す図、第4図乃至第7図は従来の内輪成
形装置を示す概略図、第8図はこの発明による内
輪成形装置を示す縦断面図、第9図は第8図のZ
―Z線断面図である。 25…割形ダイス、26…テーパーベース、2
7…補強リング、28…ダイスガイド、29…ノ
ツクアウトパンチ、30…組合せダイス、32…
位置決め手段、31…パンチ、33…ダイセツ
ト、36…プレススライド、37…内輪用素材、
38…成形品。
Figure 1 is a vertical cross-sectional view of a constant velocity universal joint, and
-Y line sectional view, Figure 2 is a XX line sectional view of Figure 1, Figure 3 is a diagram showing the case where both axes in Figure 1 are angularly displaced, Figures 4 to 7 are conventional A schematic diagram showing an inner ring forming device, FIG. 8 is a longitudinal sectional view showing an inner ring forming device according to the present invention, and FIG.
-Z line sectional view. 25...Split die, 26...Tapered base, 2
7... Reinforcement ring, 28... Dice guide, 29... Knockout punch, 30... Combination die, 32...
Positioning means, 31... Punch, 33... Die set, 36... Press slide, 37... Inner ring material,
38... Molded product.

Claims (1)

【特許請求の範囲】[Claims] 1 両端面が軸方向と直交した平行な端面とさ
れ、外径面が中心軸上に曲率中心をもつ球面をな
し、この外径球面の周方向等配位置に上記外径球
面の曲率中心に対して中心軸上でオフセツトした
位置に曲率中心をもつ円弧状で軸方向に沿うボー
ル溝を軸方向全長に形成した形状をなす等速自在
継手の内輪を内輪用素材から鍛造成形するための
装置であつて、周方向に等分割され、かつ、径方
向に拡縮可能とされ、縮径時、上記内輪のボール
溝のボール溝及び外径球面と同一形状の内輪成形
用空洞部を内周面に形成する割形ダイスと、各割
形ダイスを上記内輪の軸方向に摺動可能に案内収
容するテーパー状の内周面を有し、上記軸方向の
摺動で各割形ダイスを径方向に拡縮させるテーパ
ーベースと、上記テーパーベース内で各割形ダイ
スを周方向等配位置に位置決め案内するダイスガ
イドと、内輪成形中、上記割形ダイスをテーパー
ベースの小径端側へ押圧して縮径保持させる位置
決め手段と、上記割形ダイスの内周面で形成され
る内輪成形用空洞部の軸方向に移動可能に対向配
置され、相互の対向端面を内輪の夫々の軸方向端
面の成形面とすると共に、素材両端を軸方向に圧
縮して該素材を半径方向外方へ塑性流動させて上
記ダイスが形成する内輪成形用空洞部内に充満さ
せるための一対のパンチとで構成したことを特徴
とする等速自在継手の内輪成形装置。
1. Both end surfaces are parallel end surfaces perpendicular to the axial direction, the outer diameter surface forms a spherical surface with the center of curvature on the central axis, and the outer diameter surface has a spherical surface at equal positions in the circumferential direction. A device for forging the inner ring of a constant velocity universal joint, which has a circular arc shape with the center of curvature at a position offset from the central axis and a ball groove along the axial direction, formed over the entire axial length, from inner ring material. It is equally divided in the circumferential direction and can be expanded and contracted in the radial direction, and when the diameter is reduced, the inner ring forming cavity having the same shape as the ball groove and the outer spherical surface of the inner ring is formed on the inner peripheral surface. It has a tapered inner circumferential surface that guides and houses each split die in a slidable manner in the axial direction of the inner ring. a tapered base that expands and contracts; a die guide that positions and guides the split dies at equal positions in the circumferential direction within the taper base; A positioning means for maintaining the diameter and a molding surface of each axial end surface of the inner ring are arranged so as to be movable in the axial direction of the inner ring forming cavity formed by the inner peripheral surface of the split die, and the mutually opposing end surfaces are arranged to face each other so as to be movable in the axial direction. and a pair of punches for compressing both ends of the material in the axial direction to cause the material to plastically flow radially outward, filling the inner ring forming cavity formed by the die. Inner ring forming equipment for constant velocity universal joints.
JP13103380A 1980-09-19 1980-09-19 Formation device for inner ring of equal speed universal joint Granted JPS5756132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13103380A JPS5756132A (en) 1980-09-19 1980-09-19 Formation device for inner ring of equal speed universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13103380A JPS5756132A (en) 1980-09-19 1980-09-19 Formation device for inner ring of equal speed universal joint

Publications (2)

Publication Number Publication Date
JPS5756132A JPS5756132A (en) 1982-04-03
JPS6124092B2 true JPS6124092B2 (en) 1986-06-09

Family

ID=15048442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13103380A Granted JPS5756132A (en) 1980-09-19 1980-09-19 Formation device for inner ring of equal speed universal joint

Country Status (1)

Country Link
JP (1) JPS5756132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102496U (en) * 1986-12-24 1988-07-04

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839566B2 (en) * 1997-10-13 2006-11-01 本田技研工業株式会社 Method and apparatus for forging of constant velocity universal joint inner ring
JP4137359B2 (en) * 2000-09-13 2008-08-20 Ntn株式会社 Method for manufacturing inner ring of constant velocity universal joint
JP2002130315A (en) * 2000-10-20 2002-05-09 Ntn Corp Manufacturing method for isochronous joint
DE10159776C2 (en) * 2001-12-05 2003-10-23 Gkn Automotive Gmbh Production of an inner joint part
JP5442184B2 (en) 2006-03-27 2014-03-12 Ntn株式会社 Constant velocity universal joint inner ring, manufacturing apparatus thereof, manufacturing method thereof
JP6181219B1 (en) 2016-02-16 2017-08-16 Ntn株式会社 Method for forging outer joint member of constant velocity universal joint
JP6798949B2 (en) * 2017-08-21 2020-12-09 Ntn株式会社 Forging die equipment and forging method
CN116713422B (en) * 2023-06-13 2024-03-08 东实沿浦(十堰)科技有限公司 Device convenient to fastener shaping drawing of patterns

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110172A (en) * 1974-07-17 1976-01-27 Tetsuo Takano KYUSHINPURESUSEIKEISOCHI
JPS534832A (en) * 1976-07-05 1978-01-17 Toshiba Corp Double front metal-clad switchgear
JPS534833A (en) * 1976-07-05 1978-01-17 Toshiba Corp Metal-clad switchgear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110172A (en) * 1974-07-17 1976-01-27 Tetsuo Takano KYUSHINPURESUSEIKEISOCHI
JPS534832A (en) * 1976-07-05 1978-01-17 Toshiba Corp Double front metal-clad switchgear
JPS534833A (en) * 1976-07-05 1978-01-17 Toshiba Corp Metal-clad switchgear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102496U (en) * 1986-12-24 1988-07-04

Also Published As

Publication number Publication date
JPS5756132A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
CA1038699A (en) Means for making double groove pulleys
EP0062067B1 (en) Manufacturing method for a tubular shell of a universal joint
JPS6124092B2 (en)
US6044684A (en) Forging apparatus for inner race of constant velocity universal joint
JP2008025780A (en) Manufacturing method of cage for cross groove type constant velocity universal joint
US4470288A (en) Manufacturing method and apparatus for shell of universal-joint
WO1984001529A1 (en) Manufacture of article having undercut internal surface
US4722211A (en) Method of forming hollow parts
JPH0215832A (en) Manufacture of element with grooved trunnion and method and tool for forming groove to trunnion
EP0022872B1 (en) Method of manufacturing inner race of synchronous universal joint
US5160108A (en) Process and tool for producing a barrel for a telescopic universal transmission joint
JP3862429B2 (en) Method and apparatus for manufacturing inner ring for constant velocity joint
JPS63295034A (en) Manufacture of polyvinyl pulley wherein rim and disk are coupled and polyvinyl pulley manufactured by that method
EP0158883A2 (en) Outerrace of universal joint with cross grooves
JPH0623573B2 (en) Outer ring of universal joint and its manufacturing method
JPH0459058B2 (en)
JPS63199040A (en) Press forming method for inner wheel of uniform universal coupling
JPS6157103B2 (en)
US6438844B2 (en) Method and apparatus for manufacturing constant velocity joints
JPS59166339A (en) Manufacture of ball pin
EP0003443A1 (en) Improvements in or relating to rolling bearings
WO2000014419A1 (en) Cylindrical roller for tripod constant velocity joint and method of manufacturing the roller
JPS6324781B2 (en)
JPH0718453Y2 (en) Inner ring forging die for constant velocity joints
JP2648467B2 (en) Method of manufacturing power transmission element